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Abstract
Reliability generalization (RG) is a kind of meta-analysis that aims to characterize how reliability varies from one test 
application to the next. A wide variety of statistical methods have typically been applied in RG meta-analyses, regarding 
statistical model (ordinary least squares, fixed-effect, random effects, varying-coefficient models), weighting scheme (inverse 
variance, sample size, not weighting), and transformation method (raw, Fisher’s Z, Hakstian and Whalen’s and Bonett’s 
transformation) of reliability coefficients. This variety of methods compromise the comparability of RG meta-analyses 
results and their reproducibility. With the purpose of examining the influence of the different statistical methods applied, a 
methodological review was conducted on 138 published RG meta-analyses of psychological tests, amounting to a total of 
4,350 internal consistency coefficients. Among all combinations of procedures that made theoretical sense, we compared 
thirteen strategies for calculating the average coefficient, eighteen for calculating the confidence intervals of the average 
coefficient and calculated the heterogeneity indices for the different transformations of the coefficients. Our findings showed 
that transformation methods of the reliability coefficients improved the normality adjustment of the coefficient distribution. 
Regarding the average reliability coefficient and the width of confidence intervals, clear differences among methods were 
found. The largest discrepancies were found between the different strategies for calculating confidence intervals. Our findings 
point towards the need for the meta-analyst to justify the statistical model assumed, as well as the transformation method of 
the reliability coefficients and the weighting scheme.
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Meta-analysis has become an essential method to integrate 
the results of studies that address a given question. Typical 
meta-analyses in psychology aim to answer such questions 
as the efficacy of interventions, to identify risk or protec-
tion factors to suffer a given problem, or to estimate the 
magnitude of associations between variables. To accomplish 
these objectives, meta-analyses use such effect size indices 
as standardized mean differences, correlation coefficients, or 
odds ratios. In the last 20 years, research in psychology and 
other related health sciences has dedicated some attention 

to a special kind of meta-analysis usually named ‘reliability 
generalization meta-analysis’. The term reliability generali-
zation (RG) was coined by Vacha-Haase (1998) to refer to 
a meta-analysis aimed at characterizing how measurement 
error of the test scores varies as applied from one sample 
to the next. Unlike typical meta-analyses, in an RG meta-
analysis the ‘effect size’ is the reliability coefficient reported 
in studies that have applied a given measurement tool, such 
as alpha coefficients, test–retest, parallel-form, or inter-rater 
coefficients, among others (Botella et al., 2010; Henson & 
Thompson, 2002; Mason et al., 2007; Sánchez-Meca et al., 
2021; Thompson, 2003; Vacha-Haase et al., 2002).

The rationale for this kind of meta-analysis is that, as 
classical test theory states, reliability is not an inherent 
property of the test, but varies as the test is applied to 
different samples (Crocker & Algina, 1986; Gronlund & 
Linn, 1990; Traub, 1994). Sentences like ‘the test reliabil-
ity is 0.8’ are incorrect, as they assume that reliability is 
an immutable property of the test. It is more appropriate 
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to say that ‘the reliability of the test scores in this sample 
is 0.8’. Reliability of test scores is one of the most impor-
tant psychometric properties of a measurement tool, such 
that it is important to investigate how reliability varies 
as applied in different samples and which study charac-
teristics can explain this variability. These questions are 
relevant, regardless of the type of reliability investigated: 
internal consistency (Cronbach’s alpha, parallel-forms, 
omega coefficients), temporal stability (retest correla-
tions), or inter-rater agreement (inter-rater coefficients 
such as Cohen’s kappa, intraclass correlations). It is 
important to note that studies that induce the reliability of 
test scores, that is, that endorse reliability estimates from 
other previous studies, cannot be included in an RG meta-
analysis. Only genuine reliability estimates with the data 
at hand of the primary studies can be included in an RG 
meta-analysis (Sánchez-Meca et al., 2021).

As reliability varies from one test application to the next, 
meta-analysis is an optimal methodology to investigate 
which study characteristics can be statistically associated 
to the reliability estimates variability. Thus, by integrating 
all single studies that have applied a given test and have 
reported a reliability estimate with data at hand, an RG meta-
analysis enables us to estimate the average reliability of test 
scores and to identify potential moderator variables of that 
reliability. Study characteristics that may affect reliability 
estimates are composition and sample variability, target 
population to which the sample of participants pertain (e.g., 
community, subclinical, clinical population), the test adapta-
tion to different languages and cultures, or the context where 
the test is applied (Botella & Ponte, 2011; Botella & Suero, 
2012; Henson & Thompson, 2002; Rodriguez & Maeda, 
2006; Thompson, 2003).

To date, a large number of RG meta-analyses have been 
carried out in psychology on different measurement instru-
ments. A systematic search has identified more than 150 
RG meta-analyses conducted on psychological measurement 
tools between 1998 and 2019 (Sánchez-Meca et al., 2019). 
Sánchez-Meca et al. (2013) identified a variety of methods 
to statistically integrate reliability coefficients. Differences 
among the methods refer to the statistical model assumed 
(e.g., fixed-effect versus random-effects models), whether 
reliability estimates must be transformed to normalize their 
distribution and stabilize their variances, and whether to 
weight the reliability estimates when they are statistically 
integrated. An issue not yet investigated is whether the 
choice of different statistical methods can lead to substantial 
changes in RG meta-analysis results. If different methods 
applied to the same RG meta-analysis have an impact in their 
results, then their conclusions will be affected by the meth-
ods applied. In addition, the results of RG meta-analyses 
applying different methods cannot be compared.

Purpose

Applying different statistical models and methods to syn-
thesize a set of reliability coefficients on a given test can 
lead to different findings, affecting their conclusions. To 
our knowledge, attempts to investigate this problem have 
not yet been accomplished. The main purpose of this 
research was to examine the extent to which different sta-
tistical methods to obtain a pooled reliability coefficient 
and a confidence interval around it can lead to different 
results. With this aim, a methodological review was con-
ducted of all RG meta-analyses on psychological tools 
published to date. An exhaustive search was performed to 
identify RG meta-analyses carried out on psychological 
scales, to obtain their datasets, to apply different statistical 
methods, and to compare their results. It is worth noting 
that this investigation is not a simulation study aimed at 
determining which statistical methods exhibit better prop-
erties. This study is an empirical comparison of alternative 
statistical methods for conducting an RG meta-analysis in 
order to examine the extent to which different methods can 
affect the meta-analytic results.

As internal consistency is the most frequently reported 
type of reliability in RG meta-analyses, our study focused 
on internal consistency coefficients such as Cronbach’s 
alpha, parallel-form, or omega coefficients. In particular, 
we tried to ascertain the extent to which different methods 
to average a set of internal consistency reliability coeffi-
cients provide heterogeneous results depending on whether 
to transform reliability coefficients, the statistical model 
assumed, and the weighting factor applied. In addition, 
we also aimed to compare different methods to construct 
a confidence interval for the average reliability coefficient, 
as regards confidence width. Another purpose consisted 
of examining the extent to which different transformation 
methods devised to normalize reliability coefficient dis-
tribution achieve this objective. Finally, we also wished 
to compare the amount of heterogeneity (quantified with 
the I2 index and prediction intervals) exhibited by untrans-
formed and transformed reliability coefficients. In the next 
sections, different methods to statistically integrate reli-
ability coefficients are presented and the methodology 
of this meta-review is outlined. Findings comparing the 
results of the different methods applied to the RG meta-
analyses are then described, and finally the scope of our 
results is discussed.

In recent years, the reproducibility and replicability 
of psychological research have become important top-
ics (McNutt, 2014; Open Science Collaboration, 2015; 
Pashler & Wagenmakers, 2012). Meta-analyses are not 
immune to these issues; therefore, efforts to investigate 
factors that may affect the reproducibility of meta-analyses 
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are warranted (Lakens et al., 2016). It is important to note 
that the purpose of this investigation was not to reproduce 
the original findings reported in the RG meta-analyses but 
to examine the extent to which different statistical methods 
applied to the same meta-analytic datasets can lead to dif-
ferent results.

