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A spectral optical flow method for determining velocities
from digital imagery

Neal Hurlburt1 · Steve Jaffey1

Abstract We present a method for determining surface
flows from solar images based upon optical flow tech-
niques. We apply the method to sets of images obtained by
a variety of solar imagers to assess its performance. The
opflow3d procedure is shown to extract accurate velocity
estimates when provided perfect test data and quickly gen-
erates results consistent with completely distinct methods
when applied on global scales. We also validate it in detail
by comparing it to an established method when applied to
high-resolution datasets and find that it provides compa-
rable results without the need to tune, filter or otherwise
preprocess the images before its application.

Keywords Image processing software · Computing
vision · Series expansion methods · Motion · Time-varying
imagery

Introduction

The most powerful events observed in the solar system are
the result of convective dynamics in the outer layers of the
Sun. Researchers trying to understand these dynamics need
tools to measure and study these turbulent motions and their
interaction with the local magnetic field. Several methods
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for deducing the flows in the solar photosphere (the visible
surface of the sun) have been developed over the years.
Many of these have been based upon some form of local cor-
relation tracking (LCT) (Title et al. 1986; November et al.
1987) where pairs of successive images of the photosphere
are broken into sub-images which are then shifted relative to
each other to find an optimal relative shift. This shift is then
associated with the local mean velocity of the flow. These
methods appear to work well on high-resolution images
collected from both ground-based (Brandt et al. 1988) and
space-based (Simon et al. 1988; Title et al. 1989) observato-
ries. There have been a few attempts to assess and compare
the performance of such methods over the past twenty years
including those of Hurlburt et al. (1995), Welsch et al.
(2007), Chae and Sakurai (2008) and most recently, Verma
et al. (2013). These have used a variety of data input for their
assessments, from those derived from simulations of MHD
flows in the photosphere, to creating image sets from solar
images by applying known distortions, to direct compar-
isons with real solar data. All tested methods gave consistent
results. However the best method was somewhat dependent
on the test and the choice of the respective parameters for
each method.

Alternative methods have been developed in other fields
with similar goals. Machine vision researchers developed
optical flow methods for deducing the relative motions of
objects in digital images (Baker et al. 2011; Sun et al. 2014),
and atmospheric scientists developed various methods for
deducing winds on Earth from cloud motions in satellite
images (Lou et al. 2013; Cochran et al. 1999). Experimen-
talists in other branches of fluid dynamics, including blood
flow measurements deduced from x-ray images (Negahdar
and Amini 2012) and flows with various tracer particles in
suspensions (Wereley et al. 2001), have explored similar
methods. One difference between the typical machine vision
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problem and that of deducing fluid velocities is that the
former seek motions of discrete objects while the latter
seeks motions of continuous flows. Applying optical flow
methods such as those described by Jähne (1993) on high-
resolution solar images typically underestimate the velocity
of the flows. In part this is due to the simple spatial
averaging used in deriving the velocity.

Hurlburt (1999) presented a method which does not
make use of such spatial averaging. Instead the flows are
assumed to be smooth and continuous – being represented
by a truncated Fourier series. Here we present a detailed
description of the method and assess it using previously
developed tests and compare it to local correlation tracking
methods.

Method

The basic assumption is that the visible pattern observed
in the fluid, as measured by the local intensity I, will be
advected by the velocity field v and hence should satisfy the
equation

∂I

∂t
+ v · ∇I = 0 (1)

In the case of solar physics the pattern is typically formed
by convective motions in the photosphere, which are clearly
visible in white-light images and which appear to be
advected by larger scale flow fields. Images are collected
frequently relative to the flow speeds, such that the displace-
ment of the pattern between any sequential pair of images
is less than a pixel. The problem is to determine v from a
time sequence of two dimensional images I (x, y, t) in the
presence of measurement noise and other “noise” sources,
such as the acoustic oscillations present in the solar atmo-
sphere or missing frames due to data dropouts. Using Eq. 1
we can seek the best fit velocity field vf using least squares.
First we form the merit function of the fit for the full dataset
I (x, y, t).

