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Abstract
Monoclonal antibodies (mAbs) therapeutics are the largest and fastest growing class of biologic drugs, amongst which, the 
vast majority are immunoglobulin G1 (IgG1). Their antigen binding abilities are used for the treatment of immunologic 
diseases, cancer therapy, reversal of drug effects, and targeting viruses and bacteria. The high importance of therapeutic 
mAbs and their derivatives has called for the generation of well-characterized standards for method development and calibra-
tion. One such standard, the NISTmAb RM 8621 based on the antibody motavizumab, has been developed by the National 
Institute of Standards and Technologies (NIST) in the US. Here, we present the resonance assignment of the single chain 
variable fragment, NISTmAb-scFv, that was engineered by linking the variable domains of the heavy and light chains of the 
NISTmAb. Also, addition of a peptide, corresponding to the target antigen of motavizumab, to samples of NISTmAb-scFv 
has induced chemical shift perturbations on residues lining the antigen binding interface thereby indicating proper folding 
of the NISTmAb-scFv.

Keywords  Monoclonal antibody · Motavizumab · NISTmAb · NMR spectroscopy · Respiratory syncytial virus · Single-
chain variable fragment

Abbreviations
mAb	� Monoclonal antibody
scFv	� single-chain variable fragment
VH	� heavy chain variable domain
VL	� light chain variable domain
Fab	� antigen-binding fragment
NISTmAb	� National Institute of Standards and 

Technology monoclonal antibody
RSV	� Respiratory syncitial virus

Biological context

Monoclonal antibody therapeutics are the largest and 
fastest growing class of protein drugs for human use. 
Amongst these, single chain fragment variable (scFv) are 
small versions made by linking the variable regions of the 
heavy and light chains. ScFvs retain the antigen binding 
ability with essentially the same affinity as the parent 
mAb (Huston et al. 1988), and they allow the generation 
of libraries aimed at optimizing binding specificity and 
affinity, which is facilitated by the ability to produce scFv 
in E. coli. In addition, scFvs have been used as drugs, tools 
for radionuclide delivery on their own or incorporated in 
larger chimeric biologics for their antigen binding abilities 
(Ahmad et al. 2012; Monnier et al. 2013; Lu et al. 2020; 
Ferro Desideri et al. 2021).

The molecular recognition and the binding to the antigen 
are both functions that are associated with the variable 
fragment, “Fv”, of a monoclonal antibody (Lozano et al. 
2012). As early as 1984, it was demonstrated that fragments 
from the heavy chain, which were recombinantly expressed 
in E. coli, had binding affinity for their epitopes (Cabilly 
et al. 1984), and in 1989 Ward and coworkers showed that a 
single immunoglobulin domain from the variable fragment 
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(Fv) expressed in E. coli, had the ability to bind to its antigen 
(Ward et al. 1989). In the mid- and late 1980’s researchers 
were embarking on the idea of using inter-domain linkers for 
connecting two immunoglobulin domains from the heavy 
chain (VH) and the light chain (VL) of the variable region 
of a mAb, for recombinant production of a “single-chain 
variable fragment”, “scFv”, which could be used in therapeutic 
applications that required high specificity for target binding 
(Bird et al. 1988; Huston et al. 1988). These properties and 
their size make them interesting models to study the effects 
of therapeutic product excipients on the protein dynamics by 
NMR (Ghasriani et al. 2020). Product excipients are additives 
used to keep the protein active pharmaceutical ingredient 
stable during product manufacturing, product storage and 
delivery to patients.

We have focused on the variable fragment of the antigen-
binding fragment of the NISTmAb, an IgG1κ monoclonal 
antibody derived from motavizumab (Schiel et al. 2018), and 
developed as a standard reference material for the characteriza-
tion of therapeutic mAbs. Motavizumab was developed to tar-
get the fusion protein of the Respiratory Syncytial Virus (RSV-
group). Respiratory syncytial virus (RSV-group) is a highly 
transmissible respiratory virus, which attacks the lower res-
piratory tract in children and adults and is responsible for the 
death of an estimate of 20,000 people in the US, and between 
66,000 and 239,000 people worldwide every year (Thompson 
et al. 2003; Falsey et al. 2005; Nair et al. 2010; Lozano et al. 
2012; Rha et al. 2020). The NISTmAb has been used in sev-
eral multi-laboratory studies for assessing various analytical 
methods including NMR methods (Brinson et al. 2018) aimed 
for the characterization of therapeutic mAbs. The crystal struc-
ture of the antigen-binding fragment (Fab) of NISTmAb was 
determined (McLellan et al. 2011; Karageorgos et al. 2017). 