Statistical methods in RG meta‑analysis

When conducting an RG meta-analysis, the meta-analyst 
must decide whether reliability coefficients should be trans-
formed to normalize distribution and stabilize variances. 
Some authors advise against transforming reliability coef-
ficients (Henson & Thompson, 2002; Mason et al., 2007), 
whereas others are in favor (Rodriguez & Maeda, 2006; 
Sánchez-Meca et al., 2013). Thus, some RG meta-analyses 
did not transform internal consistency coefficients, whereas 
others applied some of the following transformations: Fish-
er’s Z, Hakstian and Whalen’s transformation (1976), and 
Bonett’s one (2002). Not all transformations are recom-
mended for all types of reliability coefficients: for example, 
for indices based on Pearson’s correlation coefficient such 
as split-half reliability coefficients, the most appropriate 
transformation would be Fisher’s Z transformation. How-
ever, for those coefficients ranging between 0 and 1 (Cron-
bach’s alpha, McDonald’s omega or split-rater reliability, 
among others), it would be theoretically more correct to use 
Bonett’s (2002) transformation.

In this meta-review we have selected those 
transformations that have been most frequently applied in 
RG meta-analyses. Table 1 presents the different methods 
to transform internal consistency coefficients with their 
corresponding sampling variances, as well as formulas to 
back-transform the transformed coefficients to the original 
metric (Sánchez-Meca et al., 2013). Note that in Table 1 
the typical symbol to represent Cronbach’s alpha reliability 
coefficients is used ( ̂�

i
 ), as most RG meta-analyses use this 

coefficient to estimate the internal consistency of scales. 
This is due to alpha coefficients being routinely reported 
in primary studies. However, formulas shown in Table 1 
can also be applied to other types of internal consistency 
reliability coefficients.

Another important decision in a meta-analysis is 
choosing the statistical model under which the statistical 
analyses will be accomplished. Fixed-effect (FE), in 
singular, and random-effects (RE) models are the two most 
commonly used statistical models in meta-analysis. Under 
an FE model (also named common-effect model) the meta-
analyst assumes that the reliability coefficients reported in 
the studies are estimating a common population parameter, 
so that the only variability source among reliability 
estimates is due to sampling error. When an RE model is 
assumed, the meta-analyst is then acknowledging that the 
reliability estimates exhibit more variability than sampling 
error can explain. The extra heterogeneity is due to the fact 
that each reliability coefficient is estimating a different 
parameter, these parameters constituting a representative 
sample of a distribution of potential parametric reliability 
coefficients. RE model takes into account two variability 
sources: within-study variance (i.e., the same as in the FE 
model), due to sampling of participants in each sample, 
and between-studies variance, owing to sampling of 
true reliability coefficients from a super-population of 
reliability coefficients. Assuming one or another statistical 
model has consequences on how statistical analyses 
are accomplished and on the degree of generalizability 
of the meta-analytic results. In particular, how the 
reliability estimates are weighted is different depending 
on the statistical model assumed. Under an FE model the 
optimal weighting factor is the inverse of the sampling 
variance of each reliability coefficient, wi

FE = 1/V(yi), with 
V(yi) being the within-study sampling variance of the 
reliability coefficient of the ith study. Alternatively, under 
an FE model the meta-analyst can decide not to weight 
the reliability estimates, that is, wi

FE = 1. Under an RE 

Table 1   Transformation 
methods for internal consistency 
coefficients, with back-
transformations and sampling 
variances

�̂i : alpha coefficient reported in the ith study. ni : sample size of the ith study. Ji ∶ number of items of the 
test version used in the ith study. k : number of alpha coefficients of the RG meta-analysis. ¶The sampling 
variance formula for the untransformed internal consistency coefficients is that proposed by Bonett (2002). 
ln: natural logarithm. Hakstian-Whalen: Hakstian and Whalen’s (1976) transformation. Bonett: Bonett’s 
(2002) transformation
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model, the optimal weights are defined as the inverse of 
the sum of the sampling variance and the between-studies 
variance, wi

RE = 1/[V(yi) + τ2], with τ2 being an estimate 
of the between-studies variance (Borenstein et al., 2009; 
Cooper et  al., 2019). Alternatively, an RE model can 
be applied by weighting the reliability coefficients by 
its sample size instead of its inverse variance (Schmidt 
& Hunter, 2015). In addition to FE and RE models, the 
varying-coefficient (VC) model (also named fixed-effects, 
in plural, model) was proposed in the meta-analytic arena 
by Laird and Mosteller (1990) and advocated by Bonett 
(2010) to be applied in RG meta-analysis (see also Bender 
et al., 2018; Rice et al., 2018). Like the RE model, VC 
assumes that each individual reliability coefficient is 
estimating a different population parameter, but contrary 
to the RE model, VC does not assume that the parametric 
reliability coefficients are a representative sample of a 
larger population of potential reliability coefficients. As 
a consequence, like the FE model, results from the VC 
model can only be generalized to a set of studies with 
identical characteristics to those of the studies included 
in the meta-analysis, and the optimal estimate of the 
average reliability coefficient implies not weighting the 
individual coefficients (wi

VC = 1). Unlike the RE model, 
the VC model assumes that the parametric effect size 
estimated by each study has not been selected from a 
hypothetical superpopulation of parametric effect sizes. 
The mathematical formulation of the three statistical 
models can be found in Table S1 in Supplementary file 1: 
https://​bit.​ly/​7rfx65.

Regardless of the statistical model assumed, in an RG 
meta-analysis it is usual to calculate an average reliability 
coefficient, its sampling variance, and a 95% confidence 
interval to estimate the average population reliability coef-
ficient. Veroniki et  al. (2019) identified 15 alternative 
methods for constructing confidence intervals for the aver-
age effect size under an RE model. Out of the numerous 
methods available for constructing confidence intervals, 
this study focuses on those commonly used in RG meta-
analysis. These selected methods are presented in Table 2. 
The methods differ in terms of whether they transform the 
reliability estimates, the statistical model assumed, and how 
they weight reliability coefficients. As a result, we have 
considered methods under the FE, RE, and VC statistical 
models, along with methods based on ordinary least squares 
(OLS). OLS method consists of applying conventional sta-
tistical methods, that is, to calculate an unweighted mean 
of reliability coefficients, to estimate its sampling variance, 
and to construct a 95% confidence interval as if the reli-
ability estimates were single data from a sample of par-
ticipants. Although the OLS method can be thought of as 
an FE model, here we consider it separately, as many RG 
meta-analyses have applied OLS methods without declar-
ing the statistical model assumed. Note that in OLS and 
FE methods the reliability coefficients can be transformed 
or not to normalize their distribution and stabilize vari-
ances (in Table 2 the term ‘yi’ interchangeably represents 
the transformed or untransformed reliability coefficient of 
the ith study). Under the VC model advocated by Bonett 
(2010), the average of the population reliability coefficients 

Table 2   Computational formulas to calculate an average reliability coefficient, its sampling variance, and a 95% confidence interval for different 
statistical models

OLS Ordinary least squares method; FE Fixed-effect model; VC Varying-coefficient model; RE Random-effects model;. REi Random-effects 
model with the improved method of Hartung and Knapp (2001); REn Random-effects model weighting by sample size. yi = transformed or 
untransformed reliability coefficient of the ith study. �̂i = untransformed internal consistency reliability coefficient of the ith study. ni = sample 
size of the ith study. k = number of studies. S2

y
 = variance of the k transformed or untransformed reliability coefficients. tk−1,�∕2 = (α/2) × 100% 

percentile of the Student t-distribution with k-1 degrees of freedom. z�∕2 = (α/2) × 100% percentile of the standard normal distribution. 
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is estimated by calculating an unweighted average of the 
untransformed internal consistency coefficients; however, to 
construct a 95% confidence interval the average reliability 
coefficient must be transformed by Bonett’s method. Table 2 
also shows three methods under an RE model. The stand-
ard RE method implies estimating the sampling variance 
of the average reliability coefficient as the inverse of the 
sum of the weights ( wRE

i
 ) and a standard normal distribu-

tion to construct a confidence interval (Konstantopoulos 
& Hedges, 2019). Following Schmidt and Hunter’s (2015) 
approach, the REn method consists of not transforming the 
reliability coefficients and weighting them by the sample 
size of each study. Finally, the REi method is based on an 
improved method proposed by Hartung and Knapp (2001) to 
estimate the sampling variance of an average effect size and 
to assume a Student t-distribution with degrees of freedom 
equal to k – 1, k being the number of studies, to construct 
a confidence interval (Sánchez-Meca & Marín-Martínez, 
2008). REi method offers better adjustment to the nominal 
confidence level than the RE and REn methods, as it takes 
into account uncertainty in estimation of between-studies 
variance, τ2 (Hartung & Knapp, 2001; Rubio-Aparicio et al., 
2018; Sánchez-Meca & Marín-Martínez, 2008; Veroniki 
et al., 2019).