χ(vf )2 = �t�x�y

(
∂I

∂t
+ vf · ∇I

)2

(2)

which we seek to minimize. Here the sums are taken over
the discrete pixel and frame coordinates for x, y and t . If the
velocity field v is a continuous field, we can express the fit
velocity vf as a Fourier series

vf = �
i=Nx

i=−Nx
�

i=Ny

i=−Ny
(αij x̂ + βij ŷ)e−2πI(ix/X+jy/Y ) (3)

where x̂ and ŷ are unit vectors, αij and βij are complex
amplitudes and Nx and Ny are the number of Fourier modes
retained in the expansion. Substituting this into Eq. 2 and

differentiating with respect to αkl and βkl results in the
system of equations
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�t�x�y

(
∂I

∂t
+ vf · ∇I

)
∂I

∂y
e−2πI(kx/X+ly/Y ) = 0 (5)

This can be reorganized to form the complex system of
equations
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These matrices consist of discrete Fourier transforms
of the various, time-averaged products of the spatial and
temporal derivatives of the image. The matrices of the com-
plex linear system (6) for the spectral amplitudes αij , βij

can be combined to form a single hermitian matrix of size
(8Nx × Ny)

2.
This method has been implemented in an IDL1 routine

opflow3d and is available as part of the SolarSoft environ-
ment (Freeland et al. 2000). The time derivative is evaluated
using finite differencing between sequential images while
the spatial derivatives is evaluated using 4th order finite dif-
ferences on the average of the two images used for the time
derivative. The matrices are then computed for the entire
time-space cube I (x, y, t) and the system is solved.

Solving the system using direct methods can quickly
become expensive, scaling as (Nx × Ny)

3. The method
requires 70 seconds on an 2013-vintage iMac workstation
(with 3.4GHz processor and 32GB of memory) to obtain
the solutions for Nx = Ny = 24 on a 1024 × 1024
image. This is partially offset by the fact that the method
requires no preprocessing or filtering and that it fits flows
over many instances in time in one go. The matrices in
Eq. 7 can also be reused in subsequent calculations with
minimal additional expense. Performance could be further
optimized by taking advantage of the matrix structure in

1Trademark, Exelis.

960 Earth Sci Inform (2015) 8:959–965



Eq. 7 which has a blocked-Toeplitz-Toeplitz-block (BTTB)
structure (Cochran et al. 1999).

Evaluation and comparisons

As a first test of the method, we take the simulated obser-
vations developed by Hurlburt et al. (1995). Using a sixth-
order accurate numerical scheme (Hurlburt and Rucklidge
2000), they took a single intensity image I0 of solar gran-
ulation and evolved it with Eq. 1 with a steady velocity
field. They then degraded and resampled the image to rep-
resent the expected resolution of the Michelson Doppler
Imager (MDI) on the Solar and Heliospheric Observatory
(Scherrer et al. 1995). Since there is no source of noise and
the imposed flows are themselves based on Fourier modes,
we expect and observe that the opflow3d method can
recover the flow with a high accuracy. The results for a case
whereNx = Ny = 4 on a 140×140 pixel image is displayed
in Fig. 1, along with the known input velocty field and a
sample image. The two sets of arrows, corresponding to the
known (black) and derived (white) velocity fields are almost
perfectly correlated, both in direction and magnitude.

