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Abstract
Mucosa-associated lymphoid tissue protein 1 (MALT1) plays a key role in adaptive immune responses by modulating specific 
intracellular signalling pathways that control the development and proliferation of both T and B cells. Dysfunction of these 
pathways is coupled to the progress of highly aggressive lymphoma as well as to potential development of an array of different 
immune disorders. In contrast to other signalling mediators, MALT1 is not only activated through the formation of the CBM 
complex together with the proteins CARMA1 and Bcl10, but also by acting as a protease that cleaves multiple substrates to 
promote lymphocyte proliferation and survival via the NF-κB signalling pathway. Herein, we present the partial 1H, 13C Ile/
Val/Leu-Methyl resonance assignment of the monomeric apo form of the paracaspase-IgL3 domain of human MALT1. Our 
results provide a solid ground for future elucidation of both the three-dimensional structure and the dynamics of MALT1, 
key for adequate development of inhibitors, and a thorough molecular understanding of its function(s).
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Introduction

MALT1 has been identified as a key player in intracellular 
pathways that lead to the activation of the transcription fac-
tor NF-κB which ultimately controls the development and 

proliferation of T and B cells (Ruland et al. 2003; Ruefli-
Brasse et al. 2003; Jaworski et al. 2014; Gewies et al. 2014; 
Bornancin et al. 2015; Juilland and Thome 2018; Schlau-
derer et al. 2018; Gehring et al. 2018; Hailfinger et al. 2009; 
Dunleavy and Wilson 2014; Lenz, 2015; Uren et al. 2000). 
The function of MALT1 is triggered upon activation of B- 
or T-cell receptors, as well as NK cells through interactions 
with Fc receptors (Rosebeck et al. 2011). Dysfunctions in 
these MALT1-directed pathways are coupled to the potential 
development of aggressive lymphomas with high resistance 
to current chemotherapies, as well as to the initiation of an 
array of immune disorders (Solsona et al. 2022) Full length 
MALT1 is composed of five domains (Hailfinger et al. 2009) 
including the N-terminal death domain (DD), two immuno-
globulin-like domains  (IgL1 and  IgL2), the paracaspase or 
caspase-like domain (Casp) and a third immunoglobulin-
like domain  (IgL3), followed by an unstructured C-terminal 
tail domain (Fig. 1A). The triggering of activating receptors 
from both innate and adaptive immune responses induces 
the formation of CARMA-BCL10-MALT1 (CBM) com-
plexes (Ruland and Hartjes 2019). Indeed, CBM formation 
is pivotal for the adequate activation of the NF-κB transcrip-
tion factor. The DD domain of MALT1 binds to the core of 
the BCL10 filament through interactions with the caspase 
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activation and recruitment domain (CARD) of BCL10 
(Schlauderer et al. 2018), while additional interactions are 
also formed between the  IgL1 and  IgL2 domains of MALT1 
and the Ser/Thr rich domain of BCL10 (Langel et al. 2008) 
(Fig. 1A). It should be noted that the C-terminal section 
of MALT1, which comprises the paracaspase and the  IgL3 
domains, is most probably protruding out from the BCL10 
filament, although its structure could not be detected due to 
high flexibility (Schlauderer et al. 2018) Thus, the molecular 
and dynamic bases underlying the potential allosteric modu-
lation of the function of this section of MALT1 remain in 
our opinion unknown.

Importantly, it has been demonstrated that the regulating 
function of MALT1 on NF-κB can be exerted by at least two 
routes, one of which includes the protease activity acquired 
by MALT1 upon participating in the formation of the CBM 
complex (Che et al. 2004; Solsona et al. 2022; Rebeaud et al. 
2008; Coornaert et al. 2008). However, it should be noted 
that MALT1 promotes a second route for NF-κB activation 
by acting as a scaffold when bound to BCL10, recruiting 
E3 ubiquitin ligases, such as TRAF6 and the linear ubiq-
uitin chain assembly complex (LUBAC), which ultimately 
results in ubiquitination of BCL10 and MALT1 (Sun et al. 
2004; Yang et al. 2014; Deng et al. 2000; Oeckinghaus et al. 
2007). It has been previously demonstrated that activation of 
MALT1 requires the monoubiquitination of residue K644 on 
the surface of the  IgL3 domain (Fig. 1A) (Pelzer et al. 2013). 

