CORRECTION

Correction to: "The way she smiles brightens me up": Highlights of parenting an infant in a large Nationally diverse cohort

Maria T. Corkin¹ · E. Dando¹ · E. R. Peterson¹ · Natalija Andrejic² · Karen E. Waldie¹ · Elaine Reese³ · Susan M. B. Morton^{4,5}

Published online: 4 December 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Correction to: Current Psychology https://doi.org/10.1007/s12144-018-0014-5

The original version of this article unfortunately contained mistakes.

The likelihood ratios for the regression tables were incorrect and a rounding error had been applied to the p values, which we have corrected in the revised tables.

Please note this oversight does not change our findings except in one case, i.e. the finding for ethnicity for the Child Health and Development highlight.

We have provided alterations for the text to reflect the change in this finding. Two paragraphs needed to be amended - the first in the results section and the second in the Discussion.

The online version of the original article can be found at https://doi.org/ 10.1007/s12144-018-0014-5

Maria T. Corkin mcor009@aucklanduni.ac.nz

- ¹ School of Psychology, University of Auckland, Auckland, New Zealand
- ² School of Management, Victoria University of Wellington, Wellington, New Zealand
- ³ Department of Psychology, University of Otago, Dunedin, New Zealand
- ⁴ Centre for Longitudinal Research, University of Auckland, Auckland, New Zealand
- ⁵ School of Population Health, University of Auckland, Auckland, New Zealand

The authors apologize for any inconvenience this may have caused.

Amended paragraph 1:

Child Health and Development 'Child health and development' was the second most prevalent highlight, reported by 32% of mothers in our study (N = 2051). A typical example of a highlight in this category is: "watching her grow and develop - meeting all her milestones". Binomial logistic regression found that the odds of reporting 'Child health and development' highlights were greater for primiparous mothers (OR =2.09) compared to multiparous mothers. We found that European mothers had greater odds of reporting this highlight compared to Asian mothers (OR = 2.17), MELAA mothers (OR = 2.04) and Pacific mothers (OR = 1.33). Mothers who were in the top three quartiles of *external* support (OR = 1.38; 1.34 and 1.38 respectively) had consistently higher odds of reporting this highlight compared to mothers whose rated their external support in the lowest quartile. Similarly, mothers whose ratings of *family* support were in the second (OR =1.29) or upper quartile (OR = 1.39) of family support had greater odds of reporting child and development highlights than those reporting the lowest levels of family support (see Table 7).

Amended paragraph 2:

European mothers were more likely to report the highlight 'Child health and development' compared to mothers of Asian, MELAA or Pacific ethnicity. According to Tamis-LeMonda et al. (2008), the research suggests that parents from collectivist and individualist cultures prioritise different developmental goals for their children. Individualist cultures, which includes the European culture, tend to value developmental goals that enable autonomy, while collectivist cultures tend to prioritise the development goal of relatedness. Reaching developmental milestones, such as beginning to walk and talk, contribute additively towards autonomy (Tamis-LeMonda et al. 2008), and these aspects of a child's development are encompassed in this highlight, e.g., "watching her develope [sic] and become a person rather than a baby". This may go some way towards explaining why European mothers were more likely to identify child health and development high-

Table 6Binary logistic regression model predicting reporting of thehighlight: "Enjoyment of Child" using an Alpha level of .003

	(Likelihood Ratio $X^2(60) = 156.752, p<.001$)		
Variable	Coeff(SE)	OR (95% CI)	p value
Intercept			.007
Ethnicity			.003
European			Ref
Maori	0.28(0.09)	1.32(1.10-1.59)	.003
Pacific Peoples	0.03(0.10)	1.03(0.84-1.26)	.769
Asian	-0.19(0.09)	0.83(0.69-1.00)	.045
MELAA	0.09(0.21)	1.09(0.72-1.65)	.670
NZ/Other	-0.21(0.26)	0.81(0.48-1.36)	.422
Parenting satisfaction			.002
Low (M=18.67)			Ref
Medium (M=21.55)	0.21(0.08)	1.23(1.06-1.44)	.008
High (M=23.58)	0.28(0.08)	1.32(1.13-1.54)	.001
One child only	0.54(0.07)	1.71(1.50-1.95)	<.001

Alpha adjusted using Benjamini and Hochberg's (1995) method for controlling the false discovery rate. The statistically significant predictor(s) in each model are printed in bold. $R^2 = .03(Cox \& Snell), .04$ (Nagelkerke)

MELAA, Middle Eastern, Latin American or African; *Coeff*, Coefficient; *SE*, Standard Error; *OR*, Odds Ratio; *CI*, Confidence Interval; *Ref*, reference category

lights than mothers of Asian, Pacific or MELAA ethnicities, who may endorse more collectivist cultures (Podsiadlowski and Fox 2011).