Statistical theory predicts OLS methods as exhibiting the 
largest confidence widths, as they do not take advantage of 
cumulating the sample sizes of the primary studies when 
computing a confidence interval for the average reliability 
coefficient. They are followed by REi method, as it takes into 
account two sources of error among the reliability estimates 
(within- and between-study variability) and uncertainty in 
estimating the between-studies variance. RE and REn meth-
ods will offer narrower confidence widths than REi method, 
as they do not consider uncertainty in the estimation of the 
between-study variance. The VC method will present nar-
rower confidence widths than the three RE methods, as it 
does not aim to estimate an average reliability coefficient 
from a super-population of potential reliability coefficients, 
but the average population coefficient of the studies included 
in the RG meta-analysis. Finally, the FE method will exhibit 
the narrowest confidence widths, as it assumes that the reli-
ability estimates share a common population reliability coef-
ficient (Sánchez-Meca et al., 2013).

Method

This investigation is a meta-review, a methodological review 
of the RG meta-analyses conducted in psychology aimed 
at characterizing how measurement error of psychological 
tools varies from one test application to the next. This study 
was not preregistered.

Study selection criteria

To be included in this methodological review, studies 
needed to fulfil the following selection criteria: (a) to be 
an RG meta-analysis on one or several psychological tools; 
(b) to report the complete dataset of the individual reli-
ability estimates extracted from the primary studies; (c) 
to report at least one dataset of internal consistency reli-
ability coefficients (Cronbach’s alpha, omega coefficients, 
parallel-forms, etc.) with at least five individual reliability 
coefficients, and (d) studies had to be written in English 
or Spanish. Above all, to be part of our investigation the 
dataset had to include at least the internal consistency 
coefficient and sample size of each individual study.

Search strategy

Electronic searches were carried out in the Scopus and 
EBSCOhost databases. The Google Scholar search engine 
was also used to broaden the search. The keywords used 
were “Reliability Generalization”, “Meta-Analysis of 
Internal Consistence” and “Meta-Analysis of Alpha Coef-
ficients”. The temporal range was from 1998 to July 2020. 
The initial date of the search was established due to the 
seminal article by Vacha-Haase (1998). The full search 
strategy followed in each database is available in Supple-
mentary file 2: https://​bit.​ly/​x2djy1.

Figure 1 presents a flow diagram outlining the selection 
process of studies. The electronic searches yielded 385 
references. Additional informal searches produced another 
30 references. On discarding duplicated references, a 
total of 239 references were identified as potentially 
eligible for this research. From these, 207 references 
were excluded for not fulfilling some inclusion criteria 
(e.g., methodological studies which did not focus on 
internal consistency coefficients, did not present the 
whole dataset with the individual reliability coefficients, 
the dataset contained less than 5 reliability coefficients, 
or the psychological tool had only one item). Therefore, 
32 RG meta-analyses were included in this research. The 
references of the 32 RG meta-analyses selected are openly 
available in Supplementary file 3: https://​bit.​ly/​rkvce1. As 
many of these studies included several psychological tests, 
or one psychological test with different subscales, we were 
able to obtain 138 datasets comprising scales or subscales 
contributing 4,350 internal consistency coefficients. 
Although our purpose was to include any type of internal 
consistency coefficients, all RG meta-analyses selected 
for this research used only Cronbach’s alpha reliability 
coefficients.

https://bit.ly/x2djy1
https://bit.ly/rkvce1
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Data extraction

If one RG meta-analysis reported data from more than one 
psychological scale or the scale had several subscales, we 
took these as independent datasets for our statistical analy-
ses. Consequently, the 32 RG meta-analyses selected in 
this methodological review gave a total of 138 datasets of 
alpha coefficients on psychological scales and subscales. 
From each dataset, we extracted the alpha coefficients of 
the primary studies included in each meta-analysis, num-
ber of items of each scale/subscale used, sample size, and 
the mean and standard deviation of test scores.

Data analysis

Statistical methods shown in Table 2 were applied on each 
of the 138 datasets of alpha coefficients. To estimate the 
between-studies variance (τ2), DerSimonian and Laird’s 
(DL) moments method was applied because it is one of 
the most widely used, although it is not the best one (cf. 
Blázquez-Rincón et al., 2023; Boedeker & Henson, 2020; 
Langan et al., 2017; Sánchez-Meca et al., 2013; Sánchez-
Meca & Marín-Martínez, 2008; Veroniki et al., 2016; Viech-
tbauer, 2005). To evaluate the potential impact of the τ2 esti-
mator on the outcomes of an RG meta-analysis, the restricted 
maximum likelihood (REML) estimator was also applied. 
Sensitivity analyses were conducted using ANOVAs, one for 
the average alpha coefficient and another for its confidence 
interval width, to compare the meta-analytic results obtained 
with DL and REML τ2 estimator. In order to investigate the 
influence of the τ2 estimator on the meta-analytic outcomes, 
two-way ANOVAs with repeated measures for two factors 
were applied, using the average alpha coefficient and confi-
dence interval width as dependent variables. The two factors 
considered were the τ2 estimator (DL vs. REML) and the 
transformation method. Four transformation methods of the 
reliability coefficients were considered (not transformation, 
Fisher’s Z, Hakstian and Whalen’s and Bonett’s transforma-
tions) and six statistical models: OLS, FE, VC, and three RE 
models (standard RE, REi, and REn models). Although a 
total of 24 combinations could be applied to obtain an aver-
age reliability coefficient, only 13 different methods were 
compared. This is due to the fact that VC (Bonett, 2010) 
and REn (Schmidt & Hunter, 2015) models do not admit 
coefficients to be transformed, therefore these statistical 
methods were applied for untransformed alpha coefficients 
only. In addition, note that RE and REi methods apply the 
same formula to calculate an average reliability coefficient 
(see Table 2). The difference between RE and REi methods 
is in how to construct a confidence interval. The 13 methods 
compared to obtain a combined reliability coefficient can be 
found in Table S2: https://​bit.​ly/​7rfx65.

In addition, 18 different methods to calculate a confidence 
interval for the average reliability coefficient were applied 
(see Table 2). Out of these, 16 methods were obtained by 
combining the statistical models OLS, FE, RE, and REi with 
the four transformation methods (not transformed, Fisher’s 
Z, Hakstian and Whalen’s, and Bonett’s transformations). 
Two additional methods were based on the VC model for 
Bonett’s transformation and the REn model for untrans-
formed coefficients. The 18 methods compared have been 
described in Table S3: https://​bit.​ly/​7rfx65.

In addition, Shapiro–Wilk’s normality test and skewness 
and kurtosis indices were applied for each of the 138 data-
sets and on the three transformed coefficients (Fisher’s Z, 
Hakstian and Whalen’s, and Bonett’s transformations) as 
well as on those untransformed. This enabled examination 
of how much the different transformation methods of the 
internal consistency coefficients achieved the aim of normal-
izing coefficient distribution.

