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Pamboukian, 2011; Yang and Carrier, 2001; Yang et al., 
2006; Yang et al., 2010). In response to cellular stress, 
such as UV or hypoxia, hnRNP A18 translocates from the 
nucleus to the cytosol where it stabilizes target mRNAs for 
pro-survival genes, such as hypoxia inducible factor 1-α 
(HIF1-α), thioredoxin (TRX), and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) (Chang et al., 2016; Solano-
Gonzalez et al., 2021). HIF-1α is the master regulator of 
the hypoxic cellular response, which controls gene expres-
sion for functions such as angiogenesis, tumor metastasis, 
cellular metabolism, glucose uptake, cellular proliferation, 
cellular differentiation, and apoptosis (Rankin and Giac-
cia, 2016; Rankin et al., 2016; Semenza, 2012). Elevated 
expression of HIF-1-α and hnRNP A18 is associated with 
poorer cancer patient prognosis (Chang et al., 2016; Rankin 
and Giaccia, 2016). Applications that either directly or indi-
rectly decrease HIF1-α expression and are utilized in com-
bination with other anti-cancer therapies have demonstrated 
an increase in response to radiotherapy and chemotherapy 
(Tang and Zhao, 2020). However, there are currently no 
FDA approved therapies that target HIF-1-α. CTLA-4 is 
an immune checkpoint receptor that downregulates the 

Biological Context

Heterogeneous ribonuclear protein A18 (hnRNP A18), also 
known as cold inducible RNA binding protein (CIRBP) is 
an RNA binding protein (RBP) differentially upregulated 
in breast, melanoma, pancreatic, and colon solid tumors 
in response to low oxygen tension (Chang et al., 2016; 
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Abstract
Heterogeneous ribonuclear protein A18 (hnRNP A18) is an RNA binding protein (RBP) involved in the hypoxic cel-
lular stress response and regulation of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression in melanoma, 
breast cancer, prostate cancer, and colon cancer solid tumors. hnRNP A18 is comprised of an N-terminal structured RNA 
recognition motif (RMM) and a C-terminal intrinsically disordered domain (IDD). Upon cellar stressors, such as UV 
and hypoxia, hnRNP A18 is phosphorylated by casein kinase 2 (CK2) and glycogen synthase kinase 3β (GSK-3β). After 
phosphorylation, hnRNP A18 translocates from the nucleus to the cytosol where it interacts with pro-survival mRNA tran-
scripts for proteins such as hypoxia inducible factor 1α and CTLA-4. Both the hypoxic cellular response and modulation 
of immune checkpoints by cancer cells promote chemoradiation resistance and metastasis. In this study, the 1  H, 13  C, 
and 15 N backbone and sidechain resonances of the 172 amino acid hnRNP A18 were assigned sequence-specifically and 
provide a framework for future NMR-based drug discovery studies toward targeting hnRNP A18. These data will also 
enable the investigation of the dynamic structural changes within the IDD of hnRNP A18 upon phosphorylation by CK2 
and GSK-3β to provide critical insight into the structure and function of IDDs.

Keywords  RBP (RNA binding protein) · hnRNP A18 (heterogeneous ribonucleoprotein A18) · CIRBP (cold inducible 
RNA binding protein) · IDD (intrinsically disordered domain)
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cellular immune response toward self-tissues and treatment 
of patients with anti-CTLA-4 antibodies, such as Ipilim-
umab, have demonstrated increased progression-free sur-
vival in late stage metastatic melanoma, when compared 
to traditional chemotherapeutics alone (Lipson and Drake, 
2011; Walunas et al., 1994). To address the unmet need of 
HIF-1-α inhibition, but also combine the therapeutic ben-
efits of immunotherapy modulation, potent and selective 
hnRNP A18 inhibitors are needed to provide effective treat-
ment options for patients with disease refractory to immu-
notherapy modulators.

