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Abstract
We posit the hypothesis that False Positive cases (FP) in machine learning classification models of suicidal behavior are at 
risk of suicidal behavior and should not be seen as sheer classification error. We trained an XGBoost classification model 
using survey data from 173,663 Norwegian adolescents and compared the classification groups for several suicide-related 
mental health indicators, such as depression, anxiety, psychological distress, and non-suicidal self-harm. The results showed 
that as the classification is made at higher risk thresholds - corresponding to higher specificity levels - the severity of anxiety 
and depression symptoms of the FP and True Positive cases (TP) become significantly more similar. In addition, psycho-
logical distress and non-suicidal self-harm were found to be highly prevalent among the FP group, indicating that they are 
indeed at risk. These findings demonstrate that FP are a relevant risk group for potential suicide prevention programs and 
should not be dismissed. Although our findings support the hypothesis, we account for limitations that should be examined 
in future longitudinal studies. Furthermore, we elaborate on the rationale of the hypothesis, potential implications, and its 
applicability to other mental health outcomes.
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Introduction

Several recent attempts have been made to classify suicidal 
behavior using machine learning (Burke et al., 2020; Miché 
et al., 2020; Shen et al., 2020; van Vuuren et al., 2021). 
In this paper, we point out a critical issue that has not 
been addressed in the literature and contrasts the common 
understanding of the False Positive cases (FP), which are 
considered as non-informative classification error (see for 
example Linthicum et al., 2019; van Vuuren et al., 2021). In 
a nutshell, when evaluating machine learning binary clas-
sification models of suicidal behavior, a closer look should 
be given to FP. Our argument is that FP may exhibit similar 
psycho-socio-behavioral response patterns to True Positive 
cases (TP) and may therefore include individuals with a high 

risk of developing suicidal tendencies. Further, it is known 
that individuals with suicidal tendencies may avoid report-
ing their suicide attempts or ideations, which is particularly 
common among adolescents (Brahmbhatt & Grupp-Phelan, 
2019; Christl et al., 2006; Hart et al., 2013; Jones et al., 
2019). Thus, it is plausible that a well-trained model can 
identify high-risk individuals who have not yet attempted 
suicide or who have refused to self-report their previous 
attempts. This group may be a clinically relevant target1 for 
prevention programs.

Consider an imperfect binary classifier that categorizes indi-
viduals into two groups of positives and negatives, of which TP 
and True Negative cases (TN) are correct classifications, and 
FP and False Negative cases (FN) constitute misclassifications. 
Machine learning classification models of suicidal behavior 
are typically trained using multiple mental health indicators 
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and risk factors and can detect patterns in the data that lead to 
accurate classifications (Healy, 2021; Ley et al., 2022; Walsh 
et al., 2017). Additionally, some of the common predictors and 
risk factors of suicidal behavior, such as depressive symptoms, 
non-suicidal self-harm, and substance use, might mediate or 
causally relate to the development of suicidal behavior, which 
are also expected to persist over time. Persistence of risk fac-
tors and lack of protective factors will increase the risk for 
developing suicidal behavior in the future. Furthermore, sui-
cidal behavior is expected to develop over time, as there is 
evidence for pathways that lead to development of suicidality 
among adolescents (Haghish et al., 2023; Van Orden et al., 
2010). Therefore, if the classification model demonstrates 
high accuracy and the classification is made for high cutoff in 
the estimated probabilistic risk scores (high specificity), the 
response patterns and symptoms of FP and TP are expected to 
be similar (see Fig. 1). Consequently, FP are expected to have 
worse mental health conditions compared to TN, providing 
evidence that FP are a risk group and potentially relevant to a 
suicide prevention program.

Drawing on this rationale, we tested two hypotheses using 
cross-sectional data. First, we hypothesized that at higher 
specificity thresholds, the severity of depression and anxiety 
symptoms would be more similar between the FP and TP 
groups. Second, we hypothesized that at a high specificity 
threshold, the prevalence of psychological distress and non-
suicidal self-harm would be significantly higher among the 
FP group compared to the TN group.