The crystal structure of NISTmAb bound to a 24-amino acid 
long peptide that corresponds to the epitope from RSV virus 
has also been determined (McLellan et al. 2010).

Here, we present the backbone and the side chain chemi-
cal shifts of the NISTmAb-scFv. In order to test whether the 
single-chain construct produced in E. coli adopted a biologi-
cally active conformation upon refolding, proton-nitrogen cor-
relation maps were recorded in the presence and absence of 
the target peptide. We aim at using this single-chain variable 
fragment molecule as a first example of an immunoglobulin 
protein for in-depth studies of backbone dynamics and other 
motional properties in the presence of various therapeutic 
product excipients. Recently, a similar study on the 4-helix 
bundle filgrastim was conducted in our laboratory (Ghasriani 
et al. 2020).

Methods and experiments

Design of the scFv construct

The amino acid sequence of scFv was constructed from 
the sequence of the NIST-mAb reference material 8671 
described by Formolo and coworkers (Formolo et al. 2015) 
(Karageorgos et al. 2017). Residues Q1 to S120 of the 
heavy chain (underlined) were linked to residues D1 to 
T108 of the light chain (italicized) using four (GGGGS) 
elements (Huston et  al. 1988). The synthetic gene 
(Biobasic, Toronto, Canada) optimized for expression 
in E. coli was inserted in a modified pET15b vector 
containing ten histidines in the NdeI and BamH1 sites.  

After cleavage of the polyhistidine tag with thrombin, the resulting polypeptide product had 252 residues (26 kDa) with 
the following sequence: 

 where the first four extra residues resulted from the remain-
der of the thrombin cleavage site (GS) and the NdeI restric-
tion enzyme site (HM) used for cloning. In order to match 
the numbering of residues in the NISTmAb-scFv with the 
NISTmAb numbering, Q1 in the NISTmAb heavy chain cor-
responds to Q4, and D1 in the NISTmAb light chain cor-
responds to D145.

Expression and purification of scFv

Expression of labelled NISTmAb-scFv was carried out by 
incubating E. coli BL21(DE3) (Stratagene) harboring the 
pET15b10-NISTmAb-scFv plasmid in minimal media (M9) 
using 1 g/l 13C-glucose and 2 g/l 15N-ammonium chloride 
as sole source of carbon and nitrogen at 37 °C. Protein 
expression was induced by the addition of isopropyl thio-
D-galactopyranoside (IPTG) at an OD600 of 0.8. Cells were 
harvested 3 h post-induction by centrifugation and frozen at 
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− 80 °C until purification. Expression of labelled NISTmAb-
scFv in E. coli resulted in the formation of inclusion bodies. 
Cell pellets corresponding to a 5 L culture were resuspended 
in 35 mL of buffer A (10 mM TrisHCl, 100 mM sodium 
phosphate, 6 M guanidine hydrochloride, 10 mM reduced 
glutathione, pH 8.0) and disrupted by sonication on ice using 
a 400 W Branson sonifier (ThermoFisher). After separation 
of cell debris, lysis was repeated once with 35 mL of buffer 
A and the supernatants were pooled and added to a slurry 
of Ni–NTA resin (Qiagen) (80 mL resin, 10 mL buffer A) 
and gently stirred at room temperature for 30 min before 
loading into a column. Refolding was accomplished under 
oxidative condition with a gradient of buffer A to B (Buffer 
B: 10 mM TrisHCl, 100 mM sodium phosphate, pH 8.0) 
over 20 column volumes. The column was then washed with 
three column volumes of Buffer B + 60 mM imidazole pH 
8.0 to remove unspecific binding. The protein was eluted 
off the column with Buffer B + 250 mM imidazole (pH 8.0). 
The efficiency of the on-column refolding was such that the 
procedure was repeated several times (7 up to 10 times) to 
extract properly folded protein by re-equilibrating the col-
umn with buffer A followed by the above refolding-washing-
elution protocol.