More recent data suggested that ubiquitination of the  IgL3 
domain may induce conformational changes that could be 
allosterically communicated to the active site of the paracas-
pase domain of MALT1 (Schairer et al. 2020).

Crystal structures of individual MALT1 domains and 
combinations thereof in complex with allosteric ligands have 
been previously determined (Yu et al. 2011; Eitelhuber et al. 
2015; Schlauderer et al. 2013). Furthermore, the recently 
developed AlfaFold prediction server provides an excellent 
source of reliably predicted three-dimensional structures of 
proteins and protein domains (Jumper et al. 2021), including 
human full-length MALT1 in monomeric form. However, 
although crystal structures provide crucial atomic-scale 
information about the three-dimensional fold of proteins as 
well as exquisite architectural details of e.g. catalytic sites, 
they still represent snapshots of energy minimized states and 
can thus seldom provide adequate information for e.g. estab-
lishing the dynamic bases underlying allosteric communica-
tion. Noteworthy, to the best of our knowledge, the three-
dimensional structure of the apo monomeric form of the 
human MALT1(Casp-IgL3)338–719 in solution has remained 
missing and all available crystal structures of MALT1 are 
dimer (Yu et al. 2011; Wiesmann et al. 2012). In contrast, 
NMR spectroscopy can provide much more ample informa-
tion about both domain and local conformational flexibili-
ties. It has been previously demonstrated that the truncated 
version of MALT1 which comprises only the caspase-like 

Fig. 1  Domain organization. A Schematic representation of the oli-
gomer complex formed by MALT1 and BCL10. MALT1 comprises 
five domains including the N-terminal DEATH domain (DD), two 
immunoglobulin-like domains  (IgL1 and  IgL2), the caspase-like 
domain (Casp) and a third immunoglobulin-like domain  (IgL3) B 
Schematic representation of the MALT1(Casp-IgL3)338–719 self-

folding unit that was used within the present study. C Sequence and 
numbering of human MALT1(Casp-IgL3)338–719 domains in which the 
 IgL3 domain is highlighted and typed in italic. The C-terminal his-
tag is also depicted. The amino acids Ile, Leu and Val are labelled in 
blue, bold black and red, respectively
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and the  IgL3 domains MALT1(Casp-IgL3)338–719 (Fig. 1B, 
C) retains an active fold (Wiesmann et al. 2012) and that 
it forms dimers that are functionally important (Hachmann 
et al. 2012; Wiesmann et al. 2012). Hence, we here focused 
our efforts on this part of MALT1. We have previously 
reported the almost complete 15 N/13C/1H backbone assign-
ment of the apo form of the human MALT1 paracaspase 
region together with the third immunoglobulin-like  (IgL3) 
domain by high resolution NMR (Unnerstale et al. 2016). 
Here, we partially assigned the IVL-Methyl side chains of 
the ligand-free monomeric human MALT1 paracaspase-IgL3 
domain in solution.

Methods and experiments

Expression and purification of labelled 
MALT1(Casp‑IgL3)338–719

The DNA sequence encoding for the caspase and  IgL3 
domains of human MALT1, corresponding to residues 
338–719 (Fig. 1C) and a C-terminal His6-tag was cloned 
into pET21b (Novagen). The  MALT1338–719-his construct 
was transformed into Escherichia coli strain T7 express 
competent cells and thereafter expressed in different isotopic 
labelling combinations in 1/2H, 15 N, 12/13C-labelled M9 
medium. Chemicals for isotope labelling (ammonium chlo-
ride, 15 N (99%), D-glucose, 13C (99%), deuterium oxide) 
were purchased from Cambridge Isotope Laboratories, Inc. 
Cells were cultivated at 37 ℃ and were induced at an  OD600 
of approximately 0.8 for 16 h at 16 ℃ by addition of β-D-1-
thiogalactopyranoside (IPTG) to 0.5 mM final concentration.