hnRNP A18 is an 18.6 kDa protein that contains an RNA 
binding domain (RBD), consisting of an RNA recognition 
motif (RRM) (aa. 1–89), and an intrinsically disordered 
domain (IDD) (aa. 90–172). Upon cellular stressors, casein 
kinase 2 (CK2) and glycogen synthase kinase 3β (GSK-3β) 
phosphorylate hnRNP A18 in the nucleus. hnRNP A18 
translocates from the nucleus to the cytosol where it inter-
acts with target mRNAs (Yang et al., 2006). The RRM of 
hnRNP A18 recognizes target mRNAs with a 52 nucleo-
tide hnRNP A18 consensus sequence and interacts with 
the nitrogenous bases of such targets through conserved 
aromatic residues within two ribonucleoprotein consensus 
sequences (Creigh-Pulatmen 2014; Yang et al., 2006; Yang 
et al., 2010). However, the strongest interactions between 
hnRNP A18 and target RNAs require both the RRM and 
IDD (Yang et al., 2010). Recently, a multi-disciplinary 
team developed hnRNP A18 specific small molecule inhibi-
tors that disrupt hnRNP A18 from interacting with target 
mRNAs (Solano-Gonzalez et al., 2021). These inhibitors 
were identified through the computer aided drug design 
(CADD) through a site identified ligand competitive satura-
tion pharmacophore (SILCS-Pharm) protocol, which devel-
oped pharmacophore models that exploit the X-ray crystal 
structure of the hnRNP A18 RRM (aa. 1–91) (Coburn et al., 
2017; Guvench and MacKerell, 2009; Raman et al., 2011; 
Raman et al., 2013; Yu et al., 2015). Over 720,000 poten-
tial drug-like compounds were screened against the phar-
macophore models and 264 compounds were identified for 
further investigation based on their chemical and physical 
properties. NMR investigations produced lead compounds 
that subsequently demonstrated specificity and inhibition of 
hnRNP A18 (Solano-Gonzalez et al., 2021).

However, structural, and dynamic changes of hnRNP 
A18 in the presence of posttranslational modifications 
(PTMs), such as phosphorylation by CK2 and GSK-3β, may 
impact small inhibitor binding dynamics. The sequence-
specific backbone and sidechain resonance assignments 
for hnRNP A18 were completed as a step toward probing 
dynamic changes in the structure and function of hnRNP 
A18 upon phosphorylation by CK2 and GSK-3β. These data 
are important for the longer-term goal of designing higher 

affinity and more selective small molecule inhibitors for 
hnRNP A18 that will enable both targeting of the hypoxic 
cellular response and the immune modulatory pathways 
exploited by cancer cells.

Methods and experiments

Protein expression and purification

hnRNP A18 was cloned into the Escherichia coli (E. coli) 
expression plasmid pET21a in frame with a 6x-His tag 
upstream. The pet21a-His6hnRNPA18 construct was trans-
formed into E. coli BL21(DE3) cells and a single colony 
was grown in 5 L of M9 minimal medium (Sambrook and 
Russell 2006) at 37 ºC with 15  N-labeled (> 99%) ammo-
nium chloride (0.5 g/L) as the single nitrogen source and 
13 C-labeled (> 99%) D-glucose (2.0 g/L) as the single car-
bon source. When the A600 reached 0.8, the incubation tem-
perature was reduced to 18 ºC. His6-hnRNP A18 expression 
was induced by the addition of 1 mM IPTG (isopropyl-β-D-
1-thiogalactopyranoside), and cells were grown for an addi-
tional 16 h. Cells were pelleted by centrifugation at 10,000 
x g for 20 min and resuspended in lysis buffer (20 mM Tris 
pH 7.4, 0.5 M NaCl, 5 mM Imidazole, 6 M urea and 1 mM 
PMSF). The resuspended cells were sonicated and subse-
quently centrifuged at 18,000 x g for 45 min to pellet cel-
lular debris and the supernatant was filtered with a 0.45 μm 
syringe. Protein purification was achieved through Ni-affin-
ity chromatography. A hand poured 10 mL Ni Sepharose 
6 Fast Flow (GE Healthcare, catalog number 17-5318-01) 
column was equilibrated with lysis buffer and loaded with 
the filtered cleared lysate. The column was washed with 10 
volumes of 20 mM Tris pH 7.4, 0.5 M NaCl, 2.5 M Urea 
and 30 mM Imidazole to remove non-specific protein inter-
actions. His6-hnRNP A18 was eluted from the column with 
10 volumes of 20 mM Tris pH 7.4, 0.5 M NaCl, 2.5 M urea, 
and 250 mM Imidazole. Relevant fractions were combined 
and His6-hnRNP A18 was refolded by dialysis against 
2 × 4 L of 50 mM acetic acid pH 5.2 for 4 h each at room 
temperature. The dialyzed supernatant was filtered through 
a 0.2 mm syringe and concentrated via a 10 kDa MWCO 
centrifugal concentrator (Amicon Ultra-15 10  K, catalog 
number 516–0556).