Another comparison criterion was the amount of heteroge-
neity exhibited among the alpha coefficients. With this pur-
pose, Q statistic and I2 index were calculated for the three 
transformation methods and for the untransformed alpha 
coefficients in each of the 138 datasets. When applied to an 
RG meta-analysis, the I2 index quantifies the amount of true 
heterogeneity exhibited by a set of alpha coefficients, that is, 
the variability exhibited by the alpha coefficient that cannot 
be explained by sampling error, but which is due to the influ-
ence of the composition and variability of the study samples 
and of how each individual study was conducted (Borenstein 
et al., 2019).

Another way to assess heterogeneity under a RE model is 
by constructing a prediction interval. Prediction intervals were 
calculated for each of the coefficient transformations. In an 
RG meta-analysis a prediction interval estimates the range of 
values expected for the population reliability coefficient when 
a new study with similar characteristics to those included in 
the meta-analysis is conducted (Borenstein, 2019; Borenstein 
et al., 2019). Theoretically, prediction intervals and confidence 
intervals should coincide if no heterogeneity between studies is 
present; in presence of heterogeneity, prediction intervals tend 
to be wider than confidence intervals (Higgins et al., 2009).

To compare the 13 alternative methods for calculating the 
average reliability coefficient and the 18 methods for con-
structing a confidence interval for the average reliability coef-
ficient, two-way ANOVAs were applied. The model included 
two factors: the assumed statistical model and the transforma-
tion of the coefficients, which had four conditions. For the 
average coefficient estimate, both factors in the ANOVA had 
four levels, while for the confidence interval width, the sta-
tistical model had six conditions. In the event of statistically 
significant results for any of the factors, post hoc comparisons 
were performed using Bonferroni’s method.

https://bit.ly/7rfx65
https://bit.ly/7rfx65
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The 13 methods for calculating the average reliability coef-
ficient and the 18 methods for constructing a confidence inter-
val for the average reliability coefficient were computed in four 
different metric scales: the untransformed alpha coefficient and 
three transformation methods (Fisher's Z, Hakstian and Wha-
len's, and Bonett's transformations). To ensure comparability, 
the results for the three transformation methods were back-
transformed to the alpha metric using the formulas presented 
in Table 1.

The 138 meta-analytic datasets as well as the script codes 
used to analyse them are openly available at: https://​bit.​

ly/​vtgf7. All meta-analytic calculations were programmed 
in R (R Core Team, 2020). Shapiro–Wilk’s normality test 
and skewness and kurtosis indices were calculated with 
the R package moments (Komsta & Nomovestky, 2015). 
ANOVAs and post hoc comparisons were carried out with 
the statistical programs IBM SPSS Statistics (v28; IBM 
Corp, 2021) and JAMOVI (v.2.2; The Jamovi Project, 
2021). Finally, to illustrate the results, multiple violin 
displays were constructed with the package ggplot2 in R 
(Wickham, 2016).

Fig. 1   Flow diagram of study 
selection process

https://bit.ly/vtgf7
https://bit.ly/vtgf7
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Results

Characteristics of the meta‑analytic datasets

The 138 RG datasets were extracted from 32 studies that ful-
filled our inclusion criteria. The RG datasets had a number 
of studies (k) that ranged between 5 and 319 primary studies 
or alpha coefficients, with an average of 31 primary studies 
(Median = 14 studies; Q1 = 9; Q3 = 319). The histogram of 
the number of studies showed a clear positive asymmetry, 
with 70.3% of datasets exhibiting fewer than 30 primary 
studies (k < 30) and only 6 datasets (4.3%) with k larger than 
100. The distribution of sample sizes for the more than 4,500 
alpha coefficients ranged from 38 to 799, with a mean of 
209 (Median = 220; Q1 = 125; Q3 = 249). A summary of the 
descriptive statistics for both number of studies and sample 
sizes can be found in Table S4. Both Figure S1 and Table S4 
can be found in Supplementary file 1: https://​bit.​ly/​7rfx65.

To transform or not to transform reliability 
coefficients

One controversial point in the RG meta-analytic arena is 
whether alpha coefficients should be transformed to nor-
malize their distribution. To examine the extent to which 
different transformation methods achieved their objective 
of normalizing the alpha coefficient distribution, Shap-
iro–Wilk’s test and skewness and kurtosis statistics were 
calculated for each transformation method in each RG data-
set. Table 3 presents the results. Regarding untransformed 
alpha coefficients, almost half of datasets (44.9%) reached 
statistical significance with Shapiro–Wilk’s normality test, 
indicating a clear departure from the normality assumption. 
Compared to the untransformed alpha coefficients, the three 
transformation methods (Fisher’s Z, Hakstian and Wha-
len’s, and Bonett’s transformations) substantially improved 
the normality adjustment of the alpha coefficient distribu-
tion, with rejection percentages of about 26%. In addition, 
the skewness indices for untransformed alpha coefficients 
(Table 3) clearly departed from symmetry (Mean = -0.75; 
Median = -0.71), whereas transformed coefficients improved 
the symmetry (Fisher’s Z: Mean = 0.005, Media = 0.07; Hak-
stian and Whalen: Mean = 0.20, Median = 0.14; Bonett: 
Mean = -0.09, Median = -0.12). To determine whether these 
differences were statistically significant, a repeated-meas-
ures ANOVA was performed. The results confirmed these 
differences, F(3, 411) = 31.1, p < 0.001, ɳ2 = 0.185. Post hoc 
comparisons showed differences between no transforma-
tion of the coefficients and the three transformations, and 
between Hakstian and Whalen’s and Bonett’s transforma-
tion. Table S5 in Supplementary File 1 (https://​bit.​ly/​7rfx65) 
presents the post hoc comparisons.

However, kurtosis indices for untransformed alpha coeffi-
cients were close to normality (Mean = 3.74, Median = 2.95), 
whereas those of the transformed coefficients led to 
slightly platykurtic distributions (Fisher’s Z: Mean = 2.98, 
Median = 2.61; Hakstian and Whalen: Mean = 3.01, 
Median = 2.61; Bonett: Mean = 2.94, Median = 2.59). A 
repeated-measures ANOVA performed to compare the four 
transformation conditions yielded statistically significant dif-
ferences, F(3, 411) = 27.8, p < 0.001, ɳ2 = 0.169, specifically 
between the coefficients without transforming and applying 
the three transformations. Tables S5 and S6 in Supplemen-
tary File 1 (https://​bit.​ly/​7rfx65) presents these results.

Between‑study variance estimator

In order to examine whether the choice of the τ2 estimator in 
an RE model could affect the average alpha coefficient and 
the confidence width, a sensitivity analysis was conducted 
consisting of applying two τ2 estimators: DL and REML. 
This comparison only affected to the RE model for the aver-
age alpha coefficient and for the RE and REi models for 
the confidence width and the four transformation methods. 
The results can be found in Tables S7-S13 in Supplemen-
tary File 1 (https://​bit.​ly/​7rfx65). Regarding the average 
alpha coefficient, using DL or REML τ2 estimators did not 
affect the results (see Table S8), F(1, 137) = 1.11, p = 0.294, 
ɳ2 = 0.008. However, an interaction between the τ2 estimator 
and transformation method was found, F(3, 411) = 26.29, 
p < 0.001, ɳ2 = 0.161. Post hoc comparisons revealed sta-
tistically significant differences between the average alpha 
coefficient for DL and REML τ2 estimators when alpha 
coefficients were not transformed (see Table S9). Regard-
ing the confidence width, Table S10 presents the results as 
a function of the τ2 estimator (DL vs. REML), transforma-
tion method, and statistical model (RE vs. REi). Table S11 
presents the results of a three-way ANOVA. No statistically 
significant differences were found for the τ2 estimator, F(1, 
137) = 2.12, p = 0.147, ɳ2 = 0.015. Like with average alpha 
coefficient, a statistically significant interaction was found 
between the τ2 estimator and transformation method, F(3, 
411) = 4.50, p = 0.004, ɳ2 = 0.032, although with negligible 
proportion of variance accounted for. In fact, any of the post 
hoc comparisons for this interaction reached statistical sig-
nificance (see Table S12). Similar results were found for 
the interaction between τ2 estimator and statistical model 
(see Tables S11 and S13). As τ2 estimator did not affect the 
results, meta-analytic calculations were presented using DL 
estimator only.

