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Abstract
Spectroscopy is a methodology for gaining knowledge of particles, especially biomolecules, by quantifying the interactions 
between matter and light. By examining the level of light absorbed, reflected or released by a specimen, its constituents, 
properties, and volume can be determined. Spectra obtained through spectroscopy procedures are quick, harmless and 
contactless; hence nowadays preferred in chemometrics. Due to the high dimensional nature of the spectra, it is challeng-
ing to build a robust classifier with good performance metrics. Many linear and nonlinear dimensionality reduction-based 
classification models have been previously implemented to overcome this issue. However, they lack in capturing the subtle 
details of the spectra into the low dimension space or cannot efficiently handle the nonlinearity present in the spectral data. 
We propose a graph-based neural network embedding approach to extract appropriate features into latent space and circum-
vent the spectrums' nonlinearity problem. Our approach performs dimensionality reduction into two phases: constructing 
a nearest neighbor graph and producing almost linear embedding using a fully connected neural network. Further, the low 
dimensional embedding is subjected to classification using the Random Forest algorithm. In this paper, we have implemented 
and compared our technique with four nonlinear dimensionality techniques widely used for spectral data analysis. In this 
study, we have considered five different spectral datasets belonging to specific applications. The various classification per-
formance metrics of all the techniques are evaluated. The proposed approach is able to perform competitively well on six 
different low-dimensional spaces for each dataset with an accuracy score above 95% and Matthew's correlation coefficient 
value close to 1. The trustworthiness score of almost 1 show that the presented dimensionality reduction approach preserves 
the closest neighbor structure of high dimensional spectral inputs into latent space.
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Introduction

Spectroscopy allows an investigation of the interplay 
between matter and radiation as a relation and dependence 
of wavelength, which is a not annihilative, harmless, non-
contactable and quick methodology compared to the con-
ventional approaches in chemometrics (Fu and Ying 2016; 
Zheng et al. 2017). Raman spectroscopy (RS) and Infrared 
spectroscopy (IS) are two more prominent techniques with 

a plethora of applications from science and agriculture to 
engineering. Raman is a light dispersion methodology in 
which a molecule disperses the ray of incident light from 
an intensified laser light emitter. Maximum dispersed light 
holds the same wavelength as the light source; hence, it fails 
to provide valuable and beneficial information. Meaning-
ful information is hidden in a little ray of light scattered at 
differing wavelengths called Raman scattering (Chen et al. 
2022b; Araújo et al. 2021).

IS deals with observing molecules stimulated by an 
infrared light beam resulting in an infrared absorbance 
spectrum. IS absorbance spectrum being a "fingerprint" 
of any (bio)chemical component, provides intrinsic 
information about the substances, which is necessary for 
many investigations. Recently, RS and IS combined with 
Machine Learning (ML) and Dimensionality Reduction 
(DR) approaches have numerous realistic and pragmatic 
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applications like quantitative and qualitative assessments 
of soil attributes to ensure fertility and productivity via 
the formulation and recommendation of modified ferti-
lizer compositions (Barra et al. 2021). Effectual guidance 
is provided in diagnosing different types of cancer based 
on the spectrums generated on the blood plasma and skin 
samples (Chen et al. 2022b; Araújo et al. 2021; Mohamed 
Yousuff and Rajasekhara Babu 2022). Detection of food 
adulteration, especially in seafood, honey, and edible oils, 
helps differentiate the quality and debasement of fuels 
such as diesel and gasoline (Dumancas and Ellis 2022; 
Owen et al. 2021; Zhao et al. 2022; Li et al. 2020; Wang 
et al. 2000a, 2000b). Evaluation of antibiotic susceptibil-
ity of certain microorganisms such as bacteria and finding 
the types of diseases that affected the crop leaves (Sulei-
man et al. 2022; Mohamed Yousuff et al. 2020). Microbial 
spoilage detection and classification of muscle foods (Ellis 
et al. 2004; Yan et al. 2021). Investigating the quality of 
products, specifically tea, coffee and fruit-based beverages 
(Mishra et al. 2018; Hu et al. 2022; Bizzani et al. 2020). 
Chemical component analysis and many more medical and 
health-related applications are apparently implemented 
using these technologies (Gao et al. 2022; Chen et al. 
2022a; Ralbovsky et al. 2021; Liu et al. 2021).

Spectra usually have many wavelength features ranging 
from a hundred to a thousand dimensions. Classification 
approaches utilizing the entire spectrum of features become 
a time-consuming process, and extraneous information 
within the spectrum will compromise the model's precision 
and stability. Especially if the dimensionality of the input 
spectral features is very high, the modeling time and cost 
will be extraordinarily expensive. Regarding sampling cost 
in industrial and medical applications, the number of spec-
tral observations or samples ( s ) collected for any scenario 
is usually lower than the number of features ( f  ). Without 
well-formed and conditioned observation matrix, such as 
s >> f  , ML models cannot deliver accurate predictions. In 
other words, RS and IS spectrums are high-dimensional data 
which require an effective DR approach to achieve better 
classification metrics (Mishra et al. 2018; Zheng et al. 2019).

Principal Component Analysis (PCA) is among the most 
widely implemented linear DR algorithm for several High 
Dimensional Space (HDS) data. PCA is a projection-based 
approach that transforms the data points by mapping them 
onto orthogonal axes. PCA identifies the optimal linear 
combinations of the actual spectral features so that the vari-
ance or dispersion along the transformed feature is maxi-
mized (Zhang et al. 2022). In the context of spectral data, 
an eigenvector indicates a direction or axis of the data, and 
the associated eigenvalue reflects the dispersion along that 
eigenvector. The greater the eigenvalue, the greater the vari-
ance, especially along the corresponding eigenvector. The 
outcome of the PCA algorithm is the principal components 

which are linear combinations of actual wavelengths of the 
spectrum (Zhao et al. 2022).