Amended Tables:

Table 7Binary logistic regression model predicting reporting of thehighlight: "Child's Health and Development" using an Alpha level of.008

	(Likelihood Ratio $X^2(60) = 350.003$, p<.001)		
Variable	Coeff(SE)	OR (95% CI)	p value
Intercept			<.001
Ethnicity			<.001
European			Ref
Maori	-0.27(0.10)	0.76(0.62-0.93)	.009
Pacific Peoples	-0.29(0.11)	0.75(0.60-0.93)	.008
Asian	-0.78(0.11)	0.46(0.37-0.56)	<.001
MELAA	-0.71(0.26)	0.49(0.30-0.81)	.006
NZ/Other	-0.43(0.28)	0.65(0.38-1.12)	.123
Family support			.003
Quartile 1 (M=14.28)			Ref
Quartile 2 (M=19.50)	0.25(0.09)	1.29(1.09-1.53)	.004
Quartile 3 (M=23.76)	0.12(0.09)	1.13(0.95-1.34)	.179
Quartile 4 (<i>M</i> =29.91)	0.33(0.10)	1.39(1.14-1.69)	.001
External support			.001
Quartile 1 (M=12.97)			Ref
Quartile 2 (<i>M</i> =17.01)	0.33(0.09)	1.38(1.16-1.65)	<.001
Quartile 3 (<i>M</i> =19.96)	0.29(0.09)	1.34(1.11-1.61)	.002
Quartile 4 (<i>M</i> =21.62)	0.32(0.09)	1.38(1.15-1.66)	<.001
One child only	0.74(0.07)	2.09(1.83-2.40)	<.001

Alpha adjusted using Benjamini and Hochberg's (1995) method for controlling the false discovery rate. The statistically significant predictor(s) in each model are printed in bold. $R^2 = .07$ (Cox & Snell), .09 (Nagelkerke)

MELAA, Middle Eastern, Latin American or African; *Coeff*, Coefficient; *SE*, Standard Error; *OR*, Odds Ratio; *CI*, Confidence Interval; *Ref*, reference category

 Table 8 Binary logistic
regression model predicting reporting of the highlight: "Positive Effects on Family Relationships" using an Alpha level of .005

Variable	(Likelihood Ratio X ² (60) = 764.617, p<.001)		
	Coeff(SE)	OR (95% CI)	<i>p</i> value
Intercept			.002
Mother's education level			<.001
Diploma/Trade cert/NCEA			Ref
Level 5/6			
No secondary school qual	-0.62(0.18)	0.54(0.38-0.77)	.001
Secondary school	-0.01(0.10)	0.99(0.82-1.20)	.950
Bachelor's degree	0.34(0.10)	1.40(1.16-1.69)	.001
Higher degree	0.29(0.11)	1.34(1.08-1.66)	.009
Ethnicity			<.001
European			Ref
Maori	-0.38(0.12)	0.68(0.54-0.87)	.002
Pacific Peoples	-0.44(0.13)	0.65(0.50-0.83)	.001
Asian	-0.28(0.12)	0.75(0.60-0.95)	.015
MELAA	-0.22(0.26)	0.80(0.48-1.34)	.399
NZ/Other	0.60(0.27)	1.83(1.07-3.11)	.026
Parenting satisfaction			.004
Low (M=18.67)			Ref
Medium (M=21.55)	-0.01(0.09)	0.99(0.83-1.18)	.924
High (M=23.58)	-0.27(0.09)	0.77(0.64-0.92)	.005
One child only	-1.57(0.09)	0.21(0.17-0.25)	<.001

The statistically significant predictor(s) in each model are printed in bold. $R^2 = .14$ (Cox & Snell), .20 (Nagelkerke). Alpha adjusted using Benjamini and Hochberg's (1995) method for controlling the false discovery rate

MELAA, Middle Eastern, Latin American or African; Coeff, Coefficient; SE, Standard Error; OR, Odds Ratio; CI, Confidence Interval; Ref, reference category

Table 9 Binary logistic
regression model predicting
reporting of the highlight:
"Characteristics of Child" using
an Alpha level of <.001

Variable	(Likelihood Ratio $X^2(60) = 192.737, p<.001$)		
	Coeff(SE)	OR (95% CI)	<i>p</i> value
Intercept			<.001
Social expectations			<.001
Meeting			Ref
Not meeting/somewhat	0.14(0.13)	1.16(0.90-1.49)	.265
Exceeding	0.39(0.08)	1.47(1.25-1.74)	<.001
One child only	-0.70(0.09)	0.50(0.42-0.59)	<.001

Alpha adjusted using Benjamini and Hochberg's (1995) method for controlling the false discovery rate. The statistically significant predictor(s) in each model are printed in bold. $R^2 = .04$ (Cox & Snell), .06 (Nagelkerke) Coeff, Coefficient; SE, Standard Error; OR, Odds Ratio; CI, Confidence Interval; Ref, reference category

Table 10Binary logistic regression model predicting reporting of the
highlight: "Mother-Child Bonding" using an Alpha level of <.001</th>

	(Likelihood Ratio X ² (60) = 177.519, p<.001)		
Variable	Coeff(SE)	OR (95% CI)	p value
Intercept One child only	0.98(0.12)	2.67(2.11-3.37)	<.001 <.001

Alpha adjusted using Benjamini and Hochberg's (1995) method for controlling the false discovery rate. The statistically significant predictor(s) in each model are printed in bold. $R^2 = .03$ (Cox & Snell), .08 (Nagelkerke) *Coeff*, Coefficient; *SE*, Standard Error; *OR*, Odds Ratio; *CI*, Confidence Interval; *Ref*, reference category **Table 11**Binary logistic regression model predicting reporting ofthe highlight: "Identity and Personal Growth" using an Alphalevel of <.001</td>

	(Likelihood Ratio X ² (60) = 173.518, p<.001)		
Variable	Coeff(SE)	OR (95% CI)	p value
Intercept One child only	0.96(0.13)	2.61(2.04-3.34)	<.001 <.001

Alpha adjusted using Benjamini and Hochberg's (1995) method for controlling the false discovery rate. The statistically significant predictor(s) in each model are printed in bold. $R^2 = .03$ (Cox & Snell), .08 (Nagelkerke) *Coeff*, Coefficient; *SE*, Standard Error; *OR*, Odds Ratio; *CI*, Confidence Interval; *Ref*, reference category

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.