For the incorporation of methyl groups with the desired 
isotopic labelling pattern, alpha-keto acids were added as 
supplements to M9 medium and they served as biosynthetic 
precursors. MALT1(Casp-IgL3)338–719 was expressed in 1 
L of  D2O M9 medium using 3 g/L of U-[13C,2H]-glucose 
(CIL, Andover, MA) as the main carbon source and 1 g/L 
of 15NH4Cl (CIL, Andover, MA) as the nitrogen source. One 
hour prior to induction, precursors were added to the growth 
medium as previously described (Tugarinov et al. 2006). 
For precursors, 70 mg/L alpha-ketobutyric acid, sodium salt 
(13C4, 98%, 3,3-2H, 98%) and 120 mg/L alpha-ketoisovaleric 
acid, sodium salt (1,2,3,4-13C4,99%, 3, 4, 4, 4, -2H 97%) 
(CIL, Andover, MA) were used. Bacterial growth was con-
tinued for 16 h at 16 °C and the cells were thereafter har-
vested by centrifugation.

Cells were resuspended in lysis buffer 20 mM TrisHCl 
(pH7.6), 150 mM NaCl, 2 mM DTT and lysed using ultra-
sonicator, followed by centrifugation at 40,000 g for 30 min 
to remove cell debris. The supernatant was collected and 
incubated with  Ni2+ Sepharose 6 Fast Flow (GE Health-
care) for 1 h at 4 ℃. The target protein was eluted with lysis 

buffer containing 200–500 mM imidazole. A Q-Sepharose 
HP column (GE Healthcare) was used to separate the mon-
omeric MALT1(Casp-IgL3)338–719 protein from the dimer 
form. A final size exclusion chromatography (SEC) step 
using a HiLoad 16/600 Superdex 200 prep grade column 
(GE Healthcare) was performed, with running buffer 20 mM 
HEPES 7.4, 50 mM NaCl, 1 mM DTT. The final monomer 
MALT1(Casp-IgL3)338–719 protein sample was subsequently 
exchanged to a buffer (10 mM Tris 7.6, 50 mM NaCl, 2 mM 
TCEP, 0.002% NaN3) suitable for NMR experiments using 
gravity flow PD10 desalting columns (GE Healthcare). Final 
yields from a four litres M9 culture were approximately 
8 mg of purified protein. Purified monomeric MALT1(Casp-
IgL3)338–719-his was concentrated to at least 0.4 mM for 
NMR data acquisition.

NMR spectroscopy

NMR spectra were recorded at 298  K and 308  K on 
700 MHz (Bruker AVANCE III) or on 800 MHz, 900 MHz 
(Bruker AVANCE III-HD) spectrometers equipped with 
cryo-enhanced 5  mm QXI, 3  mm TCI, and 3  mm TCI 
probes, respectively. 2D 1H-15 N Best-TROSY-transverse 
relaxation optimized spectroscopy (TROSY) was used (Elet-
sky et al. 2001; Pervushin et al. 1997; Schulte-Herbruggen 
and Sorensen 2000). Three dimension (3D) Best-TROSY 
type HNCO and 3D HNCA experiments were collected 
using iterative non-uniformly sampling (NUS) (Favier and 
Brutscher 2011). Deuterium decoupling was applied in 3D 
Best-TROSY HNCA. The assignment of the 1H, 13C Methyl 
Val, Leu, Ile amino acids of MALT1(Casp-IgL3)338–719 
was based on a set of 3D resonance experiments including 
HMCM(CGCB)CA and HMCM(CGCBCA)CO for Ile/Leu 
and HMCM(CB)CA for Val residues. The pulse programs 
were identical to hmcmcbcagpwg3d and hmcmcbcacog-
pwg3d in Bruker TopSpin3.6 except that methyl HMQC 
instead of HSQC and 2H decoupling were applied (Tuga-
rinov et al. 2014) and 1.8 ms IBurp1 pulse was used for 
selective inversion of CG2 of Ile.