NMR spectroscopy

Standard Bruker pulse sequences for HNCA, HN(CO)
CA, HNCO, HN(CA)CO, HNCACB, CBCA(CO)NH, 
HCCH_TOCSY, HC(CO)NH, C(CO)NH, and 15 N-HSQC 
experiments were performed on either a Bruker Avance III 
950 MHz or a Bruker Avance III 600 MHz spectrometer, 
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each equipped with z-gradient TCI cryogenic probes. All 
experiments were performed in 50 mM acetic acid pH 5.2 at 
298 K and 10% D2O was added to the sample prior to collec-
tion of the triple resonance experiments. All proton chemi-
cal shift values were referenced to external trimethylsilyl 
propanoic acid at 25 °C (0.00 ppm) with respect to residual 

H2O (4.698 ppm). All standard 3D assignment experiments 
were processed using NMRPipe (Delaglio et al., 1995) and 
analyzed by CCPNmr (Vranken et al., 2005). Talos-N was 
used to determine secondary structure probabilities based 
on experimentally derived HN, N, Cα, Cβ and C′ contours 
(Shen and Bax, 2013).

Fig. 1  Resonance assignments of hnRNP A18. The 2D 1 H,15 N-edited 
HSQC spectrum of hnRNP A18 (residues 1-172) was recorded on a 
Bruker 600 MHz spectrometer at pH 5.2 and 25 oC. Residue type and 

number indicate assignments from the backbone amide HN correla-
tions. Correlations arising from non-native N-terminal histidine resi-
dues are labeled with an asterisk (*)
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In order to further investigate the secondary struc-
tural elements of hnRNP A18, the chemical shift assign-
ments of backbone atoms (HN, Hα, Cα, Cβ, CO, and N) 
for each assigned residue in the sequence were analyzed 
with TALOS + software (Shen and Bax, 2013) in Fig.  2. 
The secondary structural elements determined by NMR for 
the RRM (aa. 1–89) are consistent with the X-ray crystal 
structure, which demonstrated two α-helices and four anti-
parallel β-strands with a β1α1β2β3α2β4 alignment (Coburn et 
al., 2017). Such secondary structure for hnRNP A18 and is 
also similar to RRMs found within other RBPs (Maris et 
al., 2005). The IDD of hnRNP A18 (aa. 90–172) contained 
chemical shift values consistent with random coil and did 
not suggest strong secondary structural characteristics at 
any location. In accordance with chemical shifts suggestive 
of random coil, the Random Coil Index (RCI) order param-
eter (RCI-S2) values for the IDD were lower than the values 
for the RRM. This analyses suggests the backbone of the 
IDD is significantly more flexible than the backbone of the 
RRM.

In summary, the chemical shift values for backbone and 
sidechain resonances of hnRNP A18 obtained here were 
deposited in the Biological Magnetic Resonance Bank data-
base (http://www.bmrb.wisc.edu) under accession number 
51,517.These data will be important for NMR studies that 
investigate the structure and function of hnRNP A18 upon 
post-translational modifications, such as phosphorylation by 
CK2 and GSK-3β, and design of hnRNP A18 specific small 
molecule inhibitors.
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Extent of assignment and data deposition

Sequence-specific resonance assignments shown in Fig.  1 
were determined unambiguously using heteronuclear mul-
tidimensional NMR methods for 160 out of 172 possible 
HN-15 N correlations (~ 93%) of hnRNP A18. Of those 160 
correlations, 93% of the Cα, 88% of the Cβ, and 91% of 
C′ chemical shifts were determined. It was also possible to 
assign 4 of the 6 residues in the N-terminal His-tag, which 
are labeled with an asterisk (*) in Fig. 1. Five of the 12 resi-
dues that do not appear in the 2D 1 H-15 N-edited HSQC 
spectrum are either in a short unstructured region of the 
hnRNP A18 N-terminus (Met1, Ala2), within loops between 
the α-helices and β-strands of the hnRNP A18 RRM (Asp16, 
Arg 78), or are located within the IDD (Gly92 and Phe104). 
Six of the 12 residues not observed in the 2D 1 H-15 N-edited 
HSQC spectrum are lysine residues (Lys7, Lys28, Lys 39, 
Lys 61, Lys70, and Lys 84). It is likely that these missing 
correlations were the result of conformational averaging 
occurring on the chemical shift time scale. Two residues 
(Gly95 and Arg94) at the beginning of the IDD in the RGG 
motif, an arginine and glycine rich sequence, were each 
found to have two HN correlations having different 1 H and 
15 N chemical shift values with varying intensities (~ 2:1), 
but the chemical shift values for their respective pairs of 
inter- and intra-residue carbon correlations to carbon (i.e. 
HNCA, HNCACB, etc.) were identical, which suggests 
that there are potentially two slightly different backbone 
chemical environments for these two residues. The doubled 
chemical shifts for each respective residue are within only 
a few tenths of a ppm. However, providing data for a fool-
proof conclusion to the doubling is beyond the scope of this 
assignment note and requires additional experimentation 
that will be reported elsewhere.

Fig. 2  The probability of secondary structure formation as predicted by Talos-N. α-helical character is represented by red and β-strand by 
blue. The random coil index is represented by black circles
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