Prior to cleavage of the poly-histidine tag, the buffer was 
exchanged to 20 mM sodium phosphate (pH 6.0) by ultrafil-
tration. Cleavage was carried out at a protein concentration 
of 2 mg/mL using 1U of thrombin (Cytiva) per 100 µg of 
target protein at room temperature. While almost all starting 
material was cleaved after 30 min, the reaction was allowed 
to proceed overnight.

The reaction mixture was then purified on cation 
exchange chromatography using HiTrap SP FF columns 
(Cytiva) in 50 mM sodium phosphate buffer pH (6.0) with 
a 1 M sodium chloride salt gradient. The NISTmAb-scFv 
eluted at around 200 mM NaCl. Protein concentration was 
determined by using UV spectroscopy with the theoretical 
extinction coefficient 18,150 M−1 cm−1 (Swissprot). NMR 
samples contained 0.25 mM of the uniformly isotope-labeled 
13C-15  N– or 15N-NISTmAb-scFv in 20  mM phosphate 
buffer at pH 6.0, and 5% 2H2O was used for field frequency 
lock. The sample temperature was kept at 313 K (40 °C).

Peptide binding

The NMR titration of the peptide epitope with the NIST-
mAb-scFv was carried out with a 24-amino acid long poly-
peptide chain (NSELLSLINDMPLTNDQKKLMSNN), 
derived from the X-ray structure (PDBID 3ixt) epitope on 
the RSV virus fusion protein for motavizumab (McLellan 
et al. 2010).

The concentration of the stock peptide solution was 
5.3 mM. A total of 10 μl of the stock solution was added to 
550 μl of 1.65 mg ml−1 (~ 63 μM) protein solution, resulting 

in 95 μM peptide, and a final molar ratio of peptide-to-
scFv of 1:0.65 (peptide being in excess). For recording of 
15N-HSQC spectra of both the peptide-free and the peptide-
bound scFv, the sample temperatures were kept at 308 K 
(35 °C).

NMR experiments

Data were collected on Bruker NEO-600 and AVANCE 
IIIHD-700 MHz NMR spectrometers equipped with cryo-
genically cooled triple resonance inverse probes fitted with 
Z-axis gradients. For backbone resonance assignment, 
the standard double- and triple resonance experiments 
2D-15N-HSQC (“hsqcetfpf3gpsi”)(Palmer et al. 1991; Kay 
et  al. 1992; Grzesiek and Bax 1993b; Schleucher et  al. 
1994), 3D-HNCO (“hncogp3d”)(Grzesiek and Bax 1992; 
Schleucher et al. 1993; Kay et al. 1994), 3D-HN(CA)CO 
(“hncacogp3d”)(Clubb et  al. 1992), 3D-CBCA(CO)NH 
(“cbcaconhgp3d”) (Grzesiek and Bax 1993a; Muhandiram 
and Kay 1994), 3D-HNCACB (“hncacbgp3d”) (Wittekind 
and Mueller 1993), 3D-HNCA (“hncagp3d”) (Grzesiek 
and Bax 1992), 3D-HN(CO)CA (“hncocagp3d”) (Grzesiek 
and Bax 1992), were recorded. For assignment of the side 
chain 1H and 13C chemical shifts, the double- and triple 
resonance experiments 2D-13C-HSQC (“hsqcctetgpsisp”) 
(Palmer et al. 1991; Vuister and Bax 1992), 3D-H(CC)
(CO)NH (“hccconhgp3d2”) and 3D-(H)CC(CO)NH (“hcc-
conhgp3d3”) (Montelione et al. 1992; Clowes et al. 1993; 
Grzesiek et al. 1993; Logan et al. 1993; Lyons and Mon-
telione 1993; Carlomagno et al. 1996), 3D-HA(CO)NH 
(“haconhgpwg3d”) (Grzesiek and Bax 1993a; Muhandiram 
and Kay 1994), 3D-HANH (“hanhgpwg3d”) (Kuboniwa 
et al. 1994; Weisemann et al. 1994), 3D-HBHA(CO)NH 
(“hbhaconhgp3d”) (Grzesiek and Bax 1993a; Muhandiram 
and Kay 1994), 3D-HBHANH (“hbhanhgpwg3d”), 3D-(H)
N(CA)NNH (“hncannhgpwg3d”) (Weisemann et al. 1993), 
3D-CCHTOCSY (“hcchdigp3d2”) (Kay et  al. 1993), 
3D-HCCH-COSY (“hcchcogp3d”) (Kay et  al. 1993), 
3D-HCCH-TOCSY (“hcchdigp3d”) (Kay et  al. 1993), 
3D-13C-NOESY-HSQC (“noesyhsqcetgpsi3d”)(Palmer 
et al. 1991; Kay et al. 1992; Schleucher et al. 1994), and 
3D-15N-NOESY-HSQC (“noesyhsqcf3gpsi3d”)(Palmer et al. 
1991; Kay et al. 1992; Schleucher et al. 1994) were recorded. 
For assignment of aromatic side chain Hδ and Hε, as well 
as Hδ1