Intramolecular amide- methyl, NH-CH3, interactions 
were verified through observing cross peaks in 3D SOFAST 
(SF), 1H–15 N TROSY NOESY experiments. Additional 
intramolecular Methyl-Methyl interactions were obtained 
from 4D 13C,13C-SF HMQC NOESY (Zwahlen et al. 1998) 
and 3D 1H13C13C1H-TOCSY(Kay et al. 1993) experiments.

The experimental parameters for acquisition in the 
2D/3D/4D experiments are summarised in Table 1.

The 3D NUS methyl related experiments were pro-
cessed using NMRpipe (Delaglio et al. 1995) and the IST 
algorithm in the mddnmr software (Kazimierczuk and 
Orekhov 2011; Mayzel et al. 2014). The decoupling of 
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the homonuclear one-bond 13Cα-13Cβ scalar coupling in 
the HNCA, HMCM(CB)CA, and the HMCM(CGCB)CA 
experiments was performed by deconvolution (Kazimierc-
zuk et al. 2020). The 1H, 13C and 15 N chemical shifts were 
referred to DSS-d6. The 13C and 15 N chemical shifts were 
referenced indirectly. The backbone chemical shifts of 
MALT1(Casp-IgL3)338–719, 1HN, 15 N, 13Cα, 13Cβ and 13C´ 
nuclei, have been previously assigned by us (Unnerstale 
et al. 2016) using the Target Acquisition approach (Isaks-
son et al. 2013; Jaravine and Orekhov 2006; Jaravine et al. 
2008), and can be found in the Biological Magnetic Reso-
nance Data Bank (Ulrich et al. 2008) (http:// www. bmrb. 
wisc. edu/) with the BMRB accession code 25,674. All 
analyses were performed manually in CcpNmr Analysis 
3.0.4 (Vranken et al. 2005). For visualization of the results 
of Methyl’s assignment on the MALT1(Casp-IgL3)338–719 
model the UCSF Chimera package (Pettersen et al. 2004) 
was used. The model was created based on the crystal 
structure of MALT1 (PDB ID: 3V55) and adding miss-
ing loops according to the comparative protein modelling 
approach(Sali & Blundell 1993).

Extent of assignments and data deposition

Thorough knowledge of both backbone and side chain chem-
ical shift nuclei is important for a complete description of the 
structural features of the human MALT1(Casp-IgL3)338–719 
complex. We have previously reported the 15  N/13C/1H 
backbone assignment of the apo form of MALT1(Casp-
IgL3)338–719 in solution (Unnerstale et al. 2016). Methyl-
specific isotope labelling has been recently developed as a 
powerful tool to study the structure, dynamics and interac-
tions of large proteins and protein complexes by solution-
state NMR (Tugarinov et al. 2006; Rosenzweig and Kay 
2014). Four large hydrophobic clusters assembled by methyl 
groups of Ile, Leu, Val amino acids could be distinguished 
in the structure of MALT1(Casp-IgL3)338–719 (Fig. 2). The 
first cluster (I) is located mainly in  IgL3 domain, while the 
second cluster (II) is localized between the  IgL3 and Casp 
(Fig. 2A). The third (III) and fourth (IV) clusters are struc-
tural parts of the Casp domain and are located on both side 
of beta sheets (Fig. 2B).

In this study, we focused on the assignment of the methyl 
resonances for the side chains of valine (Val), leucine (Leu) 

Table 1  List of acquisition parameters used for NMR experiments

a Experiments performed on an 800 MHz spectrometer
b Experiments performed with deuterium decoupling
c Experiments on 900 MHz spectrometer
d Optimized for Ile and Leu
e Optimized for Val
f T = 308 K
g Experiments performed on an 700 MHz spectrometer

Experiments Maximum evolution time, (ms)/ carrier frequency (ppm)/sweep width 
(ppm)

D1s Scans NUS points NUS % Time (h)

F3 F2 F1

1H-15 N Best-TROSYa,c 9.4(1H)/ 4.7/12 38.9(15 N)/ 118.0/36.0 – 0.8 4 – – 1.0
3D Best-TROSY-

HNCOa,f
79.9(1H)/ 4.7/16.0 34.3(15 N)/ 118.0/36.0 19.9(13C)/ 173.0/15.0 0.5 16 720 12 6.2