Therefore, PCA cannot comprehend intricate polynomial 
correlations between features. Thus, a major issue with PCA 
is that it fails to produce efficient Low Dimensional Space 
(LDS) if there exists more nonlinearity in the spectrums 
(Liu et al. 2017). To overcome this problem, Kernel PCA 
(KPCA) is introduced to manage the nonlinear aspects of 
the spectrums. Kernel PCA is implemented to aid in the 
determination of data points whose decision boundaries 
are characterized by a nonlinearly separable function. The 
notion behind the concept of the kernel is to move to an 
HDS in which the decision boundary of the spectral features 
turns linear. A general nonlinear integration of the original 
features will generate a large number of new components 
or features after the implementation of the kernel function, 
which exponentially increases the problem's computational 
complexity compared to PCA (Sun et al. 2019).

KPCA cannot outperform PCA if many data points pre-
sent in the spectral data are linearly separable; hence, using 
a nonlinear kernel may result in performance degradation 
due to overfitting (Li et al. 2020). Multi-Dimensional Scal-
ing (MDS) is a method for learning manifolds that preserves 
distance. Methods that preserve distance presuppose that a 
manifold is given by the pairwise distances between its data 
points. In distance-preserving approaches, an LDS is cre-
ated from an HDS such that pairwise distances between data 
points stay unchanged. MDS maintains spatial distances, 
whereas other approaches maintain graph distances. The 
dissimilarity matrix is computed from the input spectrums. 
MDS considers the dissimilarity matrix and creates a cor-
responding mapping on an LDS, retaining the dissimilarities 
of the data points as precisely as possible. Generating the 
dissimilarity matrix at each step of MDS needs a significant 
amount of processing resources. It is not easy to incorporate 
new data into MDS (Mishra et al. 2018).

Isometric mapping (ISOMAP) is a nonlinear DR technique 
based on spectral theory that attempts to retain geodesic dis-
tances in the LDS. ISOMAP begins by constructing a neigh-
borhood network. The graph distance is used to estimate the 
geodesic distance between each pair of data points, then uses 
eigenvalue disintegration of the geodesic distance matrix, and 
the LDS of the dataset is subsequently determined. The geo-
desic distance is computed as the summation of path weights 
on the shortest path connecting two data points. When the 
manifolds are not adequately sampled and have gaps, ISO-
MAP fails miserably. Creating a neighborhood graph is chal-
lenging, and a small error in the parameters can have negative 
implications (Wang et al.  2020b; Mishra et al. 2018).

t-distributed Stochastic Neighbor Embedding (t-SNE) is 
a revolutionary DR and data visualization technique. t-SNE 
incorporates not only the local patterns of the HDS but also 
tries to maintain the global features of the data. It has a 
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remarkable capacity to form well-defined, distinct clusters. 
Student-t distribution is implemented to quantify the simi-
larity between the data points in the LDS, and t-SNE uses a 
symmetric probability distribution for the HDS (Wang et al. 
2020a; Luo et al. 2021). When the LDS dimension exceeds 
3, t-SNE has execution issues. Similar to other gradient 
descent-based algorithms, t-SNE tends to become trapped 
in local optima. t-SNE is quite responsive to the perplex-
ity value, producing misleading clusters. The fundamental 
t-SNE implementation is slow due to search requests for 
nearest neighbors (Wang et al. 2021b).

To overcome the above issues, we propose a Graph-
based Neural Network Embedding (GNNE) approach to 
produce an appropriate and reliable LDS representation of 
HDS spectral inputs. GNNE starts with building a k closest 
neighbors’ graph of input data points and computing edge 
probabilities of HDS input observations. Then a Fully Con-
nected Neural Network (FCNN) with a nonlinear activation 
function is employed to obtain the embedding of desired 
low dimensions. The probability values of LDS or latent 
space or embedding are computed, and finally, the differ-
ence between both HDS and LDS probability distributions 
is optimized using the cross-entropy cost function to extract 
efficient embeddings. The content of our work is organized 
as follows, various spectral datasets description, spectra 
preprocessing strategies, visualization of preprocessed spec-
trums and proposed methodology is explained in Method 
and Implementation section. The procedures executed to 
extract the LDS using the proposed technique and compara-
tive visualizations of 2-Dimensional embeddings obtained 
from various DR techniques and GNNE for all the spectral 
datasets are discussed and depicted in  Experiments section. 
In Results and Discussions section, the spectra classifica-
tion model and its performance metrics are presented along 
with the DR evaluation metric. Finally, the conclusion part 
is mentioned in  Conclusion section.

Method and implementation

Spectral datasets description

The absorbance spectra from five different spectral datasets 
are considered in our study to examine the performance of 
the proposed DR approach. The datasets such as coffee, 
fresh meat, olive oil, and fruit purees are available online 
at https:// data. mende ley. com/ datas ets/ frrv2 yd9rg/1. The 
COVID-19 Raman spectroscopy dataset is available on 
https:// doi. org/ 10. 6084/ m9. figsh are. 12159 924. v1. All the 
five datasets are described as follows:

(i) Coffee: Beans of coffee collected from different world 
regions are roasted to too many degrees of temperature; 

finally, it is well processed to form a lyophilized pow-
der. The coffee powder is stored in an air-tight plastic 
container at -20ºC before subjecting it to spectroscopy. 
After a while, Fourier Transformed Infrared Spectros-
copy (FTIS) is used to generate the spectra of coffee for 
56 samples belonging to two classes, namely arabica 
(29 samples) and robusta (27 samples). Each of these 
coffee spectra consists of 286-dimension features in a 
wavelength range between 811 to 1910  cm−1 (Downey 
et al. 1997).