Averaging a set of reliability coefficients

A total of 13 different methods were applied to average a 
set of reliability coefficients. In Table 4 some descriptive 

https://bit.ly/7rfx65
https://bit.ly/7rfx65
https://bit.ly/7rfx65
https://bit.ly/7rfx65
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statistics of the results are shown when an average alpha 
coefficient was calculated. Both the mean and median indi-
cated that the average alpha coefficients were slightly larger 
under an FE model without transforming the coefficients, in 
comparison with the remaining methods. While the lowest 
average alpha coefficients were found under the OLS method 
with raw coefficients, the maximum values were found in 
all transformations within the FE model, with the untrans-
formed coefficients and Hakstian-Whalen’s transformation 
yielding the highest values. The distribution of the average 
alpha coefficients is shown in multiple violin and boxplots 
presented in Fig. 2 as a function of statistical model and 
transformation method.

To compare methods among them, a two-way ANOVA 
was applied, with the average alpha coefficients as depend-
ent variable and the statistical model and transformation 
method as factors. The results showed a statistically signifi-
cant interaction between the two factors, F(6, 1781) = 3.233, 
p = 0.004, ɳ2 = 0.011, as well as the statistical model, F(3, 
1781) = 8.614, p < 0.001, ɳ2 = 0.014. However, the propor-
tion of variance accounted for by these factors was negli-
gible (1.1% and 1.4%, respectively). Bonferroni’s post-hoc 
comparisons indicated that significant differences were 
found between the FE model and the rest of the models (see 
Table S14 in Supplementary File 1). Specifically, significant 
differences were found between the untransformed average 
coefficients obtained assuming an FE model and the rest 
of the models, as well as within the FE model itself using 
Bonett’s and Fisher’s Z transformations (Table S15 in Sup-
plementary File 1).

Constructing a confidence interval for the average 
reliability coefficient

Differences among the 18 methods to construct a confidence 
interval for the average reliability coefficient were also com-
pared in terms of their confidence width. Table 5 presents 
descriptive statistics obtained by calculating the confidence 
width across the 18 analytical strategies. Both the mean and 
median indicated that larger confidence widths were found 
when OLS method was assumed without transforming the 

coefficients. While the lowest values were found under an 
FE model, the maximum values were found under OLS and 
REi models (i.e., RE model with the improved method of 
Hartung and Knapp). Figure 3 presents multiple violin and 
boxplots to illustrate the confidence widths through the dif-
ferent analytic methods compared. A two-way ANOVA 
was applied on the confidence widths as a function of the 
statistical model and transformation method. Statistically 
significant differences were found for the statistical model 
assumed, F(5, 2466) = 108.675, p < 0.001, ɳ2 = 0.181, but not 
for the interaction, F(9, 2466) = 0.347, p = 0.959, ɳ2 = 0.001, 
nor for the transformation method, F(3, 2466) = 0.532, 
p = 0.66, ɳ2 = 0.00). Regarding the multiple comparisons 
(see Table S16 in Supplementary File 1), a significant result 
appears between almost all models. Post hoc comparisons 
revealed statistically significant differences between all the 
different statistical models, with three exceptions only: FE 
vs. VC models, OLS vs. REi, and RE vs. REn.

Assessing heterogeneity

To assess heterogeneity exhibited by a set of alpha coef-
ficients, the I2 index was calculated for each of the 138 
RG datasets and for each transformation method, with the 
purpose of examining the extent to which different trans-
formation methods lead to different I2 indices. Table 6 
and Fig. 4 show the descriptive statistics of the I2 indices 
and their distributions for each of the transformations. 
On average, I2 index was over 90% in all transformation 
methods, except for Fisher’s Z (88.21%). There was only 
one dataset with an I2 value lower than 25% for Fisher’s 
Z (I2 = 14.64%). When this I2 value was deleted from the 
analyses, the average I2 for Fisher’s Z slightly increased 
(from 88.21% to 88.75%) and its variability decreased 
(SD = 11.50 and 9.65, respectively). In the remaining data-
sets and transformation methods all I2 indices exceeded 
25%, and only a few showed I2 values below 75%, the 
threshold usually established to assume high heterogene-
ity. Bonett’s and Hakstian and Wallen’s transformations 
performed very similarly. In addition, these two transfor-
mation methods yielded I2 indices with lower variability 

Table 3   Shapiro–Wilk’s 
normality test, skewness, and 
kurtosis for each transformation 
method of alpha coefficients 
through the 138 meta-analytic 
datasets

S-W test Shapiro–Wilk’s normality test. ¶ Skewness indices equal to 0 indicated perfect symmetry of the 
distribution. § Kurtosis indices equal to 3 indicated adjustment to normality

Transformation method S-W test Skewness¶ Kurtosis§

Rejection percentage 
(p < 0.05)

Mean Median Mean Median

No transformation 44.9% −0.757 −0.736 3.75 2.951
Fisher’s Z 26.1% −0.017 0.066 2.968 2.614
Hakstian-Whalen 26.8% 0.19 0.143 3.007 2.607
Bonett 26.8% −0.098 −0.12 2.934 2.591
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(Range = 53.01% and 54.63%, respectively) than Fisher’s 
Z and untransformed coefficients (Range = 84.77% and 
60.32%, respectively).

To determine whether there were statistical differences 
in the I2 indices as a function of the transformation method 
of the alpha coefficients, a repeated measures ANOVA was 
performed, finding statistically significant differences, F(3, 
411) = 66.6, p < 0.001, ɳ2 = 0.327. Post hoc comparisons 
revealed statistically significant differences between all the 
transformation methods, with the exception of Hakstian and 
Whalen vs. Bonett transformations (see Table S17 in Sup-
plementary File 1). Due to the presence of an outlier I2 index 
(I2 = 14.64%), another repeated measures ANOVA was also 
performed without it. However, deleting this outlier did not 
change the ANOVA results.

Heterogeneity was also assessed by calculating 95% 
prediction intervals. Table 7 presents descriptive statistics 
for the width of these prediction intervals as a function of 
the transformation method of the alpha coefficients. As 
expected, prediction intervals were wider than the confi-
dence intervals (compare Table 5 and 7). Figure 5 shows 
the distribution of prediction interval widths according to 
the transformation of the alpha coefficients.

To assess whether the transformation method of the 
alpha coefficients affected the width of prediction inter-
vals, a repeated measures ANOVA was applied. The results 
showed statistically significant differences, F(3, 411) = 43.2, 
p < 0.001, ɳ2 = 0.24. Table S18 in Supplementary file 1 
shows the results of post-hoc comparisons, with statistically 
significant differences between all transformation methods. 

Larger interval widths were found with Bonett’s transfor-
mation followed by Fisher’s Z and Hakstian and Whalen’s 
transformation.

