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these reasons, several monomeric variants have been engi-
neered to improve performance in terms of photostability 
and structural stability and to cover a different range of 
wavelengths. By using random mutagenesis (Shaner et al. 
2004) the series of mFruits was obtained, which comprises 
mCherry (λexc

max = 587nm, λem
max = 610nm), mStraw-

berry (λexc
max = 574nm, λem

max = 596nm), and mOrange 
(λexc

max = 548nm, λem
max = 562nm). Crystal structures of 

these proteins have been obtained (Shu et al. 2006) and 
these all show the canonical β-barrel structure harboring 
an α-helix comprising the residues involved in the forma-
tion of the chromophore. The β-barrel in the monomeric 
mCherry variant (PDB code 2h5q) comprises 11 strands 
with the chromophore formed by the contiguous residues 
Methionine-Tyrosine-Glycine (collectively referred to as 
position 66 in the PDB entry and in our sequence number-
ing). We report here the near-complete assignment of back-
bone NMR chemical shifts for mCherry. The N-terminus 
(residues − 4 to 3) and C-terminus (residues 224–231) are 
not present in the crystallographic structure and are dynami-
cally disordered. The NMR assignments presented here will 
be used to address the photostability of the mFruits.

Biotechnological context

Monomeric Red Fluorescent Proteins (mRFPs) are widely 
used as genetically encodable tags for studying cellu-
lar processes. Their distinctive fluorescence results from 
the chemical rearrangement of amino acids, giving rise 
to the formation of an acylimine, further modified in dif-
ferent mRFPs. The DsRed precursor (λexc

max = 558nm, 
λem

max = 583nm) has the disadvantage of being tetrameric 
and having low photostability and a slow folding rate. For 
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Abstract
mCherry is one of the most successfully applied monomeric red fluorescent proteins (RFPs) for in vivo and in vitro 
imaging. However, questions pertaining to the photostability of the RFPs remain and rational further engineering of their 
photostability requires information about the fluorescence quenching mechanism in solution. To this end, NMR spectro-
scopic investigations might be helpful, and we present the near-complete backbone NMR chemical shift assignment to 
aid in this pursuit.
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Method and experiments

Protein expression and purification

A pET11a plasmid containing the gene of mCherry from 
Discosona sp. (Uniprot code Q5S3G8) containing an N-ter-
minal poly-His tag MGHHHHHHG was transformed in 
BL21(DE3) E. coli cells. A single colony was picked and 
grown overnight at 37°C in Luria-Bertani media, then spun 
down and resuspended in 50 mL M9 media to grow over-
night. After spinning down, 5 parallel growth flasks were 
prepared; in each, 4 mL of culture was added to 200 mL M9 
medium containing the relevant isotopes (1 gr/L NH4Cl and 
3 gr/L 13C6-D-glucose). After growing the cells at 37°C for 
4h, 0.001M IPTG was added, and the temperature lowered 
to room temperature (26°C). Expression was stopped after 
24h and the protein pellet was purified on Ni-NTA columns, 
dialyzed in 50mM Tris pH8.0, 2mM DTT, 0.5mM EDTA 
and then dialyzed in 20mM Tris, 50mM NaCl pH 7.0. Vali-
dation of correct expression of the full-length protein was 
obtained by ESI-TOF mass spectrometry from which a 
labelling efficiency of 97% was obtained. The protein used 
for NMR analysis was inclusive of the poly-His tag.

NMR spectroscopy

The NMR sample consisted of 1.5 mM U-15N,13C pro-
tein dissolved in 20 mM Tris-HCl, 50 mM NaCl, pH 7.0, 
5% D2O and spectra were acquired at 303K with a Bruker 
Avance III HD spectrometer operating at 950MHz proton 
frequency, equipped with z-axis gradients and a cryogenic 
probe head (TCI). The following experiments were collected 
using Bruker library pulse sequences: 2D 15N-1H HSQC, 3D 

HNCO, HN(CA)CO, HNCACB, HN(CO)CACB, H(NCA)
NH, HN(CO)CA, H(NCOCA)NH, iHNCA, using TROSY 
(Pervushin et al., 1997) and BEST (Lescop et al., 2007) 
methodology.

Data were processed with NMRPipe (Delaglio et al. 
1995) and spectral assignments were made with NMRFAM-
Sparky (Lee et al. 2015). Spectral offsets of 0.5*93 Hz were 
applied to the amide 15N and 1H dimensions of all TROSY 
spectra to align them with the correct decoupled chemical 
shift values of the 2D 15N-1H HSQC spectrum. Chemical 
shift referencing followed the IUPAC recommendation of 
the protein NMR community (Markley et al., 1998).