(ii) Fresh Meat: The meat belonging to three categories, 
namely chicken, turkey, and pork, of approximately 
100 g, is collected over a period of 14 days. Pork chops 
are taken; similarly, breast pieces of chicken and tur-
key are preferred for the spectroscopy. After removing 
skin and bones, all the meat is softened using a blender 
and cleansed using 2% Triton-X solution and distilled 
water. The Mid-IS spectrums are taken for 20 samples 
belonging to each category under frozen and thawed 
conditions. Each of these fresh meat spectra consists of 
448-dimension features in a wavelength range between 
1006 to 1867  cm−1 (Al-Jowder et al. 1997).

(iii) Olive Oil: Sixty specimens of genuine virgin olive 
oils are obtained from four reputed European nations 
well known for their oil production. The samples gath-
ered are 10, 17, 8, and 25 from Greece, Italy, Portu-
gal and Spain, respectively. Two distinct durations of 
around 14 days are spent to collect the data. Before and 
between spectral observations, specimens were kept 
in the dark at room temperature. Each of these virgin 
olive oil spectra consists of 570-dimension features in 
a wavelength range between 799 to 1896  cm−1 (Tapp 
et al. 2003).

(iv) Fruit Purees: Mid-IS spectrums are measured on two 
different types of verified fruit purees. The first type 
contains 351 spectra belonging to the ‘Strawberry’ cat-
egory. Fresh strawberry fruits are collected, and purees 
are prepared by the researchers, which are then sub-
jected to spectroscopy. The second category contains 
632 spectra belonging to the ‘Non-Strawberry’ class. It 
is a kind of adulterated strawberry purees mixed with 
several other fruit juices and sugar solutions. Each 
of these fruit purees spectra consists of 235-dimen-
sion features in a wavelength range between 900 to 
1802  cm−1 (Holland et al. 1998).

(v) COVID-19: The blood serum of confirmed COVID-
19 patients, healthy persons, and suspected individuals 
are obtained. The RS analysis process is performed, 
and spectra are measured on all types of serum speci-
mens. 465 spectra are totally acquired, out of which 
159 spectra come under the COVID-19 category, 156 
spectra belong to the suspected class, and 150 fit in the 
healthy class. Each of these COVID-19 spectra con-

https://data.mendeley.com/datasets/frrv2yd9rg/1
https://doi.org/10.6084/m9.figshare.12159924.v1


828 Earth Science Informatics (2023) 16:825–844

1 3

sists of 900-dimension features in a wavelength range 
between 400 to 2112  cm−1 (Yin et al. 2019).

Spectra preprocessing

The spectral data analysis procedure can assure better 
results with effective preprocessing steps implemented prior 
to the analysis phase. A sequence of preprocessing steps 
like background noise elimination, normalization, smooth-
ening, and baseline emendation is carried out in order to 
ensure finer and enhanced classification metrics (Khan et al. 
2018). Applying a Savitzky-Golay filter, all spectrums are 
smoothed. A digital filter such as the Savitzky–Golay can be 
used to smooth the data, enhancing its lucidity, sharpness, 
and resolution without altering the spectrum's rudimentary 
pattern. In a convolution approach, a low-degree polynomial 

is adapted to successive subsets of adjacent data points using 
the linear least-squares technique to obtain the smoothing 
outcome (Mohamed Yousuff and Rajasekhara Babu 2022; 
Schafer 2011). The preprocessed spectrums and their cor-
responding average spectrums of all the datasets are depicted 
in Figs. 1, 2, 3, 4, and 5, respectively.

Methodology

Similar to t-SNE and associated techniques, we presume 
that the data points which are in close proximity to each 
other in the HDS as per a pertinent metric should also be 
closer to one another in the embedding space. Consequently, 
we also assume that the data points which are far away in 
proximity in the HDS should also be isolated accordingly in 
the LDS. We suppose a metric like the Euclidean distance 

(a) (b)

Fig. 1  Preprocessed FTIS spectrums of arabica and robusta coffee variety (a) Set of all preprocessed coffee spectrums (b) Preprocessed average 
coffee spectrums

(a) (b)

Fig. 2  Preprocessed Mid-IS spectrums of chicken, pork and turkey fresh meat (a) Set of all preprocessed fresh meat spectrums (b) Preprocessed 
average fresh meat spectrums
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Fig. 3  Preprocessed FTIS spectrums of Greece, Italy, Portugal and Spain olive oils (a) Set of all preprocessed olive oil spectrums (b) Preproc-
essed average olive oil spectrums

Fig. 4  Preprocessed Mid-IS spectrums of strawberry and non-strawberry fruit purees (a) Set of all preprocessed fruit purees spectrums (b) Pre-
processed average fruit purees spectrums

Fig. 5  Preprocessed RS spectrums of COVID-19, healthy and suspected blood serum (a) Set of all preprocessed blood serum spectrums (b) Pre-
processed average blood serum spectrums
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in the HDS is adequate to depict a manifold on which the 
input observations lie (van der Maaten and Hinton 2008). 
The objective of the proposed GNNE approach: Given D
-dimensional spectral data points S ∈ ℝD , create a d-dimen-
sional LDS or embedding E ∈ ℝd(d ≪ D) such that the data 
points nearer in proximity in S (for example Si and Sj ) should 
also be closer to one another in E ( Ei and Ej ). GNNE com-
putes a nearest-neighbors graph and edge probability values 
of each input spectral datapoint followed by extraction of 
needed latent space using FCNN with a nonlinear activation 
function. The cross-entropy cost function is implemented 
to reduce the difference between high dimensional and low 
dimensional probability distributions, resulting in an effec-
tual embedding that can be further utilized for visualization 
and classification of the spectra.