Trp, the Yamazaki experiments, 2D-CB(CGCD)HD 
(“hbcbcgcdhdgp”) and 2D-CB(CGCDCE)HE (“hbcbcgcd-
cehegp”)(Yamazaki et al. 1993), were recorded. The names 
of the pulse programs for experiments selected from the 
standard Bruker library are written in brackets.
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Data analysis and the assignment

All NMR data were processed using NMRPipe software 
(Delaglio et  al. 1995). NMRFAM-Sparky(Goddard and 
Kneller; Lee et al. 2015) was employed for spectral visuali-
zation and spectral analysis. Automatic assignment routine 
PINE-Sparky(Lee et al. 2019) was invoked for probabilistic 
assignment of the backbone amide 1H, 15N, and backbone 
carbonyl 13C chemical shifts. Assignment of side chain res-
onances was done through a semi-automatic approach by 
initial engagement of PINE-Sparky, followed by implemen-
tation of an “inspection–verification” strategy, where PINE 
result for each assignment was either accepted or rejected 
based on a holistic approach that included inspection of 
complementary NOESY data.

Extent of assignments and data deposition

The scFv construct was comprised of 252 residues, 
which included the 20-amino acid long linker. All but 19 
backbone 1H–15N resonances in the 15N-HSQC spectrum 
were successfully assigned (91% completeness, Fig. 1). The 
number of missing and unassigned resonances for backbone 
13Cα and 13CO were 16 and 42, respectively. These numbers 
correspond to 94% and 83% assignment completeness for 
these two heavy backbone atoms, respectively. All the 
missing resonances reside exclusively in the loops and in 
the random coil regions (Met148-Ser153, and Gly242-Gly244). 
Of the total of 123 methyl groups from 84 methyl-containing 

residues in the 13C-HSQC spectrum (Alaβ, Ileγ, Ileδ, Leuδ, 
Metε, Thrγ, and Valγ), 118 13C-1H3 pairs were assigned (96% 
completeness). In total, 207 of 232 residues had their side 
chains fully, or partially, assigned (89% completeness). In 
all, the assigned backbone and side chain chemical shifts 
comprising of 1H (1113), 13C (789), and 15 N (215) were 
deposited into BMRB database (access code: 51094).

A number of residues, namely Ala36, Ile43, Arg44, Leu51, 
Asp60, Leu73, Leu86, Cys101, Ala102, Asn108, Tyr110, Phe111, 
Pro187, Gly207, Leu216, Ser220, and Cys231, displayed unusual 
chemical shifts that we attributed to the shielding effects 
afforded by close packing to aromatic rings based on analy-
sis of the X-ray structure (PDBID 5k8a).