Methods

We utilized data from the Ungdata project (www. ungda 
ta. no), which included 173,663 adolescents from all 
municipalities in Norway, who participated in the period 

between 2014 and 2019. The participants completed a 
battery of questionnaires that covered socio-demographic 
information, internalizing and externalizing problems, 
traumatic experiences, interpersonal relationships, and 
suicidal behavior. Following the approach proposed by 
Strand et  al., (2003), we computed the psychological 
distress score as the average of the depression and anxi-
ety sum scores, and classified participants who scored at 
least 3 out of 4 as distressed. A comprehensive descrip-
tion of the instruments and their items can be accessed 
on the Open Science repository of this paper via https:// 
osf. io/ a7fgb/.

The Extreme Gradient Boosting algorithm (XGBoost; 
Chen & Guestrin, 2016) was used to develop the classifi-
cation model, as it is expected to outperform decision tree 
ensemble algorithms as well as generalized linear models 
(Haghish et al., 2023; Sahin, 2020). We trained the algo-
rithm on 80% of the data (n = 138,931), with the remain-
ing 20% (n = 34,732) reserved for testing. To optimize 
performance on the imbalanced outcome variable, we fine-
tuned the model using 10-fold cross-validation to maxi-
mize the Area Under Precision-Recall Curve (AUCPR), 
which is the preferred performance metric for imbalanced 
(low prevalent) outcomes (Davis & Goadrich, 2006). The 
adjROC R package (Haghish, 2022) was employed to 
compute the classification cutoffs for specificity values 
ranging from 0.4 to 1.0, and for each threshold, we com-
puted the severity of depression and anxiety symptoms 
for all classification groups. To test our first hypothesis, 
we subtracted the depression and anxiety scores of TP 
from FP at different thresholds to calculate their differ-
ences and fitted linear regression models on the results. 
For the second hypothesis, we compared the prevalence of 
psychological distress and non-suicidal self-harm between 
FP and TN using Fisher’s exact test. Note that both the 

Fig. 1  The rationale for considering FP as a risk group in suicide attempt classification models
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binary psychological distress item was computed after the 
model training. Moreover, the non-suicidal self-harm item 
was excluded from the dataset in the process of model 
training. 

Results

The trained XGBoost model2 achieved an AUC of 92.8% 
and an AUPRC of 48.8%. Additionally, the model exhibited 
a sensitivity of 51.7%, specificity of 96.9%, and a Cohen’s 
Kappa of 0.466. These results suggest that the model's accu-
racy and inter-rater agreement in classifying suicidal behav-
ior are high.

Figure 2 illustrates that as specificity increased, the aver-
age sum scores of depression and anxiety for TP and FP 
groups became more similar. Linear regression analysis con-
firmed a significant negative slope for the distance between 
the TP and FP scores for depression (β = - 0.69, Adjusted R2 
= 0.991, F (1, 97) = 11240, p < 0.0001) and anxiety (β = - 
0.71, Adjusted R2 = 0.972, F (1, 14) = 3382, p < 0.0001). 
These findings indicate the difference between the mean sum 
scores of the two groups decreased as a function of increase 
in specificity, thereby supporting our first hypothesis.

In the testing sample, 7.2% of adolescents were found to 
experience psychological distress, with varying rates across 
the different classification groups. Specifically, the preva-
lence was highest in the TP group at 63.4%, followed by FP 
at 55.3%, FN at 20.0%, and TN at 4.2%. Fisher's exact test 
revealed a statistically significant difference in psychological 
distress levels between the FP and FN groups (Odds ratio 

= 0.036, 95% CI = 0.031 – 0.041, p < 0.0001). Indeed, the 
rate of psychological distress of the FP was also significantly 
higher than the TN group (Odds ratio = 4.958, 95% CI = 
3.976 – 6.202, p < 0.0001). Additionally, the prevalence 
of non-suicidal self-harm was highest in the TP group at 
95.2%, followed by FN at 80.8%, FP at 65.2%, and TN at 
9.9%. Consistent with expectations, Fisher's exact test also 
revealed a statistically significant difference in non-suicidal 
self-harm prevalence between the FP and TN groups (Odds 
ratio = 0.059, 95% CI = 0.050 – 0.068, p < 0.0001), sup-
porting the second hypothesis.