With this basic validation of the method on perfect data,
we turn to comparisons with other methods and operate on
real solar data and then consider a detailed error analysis.
First we compare the results of applying this method to
other large-scale, full-disk measurements. Figure 2 displays
the zonal (E-W) component of the solar velocity along the
central meridian of the Sun as a function of solar latitude
derived from one hour of MDI (Scherrer et al. 1995) data.
We include the corresponding measure based upon fits to

Fig. 1 Comparison between a derived velocity field and input field
used to distort a solar image (background). The input (derived) velocity
field is displayed with black (white) arrows whose areas are propor-
tional to the magnitude of the local velocity. The relative scale of the
white arrows has been reduced slightly for aid in comparison

Fig. 2 The differential rotation of the sun as determined by apply-
ing the spectral optical flow technique on one hour of full-disk MDI
continuum images (solid) and published best fit from Doppler mea-
surements (dotted). The former was calculated with Nx = 4, Ny = 28
using sixty 256 × 896 pixel images. The two agree within the noise
level of the supergranular flow field

Doppler measurements (Snodgrass 1992). Aside from the
departures induced by sampling errors of the supergranular
flows in this short time, the two curves agree very well.

Error assessment

There are several factors that may contribute to errors in the
velocity estimate provided by opflow3d. These can be bro-
ken into three classes: systematic errors introduced by the
choice of velocity representation, errors due to image qual-
ity and errors introduced by physical effects in the solar
atmosphere. As a first step, we take what are currently
the most consistent and stable images available, using data
obtained by the Helioseismic and Magnetic Imager (HMI)
on SDO (Scherrer et al. 2012). We then subject them to a
variety of controlled tests to address the first two classes of
error. This is the best-case scenario for studies of the solar
photosphere: a stable imager observing “quiet” sun (where
magnetic effects are negligible). The following section con-
siders a more complex situation of observing magnetic
regions with a less-stable imager.

One hour of Level-1 HMI continuum images consisting
of 80 individual frames were used for this study beginning
at 2010-10-26T08:29:00. A set of 1024×1024 pixel sub-
images were extracted centered on a coronal hole identified
in the Heliophysics Event Knowledgebase (Hurlburt et al.
2012)2 (herein referred to as C2010).

The use of a truncated Fourier representation for the
velocity field is a common practice in fluid dynamic investi-
gations. However it has two well-known issues that must be

2SOL2010-10-25T23:00:08L032C113
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considered: it imposes a periodic structure to the flows and
may introduce aliasing or other errors due to truncation. To
assess these effects, we use the first frame from the C2010
and generate ten artificial images from it using Eq. 1 with
a known, hexagonal flow field, in a similar approach to that
of Hurlburt et al. (1995).

Our implementation uses a fast Fourier transform and
can be sensitive to discontinuities at frame boundaries.
While the Fourier representation forces the velocity to
match across opposing boundaries, the application of a least
squares fit works to confine such effects to near the edges.
The resulting spikes in the residual |v − vf | decay rapidly
away from frame boundaries (Fig. 3). Thus, avoiding pixels
near the boundaries is the practical means for avoiding these
errors.

Aspects of image quality that may influence our fit
include large displacements arising from insufficient sam-
pling rates (which may introduce ambiguity into the possi-
ble solution), image noise and missing data. To assess the
impact of image quality, we adapt the approach from the
previous section. The first frame of the C2010 is advected
to generate ten frames with a known velocity field v com-
posed of 22 by 22 randomized Fourier modes. A set of these
data cubes is generated with a range of magnitudes for v.
We find the accuracy of the fit starts to break down when the
RMS velocity exceeds 0.4 pixels/frame. This result applies
to images with repeating, high-frequency patterns such as
the solar granulation seen in C2010. In contrast, larger-scale
patterns could allow larger unambiguous motions between
frames.

The effect of truncation can be assessed by evaluating
this same test case with an increasingly large number of
modes (Nx, Ny) in Eq. 3, from Nx, Ny = 4 to 16. We find
that the overall trend is constant, but with higher values
being more sensitive to the effects of noise as the effective
sample size of the fit decreases. Thus the selection of the
number of modes should take this trade off into account.
A rule of thumb would be that Nx,y < Nf , where Nf is
the number of features (e.g. granules) required to span the
image.