Extent of assignments and data deposition

Despite the presence of more than 236 residues, the 15N-1H 
TROSY-HSQC spectrum of mCherry is well resolved 
(Fig.1), and the sensitivity of 3D BEST-TROSY spectra 
were adequate for the assignment. Strong signals in the 
H(NCA)NH and H(NCOCA)NH spectra were helpful for 
assigning the more dynamic regions, including the termini.

Residue numbering “_Atom_chem_shift.Auth_seq_ID” 
in the BMRB deposition (ID 51489) follows that reported 
in the crystal structure (PDB code 2h5q), which runs from 
Met(-4) to Lys231. The cyclized residues Met-Tyr-Gly are 
collectively referred to as number 66 and the sequence then 
continues with Ser69. In the crystal structure, the N-ter-
minal region is disordered and the first residues were not 
observed. NMR spectra allow the observation of 6 residues 
in the N-terminal region (from Ser(-2) to Asp3) that were 
lacking in the electron density map. Their NMR chemical 
shifts confirm that this region is disordered. Similarly, the 

Fig. 1 15N-1H TROSY-HSQC 
NMR spectrum of mCherry with 
residue-specific assignments
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last eight residues are not observed in the crystal structure 
but are assigned in our work and are confirmed disordered. 
Residues 66–76 containing the chromophore could not be 
assigned. Also, no assignment was obtained for residues 
37, 53–54, 80–83, 130 and 221–222. The completeness of 
assignments is: 1H (199), 15N (199), 13Cα (211), 13Cβ (187), 
and 13C’ (210). Excluding the His-tag, the protein sequence 
contains 234 amino acids, of which 26 Gly (having no 13Cβ) 
and 12 Pro (lacking 1H and yielding no 15N assignments in 
the triple resonance experiments). The extent of complete-
ness for the aforementioned nuclei is then 86%, 86%, 90%, 
90%, and 90%, respectively.

An intial secondary structure analysis was obtained with 
the TALOS + software (Shen et al. 2009) and compared 
with the classification obtained with the STRIDE software 
(Heinig and Frishman 2004) from the crystallographic 
structure in Fig.2. Good overall agreement is observed.

Although canonical helix and strand conformations 
are easily detected by programs like TALOS+, the com-
bination of 1H, 15N, 13Cα, 13Cβ, and 13C’ chemical shifts 
contains more information about the backbone conforma-
tion. It is possible to recover the eight common structural 
motifs defined as Dictionary of Protein Secondary Structure 
(DSSP) by the program CheSPI (Nielsen and Mulder 2021). 
A CheSPI analysis for mCherry is shown in Fig.3. The top 
panel (a) shows the much richer structural classification, 
where colors depend on backbone geometry and structural 
context (see legend). Furthermore, the heights of the bars 
(CheZOD score) reflects the dynamic information content 
of the shift information, with a values of 8 marking the bor-
der between order and disorder, and values below 3 indica-
tive of ‘random coil’ dynamic averaging. As can be seen 
in the central panel (b), the canonical secondary structure 
elements are well retrieved, but some regions diverge from 
this. The bottom panel (c) shows a summary in which also 

Fig. 2 (a) Secondary structure 
of mCherry obtained by using 
the present NMR chemical shift 
assignment used as input for the 
TALOS + software. Blue regions 
refer to β-strands and red regions 
to α-helices. (b) Secondary 
structure of mCherry obtained 
from the crystal structure (PDB 
code 2h5q) used as input for the 
STRIDE software. Blue regions 
refer to β-strands and red regions 
to α-helices
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coil (grey line), turn (green arc), and 310-helices (magenta 
squiggle) are identified, in addition to α-helix (red squiggle) 
and β-strand (blue arrow).
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Fig. 3 CheSPI analysis for mCherry. (a) On the CheSPI color scale, 
well-formed strands and helices are defined by blue and red colors, 
respectively, while coil color depends on context; turns are shown in 
green, and disordered, ‘random coil’, residues are displayed as grey. 
Hues change from red through orange to yellow at the C-terminal ends 
of helices and green at the ends of β-strands. For a more comprehen-
sive explanation of the PCA analysis underlying CheSPI colors, the 

reader is referred to the paper of Nielsen and Mulder (Nielsen and Mul-
der 2021). (b) Stacked bar plot of CheSPI populations of “extended” 
(blue), “helical” (red), “turn” (green), and “non-folded” (grey), local 
structures (c) CheSPI DSSP-8 assignment. Cartoon of the most con-
fident CheSPI prediction: coil (grey line), turn (green arc), 310-helix 
(magenta squiggle), α-helix (red squiggle), β-strand (blue arrow)
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