Discussion

With the purpose of determining the extent to which differ-
ent statistical methods used to integrate a set of reliability 
coefficients lead to different results, 138 datasets from 32 
RG meta-analyses on psychological tests were analysed 
by applying multiple statistical methods developed in the 
meta-analytic arena. Regarding the different transformation 
methods of the reliability coefficients, our findings revealed 
that Fisher’s Z, Hakstian and Whalen’, and Bonett’s trans-
formations improved the normality adjustment of coefficient 
distribution than untransformed coefficients. Although the 
three transformation methods performed similarly, there 
are conceptual reasons for not using Fisher’s Z to transform 
internal consistency coefficients like alpha and similar coef-
ficients, as Fisher’s Z was devised to transform correlation 
coefficients, whereas an internal consistency reliability coef-
ficient is not a correlation coefficient, but a squared correla-
tion coefficient (a ratio between true score and total score 
variance). Fisher’s Z is adequate to transform test–retest reli-
ability coefficients or parallel-forms coefficients, as these are 
calculated as correlation coefficients. For alpha coefficients, 
Hakstian and Whalen’s and Bonett’s transformations are 
most recommendable. Therefore, while there are proponents 
of not transforming reliability coefficients, it appears that 

Table 4   Results of average 
alpha coefficients for each 
analytic strategy

OLS Ordinary least squares model; FE Fixed-effect model; RE Standard random-effects model; REi Ran-
dom-effects model with the improved method of Hartung and Knapp (2001); REn Random-effects model 
weighting by sample size. Results for the VC model were not shown in this Table as they coincide with 
those of the OLS model with untransformed coefficients. Results for RE and REi models are coincident. 
SD Standard deviation; Min. and Max. Minimum and Maximum average alpha coefficient; Q1 and Q3 
Quartiles 1 and 3

Average Alpha

Model Transformation Mean SD Min Q1 Median Q3 Max Range

OLS No transformation 0.819 0.072 0.595 0.775 0.829 0.873 0.974 0.379
Fisher’s Z 0.832 0.070 0.612 0.786 0.840 0.887 0.986 0.373
Hakstian-Whalen 0.828 0.070 0.610 0.785 0.837 0.883 0.980 0.369
Bonett 0.833 0.069 0.618 0.787 0.841 0.888 0.986 0.368

FE No transformation 0.867 0.063 0.634 0.831 0.865 0.914 1 0.366
Fisher’s Z 0.836 0.074 0.527 0.791 0.839 0.890 0.987 0.460
Hakstian-Whalen 0.848 0.069 0.621 0.804 0.848 0.901 1 0.378
Bonett 0.837 0.072 0.544 0.793 0.840 0.891 0.987 0.443

RE/REi No transformation 0.830 0.070 0.622 0.791 0.836 0.883 0.975 0.353
Fisher’s Z 0.833 0.069 0.620 0.787 0.840 0.887 0.986 0.366
Hakstian-Whalen 0.832 0.069 0.622 0.789 0.838 0.885 0.980 0.358
Bonett 0.834 0.068 0.624 0.788 0.842 0.887 0.986 0.361

REn No transformation 0.826 0.076 0.486 0.783 0.830 0.881 0.974 0.487
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transformation methods tend to normalize the coefficient dis-
tribution. This is recommended since standard meta-analytic 
methods assume normality in their inferential procedures 
(cf., e.g., Borenstein et al., 2019; Cooper et al., 2019).

RG meta-analyses always report an average reliabil-
ity coefficient. Thirteen methods to calculate an average 
alpha coefficient were compared, depending on the statis-
tical model assumed, weighting factor, and transformation 
method. An ANOVA applied with the statistical model 
and transformation of the coefficients as factors showed a 
statistically significant result for the interaction between 
them, as well as for the statistical model. However, these 
factors explained a negligible proportion of the variance 
(approximately 1%), suggesting a limited influence. Post hoc 
comparisons indicated that the average alpha coefficients 
under an FE model were larger than those of other models 
(Table 4). REn model gave the lowest average alpha coef-
ficients as well as the largest ones (from 0.487 to 0.974), 
exhibiting the largest variability. REn method consists of 
weighting the untransformed reliability coefficients by sam-
ple size. If reliability coefficients and sample sizes are cor-
related in an RG meta-analysis, models that include sample 
size in the weighting factor can yield biased estimates of 

the average alpha coefficient. Our findings do not allow us 
to determine the extent to which different statistical models 
can result in biased estimates of the population alpha coeffi-
cient in the presence of alpha-sample size correlation. How-
ever, an important recommendation when conducting an RG 
meta-analysis is to assess the correlation between alphas 
and sample sizes. If a negative correlation is observed, it 
may be inferred that this RG meta-analysis may be expe-
riencing what is typically referred to in the field of meta-
analysis as 'small study effects,' wherein studies with small 
sample sizes tend to present higher alpha coefficients than 
larger ones (Rothstein et al., 2005). Through the 138 RG 
datasets, correlations between alpha coefficients and sam-
ple sizes ranged from -0.79 to 0.73, with Median equal to 
0.06 (Mean = 0.07, SD = 0.28). These results highlight that 
it is common to observe both positive and negative correla-
tions between alphas and sample sizes in RG meta-analyses. 
Therefore, in the presence of such correlations, it is highly 
advisable to employ techniques for assessing potential biases 
that can influence the meta-analytic results. Methods like 
funnel plots, Egger’s test, or trim-and-fill should be utilized 
to evaluate whether biasing factors, such as 'small study 
effects,' 'reporting bias,' 'publication bias,' or others, may 

Fig. 2   Multiple violin and box-
plots of the 13 different methods 
for averaging alpha coefficients. 
Note: OLS = Ordinary Least-
Squares model. FE = Fixed-
Effect model. RE = Standard 
Random-Effects model weight-
ing by the inverse variance. 
REn = Random-Effects model 
weighting by sample size
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impact the meta-analytic outcomes (Rothstein et al., 2005; 
Vevea et al., 2019). In cases where a negative correlation 
exists between alphas and sample sizes, the meta-analyst 
may choose to apply the FE weighting factor to calculate an 
average alpha coefficient, as this model is less likely to yield 
biased estimates.

Conventional RE model weights alpha coefficients by 
their inverse variance, this being the sum of the sampling 
variance (V(yi)) and the between-studies variance (τ2). Note 
that the between-studies variance is a constant in the RE 
weighting formula, so that when τ2 is large in comparison 
with the sampling variances (V(yi)), the weights become 
more similar to each other and will therefore approach the 
OLS method. On the other hand, by including a constant 
component in the weighting factor will lead to increase the 
differences between RE and FE models.

A confidence interval for the average reliability coeffi-
cient is also typically reported in RG meta-analyses. A total 
of 18 alternative methods to construct confidence interval 
for the average alpha coefficient were compared, in terms of 
the confidence width. Coinciding with previous research, our 
findings indicated that the different transformation methods 
of the alpha coefficients barely affected the confidence width 
for a given statistical model (Romano et al., 2010). However, 
the statistical model assumed dramatically affected confi-
dence width. ANOVA results showed statistically significant 

differences as a function of the statistical model, with a pro-
portion of variance accounted for of medium to large mag-
nitude (ɳ2 = 0.181).

The largest confidence widths were obtained with the 
OLS methods, as they do not take advantage of the accu-
mulation of sample sizes through the studies. On average, 
REi method was that which exhibited confidence widths 
more similar to those of the OLS method. As expected, the 
RE and REn methods on average exhibited narrower con-
fidence widths than the REi and OLS methods, with aver-
age confidence widths varying between 0.059 and 0.070. 
Unlike the REi method, the RE and REn methods do not 
consider the uncertainty in estimating the between-studies 
variance, providing narrower confidence intervals than those 
of REi method (Sánchez-Meca & Marín-Martínez, 2008; 
Sidik & Jonkman, 2002; Stijnen et al., 2021). Both the FE 
and VC models exhibited the narrowest confidence inter-
vals. The confidence width of VC model was, on average, 
0.025, whereas under the FE model the average confidence 
widths varied between 0.014 and 0.019, being the narrowest 
widths of all models. The reasons for such narrow confi-
dence widths are different for VC and FE methods. The FE 
model considers that all studies are estimating a common 
population reliability coefficient implying that the statistical 
calculations only take into account one error source: that 
due to sampling of participants (Borenstein et al., 2009; 