To assess the impact of noise on velocity estimate, we
first measure the inherent noise in the synthetic datacube
used above by setting vf = 0 in Eq. 2 to give χ(0) ≡
RMS

(
∂I
∂t

) = 700 counts per frame. χ(0) is used here to
represent the original variation that is reduced by fitting v,
and because it scales with image contrast. Next, we gener-
ate a sequence of datacubes by adding increasing levels of
Gaussian white noise. The datacube with added noise stan-
dard deviation σ has velocity estimate vf (σ ). By comparing
RMS(vf (σ ) − v) with RMS(v), we can gain some insight
into the sensitivity of the method to noise. We find that
for a maximum relative error of 1 %, the maximum addi-
tional noise must have σ ≤ 200. Comparing this value of
σ to the inherent signal noise χ(0), demonstrates that high
noise images can still yield reliable velocity estimates. This
robustness against measurement noise most likely results
from averaging over many pixels.

Finally there are features in the solar atmosphere that
may impact the performance of any method of veloc-
ity estimation. These include the presence of strong
acoustic modes (known as five-minute oscillations) which
generate a relatively-smooth, but random intensity fluc-
tuation in solar images; Limb-darkening, which intro-
duces fixed, large-scale intensity gradients due to line-
of-sight effects; and strong magnetic features that may
distort the intensity patterns in non-obvious ways. In
exploring these cases, we cannot compare our results
to a known solution. Instead we must make statistical
inferences.

If we seek flows that persist on time scales significantly
larger than five minutes, we can assess the effect of acous-
tic oscillations. We take vf (N, j) to be the velocity fit for
N frames starting at frame j . We examine the convergence
of vf (N, j), as N increases. Using C2010, we divide the
80 frames into sets 1 and 41, consisting of the first and last
sets of 40 frames. Since the images in this case may possess
an overall motion akin to camera motion (say vc(N, j)),
we first subtract such motions from vf (40, 1) to produce
the the Euclidean metric RMS(|vf (40, 1) − vc(40, 1))|) =
0.18 pixels/frame. Similarly, the distance between vf (40, 1)

Fig. 3 The horizontal velocity profile through the middle of the field
of view. The magnitude of the simulated flow |V| is displayed in
black and the fitted velocity |vf |, and error, |v − vf | in red and green

respectively. It is clear that error drops rapidly away from the bound-
aries, within half a wavelength of the truncated mode
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and vf (40, 41) is the Euclidean metric RMS(|vf (40, 1) −
vf (40, 41)|) = 0.019 ppf. This distance is a rough measure
of precision. Thus, with N = 40, considerable convergence
is apparent.

To examine the rate of convergence, we can next esti-
mate vf (2, j) for j = 1, 39. We then compute the distance
RMS(vf (2, j) − vf (40, 41)). This distance, averaged over
all j , is 0.19 ppf. Clearly a two frame estimate is poor.
Comparison of the 2 frame and 40 frame distances, 0.19
ppf and 0.019 ppf, imply that the rate of convergence is
between 1/

√
N and 1/N , which is expected for traveling

wave patterns in acoustic oscillations. This is consistent
with previous studies of solar flows using LCT methods
(November et al. 1987).

The contrast in the image varies smoothly across each
frame in our sample due to the limb-darkening effect of the
solar atmosphere. Such gradients can cause problems for
some methods. However in our case, it only changes the
weights of the sum of the squares in Eq. 2, so that the fit
is only slightly affected. The same logic shows the method
is insensitive to image-quality problems such as missing
frames.

Comparison to other methods

As a final test, we provide a detailed comparison of our
method to that used a recent study by Verma and Denker
(2011) (hereinafter referred to as V&D). They conducted
a thorough investigation of horizontal flow fields observed
in Hinode G-band images using a local correlation tracking
(LCT) approach that was used in November et al. (1987).

Following V&D, we selected an hour-long set of G-band
images collected by the Hinode Solar Optical Telescope
(SOT, (Tsuneta et al. 2008)) on June 4, 2007 between 14:27
and 15:27UT. In that study, the authors first applied the
standard calibrations to the images and then further pre-
processed them by correcting for foreshortening, applying
a rigid alignment between the images to remove spacecraft
jitter and solar rotation, and then employed a subsonic filter
to remove acoustic oscillations.