Three other types of unusual shifts (deshielding effects) 
were (a) due to either intra-residual side chain to main chain 
hydrogen bonding (Eswar and Ramakrishnan 2000) (the case 
of amide proton of Glu10), (b) due to ring current(Wieloch 
1978) from a protonated histidine imidazole ring reaching 
across from the neighboring strand (the case of nitrogen 
atom of Asp193), or (c) due to a potential, but unusual, hydro-
gen bond between methyl protons and backbone carbonyl 
oxygen of residue i-4,(Yesselman et al. 2015) resulting from 
helical conformation in the middle of a loop (the case of 
methyl protons of Leu73). The extreme shift for backbone 
nitrogen atom of Asp193 can be attributed to a deshield-
ing effect caused by ring current from protonated histidine 
imidazole ring of His177 (Wieloch 1978). The anomalous 
chemical shift for backbone nitrogen atom of Gly207 which 
displayed a down-field shift compared to average glycine 
chemical shift, can be attributed to side-chain to backbone 

Fig. 1   Two-dimensional 15N-HSQC spectrum of 13C-15N-NISTmAb-scFv at 700 MHz recorded at 35 °C. Peaks are assigned according to the 
residue number of our construct (see text)
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H-bonding to the adjacent Ser206 (Vijayakumar et al. 1999; 
Eswar and Ramakrishnan 2000). Two particularly challeng-
ing regions for assignment, were the final stretch of beta 
stand that follows the binding loop (Ser235-Gly244), and the 
two short loops that are in close proximity of each other 
from heavy and light chains (Gln45-Lys49, and Lys182-Ala186). 
These regions account for 15 of the unassigned 13CO, 6 of 
the unassigned 13Cα, and 3 of the unassigned 15N–1H back-
bone resonances.

The signals from six methionine methyl groups were 
well-dispersed in the 13C-HSQC spectrum, such that the 13Cε 
and 1Hε chemical shifts could be readily identified using a 
combination of 13C-noesy and 15N-noesy spectra.

Truncation or crystal effect

An interesting finding that emerged while we were 
examining the 3D crystal structure for plausible 
explanation of the anomalous and extreme chemical shift 
of backbone amide nitrogen of Asp224, was the positioning 
of aromatic ring of Phe226 (Fig. 2a). As evidence, we later 
found NOE signals, which confirmed that the orientation 
of the phenylalanine ring in our case is in opposition to the 
one in the crystal structure of NISTmAb-Fab. For example, 
we observed NOESY cross peaks from both Pro223 and 
Ile249 to the aromatic ring of Phe226. Since the loops 

of the constant fragment in the Fab fragment (residues 
Glu164.L, Gln165.L, and Asp166.L) would physically restrict 
the rotation of the aromatic ring of Phe226 (Phe82.L), we 
speculate that the rotation about the Cα-Cβ bond of Phe226 
in NISTmAb-scFv is made possible by the absence of 
constant domains CH1 and CL. (Fig. 2b). Of course, this 
does not take into account any “crystal effects” that would 
have contributed to a dense/strained packing of the loop 
against the aromatic ring in the full Fab.

Peptide binding

In order to verify that refolding of the NISTmAb-scFv 
polypeptide led to a biologically active conformation 
similar to the NISTmAb-Fab fragment, we carried out 
a simple peptide binding experiment. Two dimensional 
15N-HSQC spectra were recorded for peptide-free and 
peptide-bound 15N-NISTmAb-scFv (Fig. 3). The chemical 
shift perturbations of backbone amide pairs were largest 
for residues involved in the peptide-binding site, consistent 
with the residues in close proximity with the peptide in the 
crystal structure of the complex (PDBID 3IXT) (McLellan 
et al. 2010). This observation indicates that the NISTmAb-
scFv has folded into a biologically active conformation.

Fig. 2   a Phe82 (represented 
in CPK) in the NISTmAb-Fab 
domain adopts a rotamer that 
is locked due the proximity 
of the constant light (CL) 
domain (green surface).b In the 
NISTmAb-scFv, the absence of 
the CL domain allows Phe226 
(stick) to adopt a rotamer in 
NISTmAb-scFv that induces 
a shielding effect on Asp224 
amide resonance (blue sphere)
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