Table 5   Results of confidence 
widths for each analytic strategy

OLS Ordinary least squares model; FE Fixed-effect model; RE Standard random-effects model; REi Ran-
dom-effects model with the improved method of Hartung and Knapp (2001); REn Random-effects model 
weighting by sample size; VC Varying-coefficient model; SD Standard deviation; Min. and Max. Minimum 
and Maximum confidence widths; Q1 and Q3 Quartiles 1 and 3

Confidence width

Model Transformation Mean SD Min Q1 Median Q3 Max

OLS No transformation 0.089 0.077 0.015 0.040 0.067 0.105 0.540
Fisher’s Z 0.085 0.077 0.013 0.039 0.059 0.110 0.587
Hakstian-Whalen 0.085 0.075 0.014 0.038 0.061 0.108 0.572
Bonett 0.085 0.080 0.013 0.038 0.058 0.110 0.635

FE No transformation 0.014 0.011 0.000 0.005 0.010 0.020 0.057
Fisher’s Z 0.019 0.015 0.002 0.008 0.013 0.026 0.072
Hakstian-Whalen 0.015 0.012 0.000 0.006 0.010 0.021 0.060
Bonett 0.016 0.014 0.001 0.006 0.011 0.022 0.071

RE No transformation 0.059 0.052 0.009 0.030 0.043 0.072 0.412
Fisher’s Z 0.070 0.057 0.010 0.035 0.054 0.089 0.421
Hakstian-Whalen 0.068 0.059 0.010 0.034 0.051 0.086 0.460
Bonett 0.069 0.058 0.010 0.034 0.052 0.089 0.417

REn No transformation 0.062 0.050 0.010 0.029 0.049 0.081 0.353
REi No transformation 0.079 0.071 0.011 0.035 0.059 0.099 0.543

Fisher’s Z 0.084 0.077 0.012 0.037 0.058 0.107 0.589
Hakstian-Whalen 0.082 0.075 0.012 0.036 0.060 0.104 0.573
Bonett 0.084 0.080 0.012 0.037 0.058 0.107 0.637

VC Bonett 0.025 0.018 0.002 0.013 0.018 0.032 0.092



18287Current Psychology (2024) 43:18275–18293	

Sánchez-Meca et al., 2013). The VC model obtains narrower 
confidence widths than OLS and RE models as this model 
does not assume that the reliability coefficients from the 
studies are one random sample of a larger super-population 
of potential reliability coefficients (Bonett, 2010).

Parameters under the RE model can be estimated using 
various alternative estimators. Notably, a multitude of 
between-study variance estimators have been proposed (cf., 
e.g., Blázquez-Rincón et al., 2023). However, comparing the 
results of different variance estimators was outside the scope 
of this study. Nonetheless, we did compare the results of two 

commonly used between-study variance estimators, the DL 
and REML estimators. We found negligible differences in 
the calculation of the average alpha coefficient.

Regarding variability of reliability coefficients, I2 indices 
revealed large heterogeneity in most RG datasets, indicat-
ing that reliability estimates reported in primary studies are 
affected by such study characteristics as composition and 
variability of samples and methods and context of applica-
tion. In addition, heterogeneity was maintained regardless of 
the transformation method of the alpha coefficients. There-
fore, the search for study characteristics that can explain 

Fig. 3   Multiple violin and 
boxplots of the 18 different 
methods for calculating the 
confidence width. Note: OLS: 
Ordinary Least-Squares model. 
FE: Fixed-Effect model. RE: 
Standard Random-Effects 
model weighting by the inverse 
variance. REi: Random-Effects 
model with the improved 
method of Hartung and Knapp 
(2001). REn: Random-Effects 
model weighting by sample 
size. VC: Varying-Coefficient 
model

Table 6   Results of aggregating 
the 138 I2 indices for each 
transformation method

¶ Results for Fisher’s Z once deleted the dataset with I2 = 14.64%. SD Standard deviation; Min. and Max. 
Minimum and Maximum values; Q1 and Q3 Quartiles 1 and 3

I2 index

Transformation method Mean SD Min Q1 Median Q3 Max

No transformation 90.833 8.616 39.129 88.845 93.210 96.382 99.452
Fisher’s Z 88.212 11.502 14.639 85.672 91.580 95.252 99.413
Hakstian-Whalen 91.700 7.826 45.174 89.741 93.680 96.723 99.797
Bonett 91.693 7.795 46.686 89.652 93.954 96.656 99.698
Fisher’s Z¶ 88.749 9.653 48.653 85.878 91.583 95.269 99.413
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Fig. 4   Multiple boxplots of the 
I2 indices for each transforma-
tion method. Z* = Fisher’s Z 
once deleted the dataset with 
I2 = 14.64%

Table 7   Results of aggregating 
the 138 prediction intervals 
width for each transformation 
method

Hakstian-Whalen: Hakstian and Whalen’s transformation. Bonett: Bonett’s transformation. SD Standard 
deviation; Min. and Max. Minimum and Maximum widths. Q1 and Q3 Quartiles 1 and 3

95% Prediction interval width

Transformation method Mean SD Min Q1 Median Q3 Max

No transformation 0.207 0.127 0.057 0.127 0.172 0.247 0.998
Fisher’s Z 0.273 0.163 0.055 0.168 0.228 0.326 1.037
Hakstian-Whalen 0.254 0.154 0.063 0.160 0.221 0.313 1.205
Bonett 0.297 0.209 0.067 0.177 0.233 0.345 1.333

Fig. 5   Multiple boxplots of 
the widths of the prediction 
intervals for each transforma-
tion method around the 138 RG 
datasets
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heterogeneity is warranted in practically any RG meta-
analysis. An additional finding was found about prediction 
intervals under an RE model. The width of the prediction 
intervals clearly varied as a function of the transformation 
method of the alpha coefficients, with wider intervals when 
Bonett’s transformation was applied, followed by Fisher’s Z 
and Hakstian and Whalen’s transformation. Therefore, the 
choice of the transformation method is an important deci-
sion to interpret the width of the prediction intervals in an 
RE model.

How to select the statistical model?

If, as our findings evidence, the selection of the statisti-
cal model greatly affects the meta-analytic results, then an 
important question concerns the arguments that must guide 
the selection of the statistical model. It is important to note 
that our investigation does not enable determining which 
statistical model is most appropriate in an RG meta-analysis, 
as we have not conducted simulation studies, but empirical 
research based on real RG datasets. Therefore, our recom-
mendations in this section are not based on our findings, 
but on previous theoretical work and results of simulation 
studies. The main question which must guide selection of 
statistical methods in an RG meta-analysis is to what extent 
the meta-analyst intends to generalize their results as well 
as the heterogeneity exhibited by the reliability coefficients. 
If the aim is to generalize to a set of studies with identi-
cal characteristics to those of studies in the meta-analysis, 
then the FE or the VC models are most recommendable. 
To decide between FE and VC models, the key question 
is whether the reliability estimates obtained in the primary 
studies exhibit heterogeneity. If this is not the case, then 
the FE model is most appropriate. However, if the reliabil-
ity estimates exhibit heterogeneity among them, then VC 
should be chosen. How can we determine whether a set of 
reliability coefficients are heterogeneous? Several methods 
can be applied, such as the calculation of the I2 index, such 
that if I2 is larger than 25%, there is evidence of heteroge-
neity. Another method consists of testing the homogene-
ity hypothesis with Cochran’s Q statistic, such that if the 
Q statistic reaches statistical significance (e.g., p < 0.05) 
there is evidence of heterogeneity. Other related methods 
involve calculating a prediction interval around the average 
reliability coefficient, or interpreting the magnitude of the 
between-studies standard deviation, τ (Borenstein, 2019; 
Stijnen et al., 2021). Our results evidenced that RG meta-
analyses exhibit large heterogeneity (I2 indices clearly over 
25% and prediction intervals were wider than confidence 
intervals). As a consequence, FE models will be warranted 
in exceptional cases only. Even in the presence of apparent 
homogeneity, applying this model can be risky, as hetero-
geneity statistics may have limited power when the number 

of studies is small. Regarding OLS methods, we included it 
in our comparisons because they have been applied in many 
RG meta-analyses published in psychology. However, their 
application in RG meta-analysis, as in other types of meta-
analysis, is not recommended under any circumstances. This 
is because OLS methods do not account for the distribu-
tional properties of the reliability coefficients, which can 
lead to misspecification errors. RG meta-analyses that have 
estimated their parameters using OLS may yield results that 
differ significantly from those obtained with RE, VC, or FE 
models.