3D Best-TROSY –
HNCA_2Ha,b

106.5(1H)/ 4.7/12.0 24.0(15 N)/ 118.0/36.0 42.4(13C)/ 54.0/30.0 0.5 16 2400 13.4 32.4

3D 1H–15 N SF- 
NOESY-TROSYa

79.9(1H)/4.67/16.0 27.4(15 N)/118/36.0 28.4(1H)/4.67/11.0 0.5 16 4600 23 68

4D 13C,13C-SF-HMQC 
NOESY-HMQCc

F481.0(1H)/4.7/14.0 F3/F29.8(13C)/ 
17.0/18.0

F119.7(1H)/4.7/1.8 0.7 8 5400 10.5 84

1H13C13C1H-TOCSYg 90.9(1H)/4.67/1616.0 4.5(13C)/39/80
36.0

22.7(1H)/4.67/8
11.0

1.0 4 – – 40

1H-13C  HMQCa,c 94.6(1H)/4.7/12.0 22.5(13C)17.0/20.0 – 1.0 8 – – 0.5
HMCM(CGCBCA)

CO_2Ha,b,d,f
91.8(1H)/ 4.7/14.0
4.74.7

13.1(13C)/16.0/16.0 28.9(13C)/ 171.0/11.0 1.0 16 1612 60 37.4

HMCM(CGCB)
CA_2Ha,b,d

91.8(1H)/ 4.7/14.0
4.74.7

13.1(13C)/16.0/16.0 31.8(13C)/ 39/20.0 1.0 16 1182 22 27

HMCM(CB)CA_2Ha,b,e 91.8(1H)/ 4.7/14.0
4.74.7

13.1(13C)/16.0/16.0 31.8(13C)/39.0/20.0 1.0 16 1720 32 38.4

http://www.bmrb.wisc.edu/
http://www.bmrb.wisc.edu/
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and isoleucine (Ile) amino acid residues in the human 
MALT1(Casp-IgL3)338–719 construct. The assignment of 
the 1H and 13C resonances of methyl group in NMR spectra 
of large proteins remains a challenge. We therefore used a 
combination of two highly efficient and complementing pro-
tocols. We started with the conventional approach, where 
the methyl resonances were connected to the known back-
bone assignments using methyl out-and-back experiments 
(Tugarinov et al. 2014). Then, the methyl assignments were 
validated and further expanded using the second approach 
based on Nuclear Oberhausen Effect (NOE) cross-peak data, 
peak residue type classification and a known 3D structure 
or a reliable structural model (Rossi et al. 2016; Pritišanac 
et al. 2019; Nerli et al. 2021).

Assignment of 1H, 13C resonances for methyl 
Ile, Leu and Val residues in human 
MALT1(Casp‑IgL3)338–719 through Methyl ‑Cα/
or C′ correlation

Our initial approach was based on sets of previously devel-
oped experiments (Tugarinov and Kay 2003), where inter-
actions between 1H/13C labelled methyl groups of Ile, Val 
and Leu residues, and  Cα or C′ nuclei in triple, 2H, 13C, 
15 N, labelled MALT1(Casp-IgL3)338–719 protein were moni-
tored. A higher resolution was achieved through NUS acqui-
sition in indirect detection (Table 1). Combination of the 
previously obtained backbone assignment (Unnerstale et al. 
2016) and chemical shifts for  Cα and C’ from the out-and-
back methyl experiments (Table 1) allowed us to assign 10 
(out of total 18) Ile, 12/108 Leu and 15 (of 52) Val methyl 
groups. The assignment at this stage was incomplete because 

of the relatively low sensitivity of the methyl out-and-back 
3D experiments, which lack cross-peaks for a number of 
methyl signals observed in 2D 1H-13C HMQC (Fig. 3). The 
apparent reason for this low sensitivity is fast relaxation of 
the 1H and 13C nuclei involved in the magnetization transfer. 
In addition, the Casp domain is apparently involved in a 
slow dynamic process leading to line broadening. The out-
and-back HMCM(CGCBCA)CO_2H experiment performed 
at a higher temperature (308 K) showed higher sensitivity. 
However, we performed most of the experiments at 298 K, 
because MALT1(Casp-IgL3)338–719 is unstable at 308 K or 
higher temperatures. It should be noted that this type of 
experiment for large proteins usually shows best perfor-
mance at high temperature, which therefore limits its appli-
cation to temperature-stable proteins.