Data graph in the HDS (Spectral Input Space)

Considering the spectral dataset S =
[
s1, s2,… , sn

]
∈ ℝDXN 

where N is the number of spectral observations and D is their 
corresponding dimensionality. We build a k-Nearest Neigh-
bors ( k NN) graph ( k is considered as a hyper parameter) for 
the given spectral input space (Dong et al. 2011). The j-th 
neighbor of si is indicated as si,j then �i ∶= {si,1, si,2,… , si,k} 
represents the set of neighbor data points for the observa-
tionsi . We considered the neighbor affinity relationship 
among the data points randomly. Radial Basis Function 
(RBF) or Gaussian kernel is used to compute the similitude 
between the input data points in the HDS (van der Maaten 
and Hinton 2008; Hinton and Roweis 2002; Ghojogh et al. 
2020). The probability that a spectral data point si has sj as 
its neighbor can be calculated using the similarity of these 
data points as given in Eq. 1.

where ∥ .∥2 indicates the L2 norm, �i is the measure of dis-
tance between si and its nearest neighbor data point given 
by Eq. 2.

The �i is the scaling variable, calculated so as to normal-
ize the total similarity of the data point si to its k NNs. Using 
binary search �i is determined to gratify Eq. 3.

t-SNE uses entropy as perplexity for a similar scale 
search. Since the scaling for a data point in a crowded sec-
tion of the dataset turns small, the scaling for a data point 

(1)�j|i =

{
exp

(
−

∥si−sj∥2−�i

�i

)
, ifsj ∈ �i

0, otherwise

(2)�i = min
{
∥ si − si,j∥2

|||1 ≤ j ≤ k}

(3)
k∑

j=1

exp

(
∥ si − si,j∥2 − �i

�i

)
= log2(k)

in a sparsely dispersed area of the dataset becomes vast; as 
a result, these searches cause the neighborhoods of diverse 
data points to act similarly. In other terms, we presume 
that the observations are distributed uniformly on an LDS 
manifold. Directional similitude measure is given in Eq. 1 
whereas Eq. 4 gives the symmetric measure of similitude 
between data points si and sj in the high dimensional spectral 
input space.

Data graph in the LDS (Embedding)

Let the embeddings of the spectral data points be 
E = [e1, e2,… , en]∈ ℝdXn where d is the dimensionality of 
the LDS, which is always considerably smaller than the HDS 
or spectral input space ( d ≪ D ) and n is the number of data 
points ( N ∶= n ). Notice that ei is the LDS commensurate 
to si . In the LDS, the probability that a data point ej is the 
neighbor of ei can be calculated by the similitude of these 
data points given in Eq. 5.

The variables u > 0 and v > 0 are the two hyperparam-
eters influenced by the user. We have considered the value 
of  u ≈ 1.9289 and v ≈ 0.7914 , since it has been empirically 
demonstrated that choosing u = v = 1 has no qualitative 
effect on the outcomes (Böhm et al. 2022).

Neural network‑based embedding

The proposed technique tries to create a similarity between 
the data graph in the HDS and the data points in the LDS. In 
other words, we interpret Eq. 4 and 5 as probability distri-
butions and decrease the disparity between them so that the 
similitude of data points in the LDS resembles the similari-
ties of data points in the HDS. The modified cross-entropy 
cost function ( ℂ ) given in Eq. 6 (Tang et al. 2016) is used 
as a measurement for the variation between these two prob-
ability distributions.

where ln(.) denotes the natural logarithm. The first part of 
Eq. 6 specifies the pulling force that pulls neighboring data 
point embeddings towards one another. This component of 
the equation can only exist when�ij ≠ 0 , indicating that there 
are three possibilities such as si is closer in proximity to sj or 
sj is a neighbor of si , or both. The second element in Eq. 6 
is the repelling force that separates the embeddings of data 
points that are far in proximity or non-neighbors. The loss 

(4)ℝ ∋ 𝕡ij = 𝕡i|j + 𝕡j|i − 𝕡i|j𝕡j|i

(5)ℝ ∋ 𝕢ij =
(
1 + u ∥ ei − ej∥

2v

2

)−1

(6)ℂ =

n∑

i=1

n∑

j=1,j≠i

(
𝕡ijln

(
𝕡ij

𝕢ij

)
+ (1 − 𝕡ij)ln

(
1 − 𝕡ij

1 − 𝕢ij

))
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function of the neural network ( f�(.)) is the cost function 
of the algorithm, and the weights � (parameters) of the net-
work are updated while training using backpropagation of 
loss function errors. Instead of optimizing the cost for the 
entire dataset, optimization is done in mini-batches so that 
the model is capable of taking many more observations. The 
nonlinearity in the layers of the neural network is achieved 
by implementing an effective nonlinear activation function; 
hence the model can easily manage very high nonlinear 
inputs. The steps and procedures involved in the proposed 
GNNE approach are given in Algorithm 1.