When the meta-analyst intends to generalize their results 
to a larger population of studies with similar but not exactly 
identical characteristics to those of the studies included in 
the meta-analysis, then an RE model can be applied. From 
the three RE models here described, the RE, REi, and REn 
models, the REi model should be mainly chosen. This is 
because this model takes into account the uncertainty in 
estimating the between-studies variance (τ2). However, to 
be adequately applied, RE models need several assump-
tions to be fulfilled: normality of the true reliability coef-
ficient distribution, a stable estimate of the between-studies 
variance, and random sampling of studies from a larger 
population of primary studies. Strictly speaking, random 
sampling assumption cannot be met, as studies included 
in an RG meta-analysis are never randomly selected from 
a larger population of potential studies. Nevertheless, it is 
sufficient if the meta-analyst can reasonably assume, under 
a conceptual basis, that studies included in an RG meta-
analysis are a representative sample of the super-population 
of primary studies; for example, when there is not correla-
tion between alpha coefficients and sample sizes, or there is 
not publication bias, small study effects, nor other potential 
biasing factors (Laird & Mosteller, 1990; Sánchez-Meca 
et al., 2013). On the other hand, the normality assumption 
can be relaxed, as recent simulation studies have demon-
strated that RE and REi methods are not very affected by 
departures from normality (Kontopantelis & Reeves, 2012; 
Rubio-Aparicio et al., 2018). A more serious problem is to 
obtain an accurate estimate of the between-studies variance 
(τ2). A meta-analysis with a small number of studies will 
have difficulty in accurately estimating τ2. Note that τ2 is 
an important parameter in calculating an average reliability 
coefficient and to construct confidence intervals and predic-
tion intervals around it. To warrant a stable estimate of τ2, 
results from previous simulation studies recommend apply-
ing RE and REi methods for meta-analyses with more than 
20 studies (Aguinis et al., 2011; Sánchez-Meca et al., 2013). 
RG meta-analyses with fewer than 20 studies and in the pres-
ence of heterogeneity should apply REn method, as it is not 
necessary to estimate τ2, provided reliability coefficients and 
sample sizes are not correlated. Otherwise, the VC model 
should be the most reasonable choice and the meta-analyst 
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should limit results generalization to studies included in the 
meta-analysis only.

Finally, it is advisable to apply sensitivity analyses. One 
of these consists of conducting the statistical analyses both 
with untransformed and transformed reliability coefficients 
to assess the strength of findings. In addition, the meta-
analyst can apply the leave-one-out technique, consisting of 
repeating the analyses by deleting one to one each reliability 
coefficient, with the purpose of identifying outliers. Finally, 
the correlation between reliability coefficients and sample 
sizes must always be calculated, as well as constructing a 
funnel plot, applying Egger’s test and, in case of asymmetry 
of the funnel plot, to apply the trim-and-fill method in order 
to assess biasing factors related to publication bias and small 
study effects.

Limitations of study

This investigation has several limitations. Although we were 
able to analyze a large number of RG datasets (138), they 
were obtained from 32 RG studies only, a scarce number 
compared with the approximately 150 RG meta-analyses 
currently published in psychology. The majority of the RG 
studies did not report datasets or did not offer the possibility 
of accessing them. Perhaps due to space limitations in 
journals, RG meta-analyses with a large number of studies 
did not report the datasets, such that the RG studies included 
in our investigation can be a negatively biased sample in 
terms of number of studies. It is to be expected that, as the 
transparency and reproducibility principles of the Open 
Science are implemented in psychological research, meta-
analytic databases will be more accessible (Lakens et al., 
2016; McNutt, 2014; Pashler & Wagenmakers, 2012). 
Another limitation was the language, as we only included 
RG meta-analyses published in English or Spanish. This 
limitation may impact the generalizability of our results. 
On the other hand, although we intended to analyze RG 
datasets of internal consistency coefficients, we were only 
able to include alpha coefficients. Until now, it has been 
very rare to find primary studies reporting coefficients other 
than alpha (e.g., omega, parallel-forms, etc.). However, 
Cronbach’s alpha coefficient has received strong criticism 
in the last years (Flake & Fried, 2020; Sijtsma, 2009; 
Yang & Green, 2011), as its very strict assumptions are 
rarely met in realistic conditions (unidimensionality, tau-
equivalence of item factor loadings, uncorrelated errors, 
multivariate normality). As primary studies report other 
internal consistency coefficients and other types of reliability 
(test–retest correlations, inter-rater coefficients), future RG 
meta-analyses will be able of synthesizing these and then 
it will be possible to examine the questions considered in 
this investigation. However, it is reasonable to expect that 
the majority of our results for alpha coefficients will be 

applicable to other types of internal consistency coefficients, 
as well as to other types of reliability, such as temporal 
stability or inter-rater agreement.

Finally, the main limitation of our investigation is that 
our findings were derived from empirical comparisons of 
meta-analytic results using real databases, rather than being 
based on the results of a simulation study. We designed our 
study as a preliminary step for conducting future simulation 
studies that compare the performance of different statistical 
methods in addressing typical outcomes in an RG meta-
analysis. Our results can be valuable for future simulation 
studies in two ways. First, it was essential to determine 
whether different analytical methods applied to actual 
RG meta-analyses exhibit significant differences in meta-
analytic results (such as the average reliability coefficient, 
confidence interval, heterogeneity, etc.). If different 
statistical methods for synthesizing reliability coefficients 
show only minor discrepancies, conducting a simulation 
study may not yield useful insights. Second, our results can 
assist researchers interested in conducting future simulation 
studies by allowing them to design manipulated conditions 
based on the real characteristics of RG meta-analyses 
typically published in psychology. These characteristics 
include the number of reliability coefficients, average 
reliability, sample sizes of individual studies, heterogeneity 
variance, and more. Consequently, future simulation 
studies can establish their parameter conditions based on 
our findings. The descriptive statistics reported in the tables 
in this paper, as well as in the Supplementary file, will be 
useful for this purpose.

Future research

The large heterogeneity exhibited in all the RG datasets 
here analysed evidenced the need to search for study 
characteristics that can explain at least part of the reliability 
coefficient variability. Future research should investigate the 
extent to which different statistical methods to determine the 
influence of moderator variables reach different results. The 
statistical methods here compared are based on a univariate 
approach to RG meta-analysis. Recent methodological work 
in meta-analysis has developed methods to apply multivariate 
approaches to RG meta-analyses, such as meta-analytic 
structural equation modelling (MASEM; Scherer & Teo, 
2020). These sophisticated methods require obtaining from 
each primary study that has applied a given test, the item-
item correlation matrix of the test in question, or other 
statistical data from the factor analyses (factor loadings, 
residual covariance matrices, etc.). Thus, future research 
should examine the extent to which univariate and multivariate 
approaches reach different results when applied to a same RG 
meta-analysis.
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Conclusions

In this research we have demonstrated that the results of an 
RG meta-analysis are affected conditioned by the statisti-
cal model assumed, weighting scheme selected, and other 
decisions on how to statistically integrate a set of reliability 
coefficients. Different statistical models estimate different 
population parameters, so that results are not directly com-
parable among them. The key point is that the meta-analyst 
must select the most realistic statistical model, that is, the 
statistical model that adequately addresses the questions of 
interest and that better fits the characteristics of the reli-
ability coefficient distribution, their sample composition and 
variability and sampling framework. Our results also evi-
dence the need for researchers to adhere to the transparency 
and openness principles of Open Science to guarantee the 
replicability and reproducibility of psychological research.
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