We also calibrate the images using the SolarSoft rou-
tine fg prep with its default settings. However, we do not
apply the other preprocessing steps. Other than foreshort-
ening, those corrections effectively remove noise from the
velocity signal that we are seeking, be it jitter from the
spacecraft, bulk motion across the field of view or distract-
ing intensity fluctuations. Since the opflow3dmethod has
already been shown to address such noise sources, we rely
on it alone to do so. In addition, we found seven of the 238
images in the sequence were missing: rather than attempt to
correct for these, we left those images blank and left it to
opflow3d to deal with the consequences.

Fig. 4 A comparison of results of the method used by (a) V&D (from
their Fig. 2 c) and (b) opflow3d for the same sample of Hinode/SOT
data shows detailed agreement. Here we display the magnitude of the
two velocity fields using approximately the same color map and scal-
ing from black/dark blue to yellow/red. The flow velocities exhibit
the same pattern of outward moat flows around sunspots and inflows
around plage

Figures 4 and 5 display a comparison of applying the
two methods to the same image set. The only free parame-
ters for opflow3d are the number of modes used to fit the
velocity field, and whether to use a direct or iterative solu-
tion method: we select a direct solution with 20 modes in
each direction. This corresponds to an effective pixel size of
about 2Mm when compared to the Gaussian FWHM used
by V&D.

We correct for foreshortening after the fact by scaling the
components of the velocity and display the magnitude of the
resulting velocity field (less the average velocity over the
frame) in Fig. 4. Strong moat flows are visible in the lower
left, as well as converging flows elsewhere in plage areas.
Figure 5 displays a normalized histogram of flow speeds,
which can be compared to figure 6 of V&D. In both cases
the peak value across the field of view is around 0.3 km/s.
We find the overall rms speed to be 0.46 km/s, the median
to be 0.42 km/s and the maximum to be 1.68; as com-
pared to 0.44 km/s, 0.40 km/s and 1.95 km/s respectively.
The fact that opflow3dmethod retains slightly higher rms
velocities while reducing the extremes suggests that it might
both retain a higher resolving power while mitigating the
influences of outliers.
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Fig. 5 Histograms of the speeds found by a V&D (from their Figure
6) and b opflow3d for the same one-hour sample of Hinode/SOT
data also show detailed agreement. The solid curves display the nor-
malized histogram of the velocities for the two methods. (The other
curves in (a) correspond to evaluations over longer time intervals from
2 to 16 hours.)

Discussion

We have described a method for deriving flows from sets
of images obtained by a variety of solar imagers. The
opflow3d procedure has been shown to extract accu-
rate velocity estimates when provided perfect test data and
quickly generates results consistent with completely distinct
methods when applied on global scales. We have also veri-
fied that it agrees in detail with an established method when
applied to high-resolution datasets – and without the need
to tune, filter or otherwise preprocess the images before its
application. It is currently running as part of the HEK sys-
tem to identify regions of solar eruptions (Hurlburt 2015)
from data collected by the Atmospheric Imaging Array on
SDO (Lemen et al. 2012).

Our method has been found to work well on other
types of image data, including magnetograms, since the
only assumptions made are that the motions displayed in
them are reasonably smooth and persistent. It can also be
combined with other image processing methods to extract
motions of specific features within the field. For instance the
motion of the two polarities (North/South) in magnetograms
could be tracked by thresholding the images prior to using

opflow3d. Similarly, particular scales could be extracted
by using high- or low-pass filters.

With the basic approach established, there are several
avenues for improvement. First, we could replace the model
equation (1) with a more elaborate one, say one that solves
the vertical component of the induction equation to extract
velocities from sets of magnetograms. Second, we could
provide a more elaborate fitting function, say one that per-
mits a simple time dependence. Finally one can seek to
optimize the method using more sophisticated tools of lin-
ear algebra. We will explore some of these options in future
work.
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