Hyperparameters

Because networks include many parameters, some important 
hyperparameters are fixed before training the model. Bayes-
ian optimization technique is used for the selection of hyper-
parameters used in the work. Some of the hyperparameters 
to be tuned the neural network are number of neurons, acti-
vation function, learning rate, batch size, number of epochs 
etc. The proposed algorithm has four hyperparameters as 
follows:

1.  k , the number of nearby neighbors to take into account 
while estimating the local (Euclidean) distant metric. 
The k parameter enables a quantifiable indication of 
how effectively the embedding has kept the crucial local 

structure of the input HDS data. By altering the values 
of k , we can further examine how structure preservation 
changes during the shift from exclusively local to non-
local to global structure. k exemplifies a level of trade-
off between granular and massive scale manifold or 
diverse nonlinear features. Smaller values assure meticu-
lous nonlinear structure is precisely apprehended, while 
larger values grab massive scale nonlinear structures. 
With smaller k values, the manifold begins to fragment 
into a multitude of small, interconnected components. 
It is intuitive and empirically evident to choose a range 
of smaller values ranging between 5 to 50 for datasets 
with fewer observations. On the other hand, k value can 
be more than hundred in case of large datasets.

2.  d , the dimension of the expected embeddings or LDS. 
2 or 3-dimensional embeddings are very much essen-
tial to visualize the HDS in LDS and derive significant 
insights. In contrast, more than 3-dimensional LDS can 
be utilized for better and more efficient classification 
tasks achieving high-performance metric values.

3.  e − dist , an intended distance of separation between 
adjacent points in the embedding space. e − dist regu-
lates how tightly data points can be compacted to one 
another in the LDS representation. Smaller values of 
e − dist will likely result in crowded sections but will 
more accurately depict the manifold structure. Larger 
value of e − dist will drive the embedding to disperse 

Algorithm 1  Graph based Neural Network Embeddings
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the data points further, so facilitating visualization by 
preventing any overlapping and overplotting concerns. 
We consider e − dist to be a purely aesthetic factor that 
influences the visual aspect of the LDS, and therefore 
it is more relevant while performing visualization task. 
Higher values of e − dist causes the distinguishable clus-
ters to get squeezed together, diminishing the boundaries 
between the clusters.

4.  n − epochs , the number of epochs required during the 
training phase to optimize the LDS representation. In 
every epoch, each input observation in the batches of 
the training dataset gets a chance to internally fine-tune 
the model weights resulting in minimization of error and 
obtaining better embedding as output.

Experiments

The GNNE algorithm takes five parameters as input, such 
as the HDS dataset, k, d, e − dist and n − epochs . For all the 
experiments on the five aforementioned datasets we have 
considered k = 15, d = {2, 3, 5, 10, 15, 20}, e − dist = 0.1 
and n − epochs = 10 . The Nearest-Neighbor-Descent (NND) 
technique offers a cost-effective approximation of the k
-nearest-neighbor calculation. Due to the error inherent in 
DR techniques, such an estimation is far beyond sufficient for 
these tasks. Even though no conceptual complexity limita-
tions have been determined for NND, the authors mention an 
experimental complexity of O(N1.14) (Dong et al. 2011). The 
main advantage of NND is its versatility; it can be applied 

Fig. 6  2D visualization of coffee spectra using different DR techniques (a) KPCA (b) MDS (c) ISOMAP (d) t-SNE (e) Proposed Approach
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to any reasonable dissimilarity measure and is efficacious 
even for HDS. Hence NND with Euclidean distant metric is 
used in constructing the k NN graph. Based on the probabili-
ties reported by the k NN graph a Tensorflow dataset is built 
through an iteration process on the batches of k NNs. These 
input data are then subjected to an FCNN for optimization and 
efficient generation of embeddings.

The FCNN with four layers is used to obtain the LDS. 
The input layer is meant to acquire the spectral observa-
tions. The two hidden layers, followed by the input layer, 
have 128 and 64 neurons along with Scaled Exponential 
Linear Unit (SELU) nonlinear activation function. Imple-
menting the SELU activation function gives the layers of 
neural network self-normalizing characteristics. The SELU 

activation function and its derivate is depicted in Eqs. 7 and 
8 (Klambauer et al. 2017).

where both � and � parameters are set to a value of 1.0507 
and 1.6733 empirically to infer better performance from 
FCNN (Klambauer et al. 2017). Each dense layer of the 
FCNN is incorporated with alpha dropout layers in between 
with a 0.1 dropout value to promote regularization of FCNN 

(7)SELU(u) = 𝜆

{
u, if u > 0

𝛼eu − 𝛼, if u ≤ 0

(8)SELU�(u) = 𝜆

{
1, if u > 0

𝛼eu, if u ≤ 0

Fig. 7  2D visualization of fresh meat spectra using different DR techniques (a) KPCA (b) MDS (c) ISOMAP (d) t-SNE (e) Proposed Approach 
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and to avoid over-fitting. These FCNN layers set 10% of 
input units to zero at each iteration but are meant to function 
with SELU to retain the self-normalization characteristic by 
preserving the variance and mean of inputs. SELU activa-
tion function is preferred for the following reasons: (i) It can 
have both negative and positive values, allowing the mean 
to be controlled. (ii) It facilitates saturation zones, allowing 
to soften large variances from preceding layers. (iii) It has 
a slope value greater than one, which enables it to raise low 
variances from the preceding layers. (iv) They form a seam-
less curve that guarantees a stable point between variance 
dampening and rising.