Discussion

The results supported our claims that for an accurate sui-
cide classification model and at a high specificity thresh-
old, adolescents in the FP group might be comparable to 
TP, showing severe symptoms of psychological distress and 
non-suicidal self-harm at rates much higher than those in 
the TN group. In our analysis, FP showed more severe signs 
of psychological distress than the FN group that reflects on 
why the model had evaluated their suicide attempt risk to 
be higher than the FN. Depression, anxiety, and non-sui-
cidal self-harm are well-established risk factors for suicidal 
behavior and thus, the study's findings support our hypoth-
eses and arguments (Carballo et al., 2020; Darke et al., 2010; 
Greening et al., 2008; Lewis et al., 2014; Lohner & Konrad, 
2006; Toprak et al., 2011).

Well-trained machine learning suicide classification 
models are expected to identify important predictors and 
interactions between the predictors. In estimating suicide 
attempt risk, machine learning models are also expected to 
take the severity of these predictors into account. Therefore, 
it is to be expected that the severity of important suicide-
related indicators such as depression, anxiety, psychological 
distress, and the prevalence of non-suicidal self-harm are 
reflected in the suicide risk estimations of the model. What 
is noteworthy here, however, is that the identified high-risk 
non-suicidal adolescents should be conceptualized as a risk 
group relevant to a suicide prevention program rather than 
mere classification error that should be dismissed. Although 
they do not report any suicide attempts, yet, compared to 
true negative cases, they are likely to be at higher risk of 
developing suicidal tendencies or attempt suicide in near 
future.

It is important to note that this study relied on cross-sec-
tional data and only identified similarities and differences 
between the FP, TP, and TN groups as evidence for sui-
cide attempt risk, which is a limitation. Future longitudi-
nal studies should investigate whether FP adolescents are 
significantly more likely to attempt suicide or develop sui-
cidal behavior than those in the TN group. As we used a 

Fig. 2  Scaled mean score of anxiety and depression sum scores eval-
uated for specificity thresholds ranging from 0.4 to 1.0

2 Note that AUC and Cohen’s Kappa can be biased under severe 
class imbalance and in this regard, AUPRC provides a more reliable 
model performance assessment.
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representative dataset of Norwegian adolescents, we antici-
pate the findings could be applicable to other age groups. 
However, this should be confirmed in future research. Never-
theless, the study had several strengths, in particular the use 
of a comprehensive dataset. This dataset not only included a 
large number of participants, but also risk and protective sur-
vey items from a broad range of psycho-socio-environmental 
domains, thereby enabling an accurate estimation of suicide 
attempt risk.

Research has found low effectiveness for suicide interven-
tion programs (Fox et al., 2020; Large, 2018), highlighting 
the importance of prevention rather than addressing sui-
cidal tendencies after they emerge (Carter & Spittal, 2018). 
Therefore, identifying adolescents vulnerable to developing 
suicidal behavior is pivotal. Our study suggests that the FP 
group may be a relevant target for a suicide prevention pro-
gram. If future longitudinal research confirms that FP ado-
lescents (or other age groups) are clinically relevant and at 
high risk of attempting suicide, it will be necessary to devise 
new measures to evaluate the performance of machine learn-
ing classifiers for suicidal behavior. Such measures should 
consider the clinical relevance of the FP group. This infor-
mation could lead to a redefinition of clinical relevance 
and the development of optimized cutoff values that maxi-
mize clinical relevance rather than overemphasizing sen-
sitivity and specificity (Brown & Barlow, 2016; Hayes & 
Bell, 2014). This approach may also be applicable to other 
health-related binary outcomes and is not limited to suicide 
research. While this idea is novel, its generalization requires 
further investigation, particularly by using data from longi-
tudinal studies.
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