Assignment of 1H, 13C resonances for methyl 
Ile, Leu and Val residues in human 
MALT1(Casp‑IgL3)338–719 based on NOEs 
contacts

As a next step, we combined backbone amide and side-
chain methyl assigned above with NOEs obtained from 
NH-Methyl NOE in 3D (1H-15 N) NOESY and Methyl-
Methyl NOE interactions in 4D 13C-13C NOESY spectrum 
(Nerli et al. 2021) versus the available spatial structure of 
MALT1. Comparison of the observed NOE cross peaks and 
their intensities to the corresponding distances in the crystal 
structure of MALT1(Casp-IgL3)338–719 permitted additional 
assignment of the 1H, 13C methyl resonances. Pairs of gemi-
nal 13Cδ1/13Cδ2 and Val 13Cγ1/13Cγ2 resonances were verified 

Fig. 2  Annotation of the Methyl groups assignment in the MALT1. A 
Four large hydrophobic clusters of methyl Ile, Val, Leu are coloured 
by: (I) yellow in  IgL3 domain, (II) violet, between  IgL3 and paracas-
pase domains, (III) and (IV) green and red for clusters located on 
both sides of the beta sheets in the paracaspase domain. B 90°-rotated 
projection of the paracaspase domain only showing (III) and (IV) 

hydrophobic clusters located around the beta sheets. The methyls of 
Ile, Val and Leu residues that are lying outside of the hydrophobic 
cores of MALT1 are coloured in blue. The assigned methyl groups 
of the amino acids are marked by dark colours corresponding to the 
clusters and the unassigned residues are coloured in corresponding 
light colours
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through Methyl-Methyl TOCSY interaction (Kay et al. 1993) 
in 1H13C13C1H-TOCSY experiment.

Figure 3 depicts the 1H-13C HMQC spectrum with the 
methyl assignment of MALT1(Casp-IgL3)338–719. Out of 

a total of 98 ILV (61 in Casp and 37 in  IgL3) amino acid 
residues (only 1 methyl for Ile) we assigned 79 (44 for 
Casp and 35 for  IgL3): 88% of Val (13 in Casp and 10 in 
 IgL3, coloured in red in Fig. 3), 100% of Ile (10 in Casp 

Fig. 3  Annotated 1H,13C-
HMQC spectrum of monomeric 
human apo-MALT1(Casp-
IgL3)338–719 Assignments of 
the cross peaks are depicted 
by numbers of the correspond-
ing amino acid residues in the 
protein sequence. Numbers for 
Ile, Val and Leu are coloured in 
blue, red and black, respec-
tively. The two insets enlarge 
the most crowded regions of the 
spectrum



369Assignment of IVL‑Methyl side chain of the ligand‑free monomeric human MALT1 paracaspase‑IgL3…

1 3

and 8 in  IgL3, coloured in blue in Fig. 3) and 70% of Leu 
(21 in Casp and 17 in  IgL3, coloured in black in Fig. 3). 
The majority of the assigned methyls are located in the 
 IgL3 domain and belong to the hydrophobic clusters I and 
II. Assignment of the remaining methyls in clusters (III) 
and (IV) was hindered by the incomplete backbone assign-
ment, low sensitivity in the out-an-back spectra, as well as 
due to substantial overlap of several methyl signals of Leu 
residues. The methyl chemical shifts have been added to 
the Biological Magnetic Resonance Data Bank deposition 
25,674. (Ulrich et al, 2008) (http:// www. bmrb. wisc. edu/).

Conclusion

We present in this study the partial 1H /13C Ile/Leu/Val 
methyl resonance assignments for the apo form of human 
MALT1(Casp-IgL3)338–719. This assignment will play a cru-
cial role in elucidation of MALT1(Casp-IgL3)338–719 struc-
ture, dynamics, and allosteric pathways as well as for map-
ping protein–protein and protein–ligand interaction sites.
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