The backpropagation approach is utilized as a pri-
mary technique to train the FCNN. Weights are consist-
ently updated after each iteration; as a result, the error 
rate is decreased, assuring the model’s stability. Adamax 

optimizer with hyperparameters value such as learning 
rate = 0.001, beta1 = 0.9, beta2 = 0.999 is chosen for faster 
convergence (Kingma and Ba 2015). The last layer of 
FCNN is the nodal point to extract the embeddings. Hence 
the number of units in this layer is equal to the dimension 
of LDS. We have considered six different LDS dimen-
sions namely 2,3,5,10,15,20. LDS with 2-dimension (2D) 
and 3-dimension (3D) are helpful for visualization tasks, 
whereas higher dimensions are intended to perform the 
classification task. 2D graphs of various DR techniques and 
the GNNE approach on various datasets are illustrated in 
Figs. 6, 7, 8, 9, and 10. All DR techniques used in our work 
are implemented in python using Scikit-learn (Pedregosa 
et al. 2011), and all the visualizations are aid by NumPy 
(Walt et al. 2011), Pandas (McKinney 2010), Matplotlib 
(Hunter 2007), and Seaborn (Waskom et al. 2014) libraries.

Fig. 8  2D visualization of olive oil spectra using different DR techniques (a) KPCA (b) MDS (c) ISOMAP (d) t-SNE (e) Proposed Approach
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The coffee and fruit purees spectra have binary labels, 
whereas fresh meat, olive oil, and COVID-19 spectra are 
categorized into multiple labels. We can infer from the 
preprocessed spectral graphs (i.e., from Figs. 1, 2, 3, 4 
and 5) that all datasets have a high degree of nonlinear-
ity. The GNNE technique can handle the nonlinear data 
points considerably well compared to the existing meth-
ods, which is apparent in the 2D visualization of Figs. 6, 9, 
and 10. All the techniques did provide an interpretable 2D 
visualization for fresh meat spectra, as shown in Fig. 7. 
Additionally, the proposed approach is able to maintain 
the compactness between the spectra of similar category. 
Due to numerous nonlinear spectra in olive oil dataset, all 
the techniques have overlaps in projecting the HDS in 2D, 
as illustrated in Fig. 8.

Results and discussions

The DR techniques are further evaluated using classification 
task performance metrics and trustworthiness. The perfor-
mance metrics such as accuracy, precision, recall, F1-score, 
and Matthew's Correlation Coefficient (MCC) are evaluated 
on 2D, 3D, 5D, 10D, 15D, and 20D LDS of all the spectral 
datasets. Coffee and fruit purees spectra are meant for binary 
classification, whereas the other three datasets are subjected 
to multi-class classification.

Spectra classification model and evaluation

Random Forest Classifier (RFC) is a predominant and accus-
tomed model implemented for spectral features classification 

Fig. 9  2D visualization of fruit purees spectra using different DR techniques (a) KPCA (b) MDS (c) ISOMAP (d) t-SNE (e) Proposed Approach
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(Breiman 2001; Gomes Marques et al. 2021; Wang et al. 
2021a; Zhou et al. 2020). RFC is a collection of Decision 
Tree (DT) classifiers where each tree takes on the inputs 
of an independent random vector selected with a similar 
distribution for all DT in the forest. The fundamental prin-
ciple of RFC is that a number of weak learners (DT) can be 
combined to create a strong learner. By introducing rand-
omization into the sample choosing process via Bootstrap 
resample, many distinct trees are created, making the RFC 
less susceptible to over-fitting. Feed the input spectral fea-
tures to every DT in the forest for the classification task. 
Each DT provides a classification or votes for a particular 
category or class. The forest selects the classification with 
the highest votes (Breiman 2001). Even in noisy situations, 
RFC detects significant features adequately, and it is adept at 

handling HDS of the spectrum features (Ghebleh Goydaragh 
et al. 2021; Wójtowicz et al. 2021).

K-fold cross-validation is a statistical method used to 
assess the model's performance. First, K  segments are 
created from the overall spectral observations. The data 
points segments are then divided into training and test-
ing batches randomly. The model picks one data segment 
for testing and the leftover K − 1 data points segments for 
training. Therefore, in this manner, the model predicts the 
observations consecutively by repeating running the exact 
procedure k times. We have considered K = 10 ; hence the 
whole spectral data is split up into  10 subgroups resulting 
in tenfold cross-validation. During the training process, 
the model extracts the perceived features of the LDS spec-
tra obtained after DR and then predicts the labels of the 

Fig. 10  2D visualization of COVID-19 spectra using different DR techniques (a) KPCA (b) MDS (c) ISOMAP (d) t-SNE (e) Proposed 
Approach
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data points in the testing phase, ultimately resulting in the 
classification.

The confusion matrix consists of four terms such as 
(i) True Positive (TP), (ii) False Positive (FP), (iii) False 
Negative (FN), and (iv) True Negative (TN). Consequently, 
a superior classification model contains a greater number 
of TP and TN. Moreover, FP and FN values represent the 
model's errors and misclassifications. These four confusion 
matrix values are the essential factors to compute the metrics 
like accuracy, precision, recall, F1-score, and MCC using 
Eqs. 9 to 13. MCC computes the correlation between the 

actual and predicted categories, yielding a value between -1 
and 1. Hence, a value close to 1 is meant to be a good score 
which is only be achieved if the model is precise and reli-
able in all confusion matrix terms (Chicco et al. 2021). We 
have computed Micro Average Precision (MAP) and Micro 
Average Recall (MAR) for multi-class classification spectra 
as given in Eqs. 14 and 15.

Various evaluation metrics of classification tasks per-
formed on the 2D, 3D, 5D, 10D, 15D, and 20D LDS spectra 
are given in Tables 1, 2, 3, 4, and 5, whereas accuracy and 
MCC metrics are depicted in Figs. 11 and 12. All the DR 

Table 1  Coffee spectra classification metrics

Algorithm Dimensionality Precision Recall F1-Score

Without DR 286D 0.73 0.73 0.73
KPCA 2D 0.50 0.50 0.50

3D 0.54 0.54 0.54
5D 0.77 0.77 0.77
10D 0.80 0.80 0.80
15D 0.79 0.79 0.79
20D 0.89 0.89 0.89

ISOMAP 2D 0.73 0.73 0.73
3D 0.80 0.80 0.80
5D 0.89 0.89 0.89
10D 0.91 0.91 0.91
15D 0.88 0.88 0.88
20D 0.73 0.73 0.73

MDS 2D 0.52 0.52 0.52
3D 0.89 0.89 0.89
5D 0.77 0.77 0.77
10D 0.82 0.82 0.82
15D 0.89 0.89 0.89
20D 0.93 0.93 0.93

t-SNE 2D 0.64 0.64 0.64
3D 0.79 0.79 0.79
5D 0.79 0.79 0.79
10D 0.73 0.73 0.73
15D 0.75 0.75 0.75
20D 0.75 0.75 0.75

Proposed approach 2D 0.80 0.80 0.80
3D 0.86 0.86 0.86
5D 0.95 0.95 0.95
10D 0.88 0.88 0.88
15D 0.89 0.89 0.89
20D 0.95 0.95 0.95

Table 2  Fresh meat spectra classification metrics

Algorithm Dimensionality Precision Recall F1-Score

Without DR 448D 0.81 0.81 0.81
KPCA 2D 0.92 0.92 0.92

3D 0.93 0.93 0.93
5D 0.93 0.93 0.93
10D 0.95 0.95 0.95
15D 0.93 0.93 0.93
20D 0.92 0.92 0.92

ISOMAP 2D 0.87 0.87 0.87
3D 0.90 0.90 0.90
5D 0.92 0.92 0.92
10D 0.89 0.89 0.89
15D 0.88 0.88 0.88
20D 0.87 0.87 0.87

MDS 2D 0.91 0.91 0.91
3D 0.91 0.91 0.91
5D 0.90 0.90 0.90
10D 0.94 0.94 0.94
15D 0.90 0.90 0.90
20D 0.91 0.91 0.91

t-SNE 2D 0.90 0.90 0.90
3D 0.92 0.92 0.92
5D 0.92 0.92 0.92
10D 0.89 0.89 0.89
15D 0.81 0.81 0.81
20D 0.82 0.82 0.82

Proposed approach 2D 0.96 0.96 0.96
3D 0.98 0.98 0.98
5D 0.99 0.99 0.99
10D 0.98 0.98 0.98
15D 0.98 0.98 0.98
20D 0.98 0.98 0.98



838 Earth Science Informatics (2023) 16:825–844

1 3

techniques have improved the performance metrics, which is 
apparently visible in the results. The proposed technique has 
further enhanced the performance metrics significantly than 
the other DR techniques, especially in the case of multi-class 
spectra classification.

(9)Accuracy =
TN + TP

TP + TN + FP + FN

(10)Precision =
TP

FP + TP

(11)Recall =
TP

FN + TP

(12)F1 − Score = 2

(
Precision∗Recall

Precision+Recall

)

(13)

MCC =
(TN ∗ TP) − (FN ∗ FP)

√
(FP + TP) ∗ (FN + TP) ∗ (FP + TN) ∗ (FN + TN)

(14)

MAP =
(TP

class1
+ TP

class2
⋯ + TP

class
n
)

(FP
class1

+ FP
class2

⋯ + FP
class

n
) + (TP

class1
+ TP

class2
⋯ + TP

class
n
)

(15)

MAR =
(TP

class1
+ TP

class2
⋯ + TP

class
n
)

(FN
class1

+ FN
class2

⋯ + FN
class

n
) + (TP

class1
+ TP
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⋯ + TP

class
n
)

Table 3  Olive Oil spectra classification metrics

Algorithm Dimensionality Precision Recall F1-Score

Without DR 570D 0.52 0.52 0.52
KPCA 2D 0.66 0.66 0.66

3D 0.78 0.78 0.78
5D 0.78 0.78 0.78
10D 0.78 0.78 0.78
15D 0.78 0.78 0.78
20D 0.78 0.78 0.78

ISOMAP 2D 0.62 0.62 0.62
3D 0.78 0.78 0.78
5D 0.77 0.77 0.77
10D 0.74 0.74 0.74
15D 0.75 0.75 0.75
20D 0.70 0.70 0.70

MDS 2D 0.59 0.59 0.59
3D 0.78 0.78 0.78
5D 0.78 0.78 0.78
10D 0.79 0.79 0.79
15D 0.72 0.72 0.73
20D 0.78 0.78 0.78

t-SNE 2D 0.77 0.77 0.77
3D 0.80 0.80 0.80
5D 0.73 0.73 0.73
10D 0.56 0.56 0.56
15D 0.53 0.53 0.53
20D 0.60 0.60 0.60

Proposed approach 2D 0.82 0.82 0.82
3D 0.81 0.81 0.81
5D 0.81 0.81 0.81
10D 0.81 0.81 0.81
15D 0.82 0.82 0.82
20D 0.82 0.82 0.82

Table 4  Fruit purees spectra classification metrics

Algorithm Dimensionality Precision Recall F1-Score

Without DR 235D 0.74 0.74 0.74
KPCA 2D 0.74 0.74 0.74

3D 0.86 0.86 0.86
5D 0.90 0.90 0.90
10D 0.94 0.94 0.94
15D 0.95 0.95 0.95
20D 0.95 0.95 0.95

ISOMAP 2D 0.81 0.81 0.81
3D 0.89 0.89 0.89
5D 0.92 0.92 0.92
10D 0.92 0.92 0.92
15D 0.92 0.92 0.92
20D 0.92 0.92 0.92

MDS 2D 0.81 0.81 0.81
3D 0.84 0.84 0.84
5D 0.86 0.86 0.86
10D 0.85 0.85 0.85
15D 0.86 0.86 0.86
20D 0.85 0.85 0.85

t-SNE 2D 0.93 0.93 0.93
3D 0.93 0.93 0.93
5D 0.93 0.93 0.93
10D 0.94 0.94 0.94
15D 0.94 0.94 0.94
20D 0.86 0.86 0.86

Proposed approach 2D 0.96 0.96 0.96
3D 0.94 0.94 0.94
5D 0.93 0.93 0.93
10D 0.97 0.97 0.97
15D 0.94 0.94 0.94
20D 0.95 0.95 0.95
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Trustworthiness T(k)  

The degree to which a set of LDS retains the local structure of 
collection of the features is a measure of its trustworthiness. It 
is quantified by an act of examining resemblances of the near-
est neighbors of each datapoint in LDS with actual input HDS 
datapoint. Let ℕ be the size of the total observations present 
in the input dataset and r(x, y) be the rank of the data point y 
in the arrangement based on the distance from x in the actual 
input HDS.  ℤk(x) is a collection of those data observations 
of size k that are closest to the data point x. The measure of 
trustworthiness is given in Eq. 16 (Venna et al. 2001; Venna 
and Kaski 2006).

The trustworthiness scale ranges from 0 to 1, with 1 being 
the most trustworthy. T(k) values for 2D, 3D, 5D, 10D,15D, 
and 20D embeddings of various DR techniques are computed 
and depicted in Fig. 13. The proposed method is equally trust-
worthy as other DR techniques because it is able to achieve 
T(k) values almost equal to 1.

Conclusion

In this study, we presented a dimensionality reduction 
approach for spectroscopy spectra achieved using graph-
based neural network embeddings. The spectral data col-
lected from various sources and applications are of high 
dimensional nature. The classification performance of 
such spectra can be enhanced by effectively reducing the 
dimensions. The proposed technique is implemented on 

(16)T(k) = 1 −
2

ℕk(2ℕ − 3k − 1)

ℕ∑

x=1

∑

y ∈ℤk(x)

r(x, y) − k)

Table 5  COVID-19 spectra classification metrics

Algorithm Dimensionality Precision Recall F1-Score

Without DR 900D 0.46 0.46 0.46
KPCA 2D 0.33 0.33 0.33

3D 0.37 0.37 0.37
5D 0.62 0.62 0.62
10D 0.69 0.69 0.69
15D 0.64 0.64 0.64
20D 0.66 0.66 0.66

ISOMAP 2D 0.46 0.46 0.46
3D 0.52 0.52 0.52
5D 0.58 0.58 0.58
10D 0.60 0.60 0.60
15D 0.56 0.56 0.56
20D 0.57 0.57 0.57

MDS 2D 0.35 0.35 0.35
3D 0.45 0.45 0.45
5D 0.48 0.48 0.48
10D 0.52 0.52 0.52
15D 0.53 0.53 0.53
20D 0.55 0.55 0.55

t-SNE 2D 0.53 0.53 0.53
3D 0.55 0.55 0.55
5D 0.57 0.57 0.57
10D 0.60 0.60 0.60
15D 0.61 0.61 0.61
20D 0.60 0.60 0.60

Proposed approach 2D 0.83 0.83 0.83
3D 0.82 0.82 0.82
5D 0.83 0.83 0.83
10D 0.89 0.89 0.89
15D 0.92 0.92 0.92
20D 0.92 0.92 0.92
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Fig. 11  Accuracy metric of 
various spectral datasets embed-
dings (a) Coffee spectra (b) 
Fresh meat spectra (c) Olive oil 
spectra (d) Fresh purees spectra 
(e) COVID-19 spectra
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Fig. 12  MCC metric of various 
spectral datasets embeddings (a) 
Coffee spectra (b) Fresh meat 
spectra (c) Olive oil spectra 
(d) Fresh purees spectra (e) 
COVID-19 spectra

(a) (b)

(c) (d)

(e)



842 Earth Science Informatics (2023) 16:825–844

1 3

Fig. 13  Trustworthiness metric 
of various spectral datasets 
embeddings (a) Coffee spectra 
(b) Fresh meat spectra (c) Olive 
oil spectra (d) Fresh purees 
spectra (e) COVID-19 spectra

(a) (b)

(c) (d)

(e)
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five different types of spectroscopy data, and its results 
are compared with existing prominent DR techniques. 
The 2D visualizations of the spectral datasets using our 
approach have shown a competitive and better LDS vis-
ualization of HDS. Nonlinearity present in the data is 
handled efficaciously using a nonlinear activation func-
tion; as a result, all the performance metrics of the clas-
sification task, including accuracy and MCC, have been 
remarkably improved. The multi-classification task of 
spectra has shown slightly better outcomes in comparison 
with the binary classification. A trustworthiness metric 
value of almost 1 proves that the HDS features of spectral 
observations are finely preserved in the latent space. Fur-
ther access and availability to more spectral data points, 
especially in medical subdomains, can be an advantage 
in training a reliable model. Novel nonlinear activation 
functions can be explored in future to manage the high 
dimensional and nonlinear spectra more efficiently.
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