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Abstract
Clostridioides difficile is a bacterial pathogen responsible for the majority of nosocomial infections in the developed world. 
C. difficile infection (CDI) is difficult to treat in many cases because hypervirulent strains have evolved that contain a third 
toxin, termed the C. difficile toxin (CDT), in addition to the two enterotoxins TcdA and TcdB. CDT is a binary toxin com-
prised of an enzymatic, ADP-ribosyltransferase (ART) toxin component, CDTa, and a pore-forming or delivery subunit, 
CDTb. In the absence of CDTa, CDTb assembles into two distinct di-heptameric states, a symmetric and an asymmetric 
form with both states having two surface-accessible host cell receptor-binding domains, termed RBD1 and RBD2. RBD1 
has a unique amino acid sequence, when aligned to other well-studied binary toxins (i.e., anthrax), and it contains a novel 
 Ca2+-binding site important for CDTb stability. The other receptor binding domain, RBD2, is critically important for CDT 
toxicity, and a domain such as this is missing altogether in other binary toxins and shows further that CDT is unique when 
compared to other binary toxins. In this study, the 1H, 13C, and 15N backbone and sidechain resonances of the 120 amino 
acid RBD2 domain of CDTb (residues 757–876) were assigned sequence-specifically and provide a framework for future 
NMR-based drug discovery studies directed towards targeting the most virulent strains of CDI.
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Biological context

Clostridioides difficile infection (CDI) is caused by a spore-
forming, Gram-positive bacterium, and it is the most com-
monly reported nosocomial infection in the world, account-
ing for 12% of all hospital-borne infections (Gerding 2015). 
Prior to the emergence of hypervirulent strains early in the 
twenty-first century, C. difficile strains produced only two 
large enterotoxins, TcdA and TcdB, which inhibit signal-
ing pathways by glucosylating small GTPases. Whereas, 
hypervirulent strains emerging more recently, such as 
the NAP1 epidemic strain, encode TcdA/TcdB plus addi-
tional virulence factors, most notably a third toxin termed 
the C. difficile toxin (CDT) (Perelle et al. 1997). CDT is a 
binary toxin that kills host cells by covalent modification of 

essential intracellular regulators of host cell function, includ-
ing G-actin. While drug options are becoming available to 
target the large clostridial toxins in CDI, TcdA/TcdB (Yang 
et al. 2015), there is nothing approved by the FDA to target 
CDT (Secore et al. 2017). To address this unmet medical 
need, potent and selective CDT inhibitors are needed to pro-
vide treatment option(s) for patients infected with the most 
serious hypervirulent CDT-containing strains of CDI.

CDT has an enzymatic subunit, CDTa (47.4 kDa), with 
ribosyltransferase activity, and a pore-forming delivery 
subunit, termed CDTb (74 kDa). Fully active CDT associ-
ates in a 1:7 ratio of CDTa to CDTb subunits (Goorhuis 
et al. 2008; Loo et al. 2005; McDonald et al. 2005; Rup-
nik 2008; Stewart et al. 2013; Geric et al. 2004). Prior to 
cellular entry via endosomes (Hale et al. 2004; Nagahama 
et al. 2000, 2004; Gibert et al. 2011), the binary toxin com-
plex associates with membrane-bound host cell receptor(s), 
such as the lipolysis-stimulated lipoprotein receptor 
(LSR) and/or CD44 (Wigelsworth et al. 2012; Papatheo-
dorou et al. 2011; Fagan-Solis et al. 2014; Hiramatsu et al. 
2017). CDT enters the host cell via endosomes with the 
low pH in endosomes triggering CDTa translocation into 
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the cytoplasm via the pore-forming entity, CDTb (Bach-
meyer et al. 2001; Blocker et al. 2003; Haug et al. 2003; 
Knapp et al. 2002; Krantz et al. 2004, 2005, 2006; Lang 
et al. 2008; Schmid et al. 1994; Knapp et al. 2016). Upon 
delivery of the catalytically active CDTa enzyme into the 
host cell cytoplasm, ADP-ribosylation of G-actin occurs 
rapidly at Arg177 (Sundriyal et al. 2009). Modified G-actin 
leads to F-actin filament dissociation (Gulke et al. 2001), 
destruction of the cytoskeleton, increased microtubule pro-
trusions, accelerated bacterial adhesion, and a “death spi-
ral” for mammalian host cells (Gerding et al. 2014; Benz 
2017; Barth 2017). Of interest here is the host-cell bind-
ing component of CDT, CDTb. Recent structural studies 
of CDTb showed that it exists in two states, either as an 
asymmetric or a symmetric di-heptamer, in the absence of 
CDTa (Gerding et al. 2014; Xu et al. 2020). The asymmetric 
form, AsymCDTb, has one of its two heptameric components 
folding into a seven-stranded beta-barrel with an internal 
cavity that is reminiscent of the anthrax protective antigen 
(PA) (Akkaladevi et al. 2013). Although, when compared 
to other binary toxins, CDTb was found to have two dis-
tinct host cell receptor-binding domains, RBD1 and RBD2, 
rather than just a single domain. In addition, RBD1 lacks 
sequence homology to any other known toxin and contains 
a novel calcium-binding site needed for protein stability 
(Xu et al. 2020). Whereas, the RBD2 domain is absent alto-
gether in other well-studied binary toxins, including anthrax. 
Importantly, RBD2 was shown to provide a potent dominant 
negative effect for host cell toxicity when isolated (residues 
757–876) indicating its important functional role within 
hypervirulent CDI (Xu et al. 2020). Therefore, with these 
data in hand, the sequence-specific backbone and sidechain 
resonance assignments of RBD2 were completed as a first 
step towards designing RBD2 inhibitors using NMR-based 
methods, which will be important for the longer-term goal of 
targeting toxicities associated with hypervirulent Clostridi-
oides difficile that produces CDT.

Methods and experiments

Protein expression and purification

As previously described (Xu et al. 2020), DNA encoding 
the RBD2 binding domain of CDTb (residues 757–876) 
was codon optimized and engineered into pET21 expres-
sion plasmid along with a His-tag at its N-terminus, as was 
needed for solubility and purification purposes (TOPGene 
Technologies). The RBD2-containing expression plasmid 
was transformed into the E. coli BLR(DE3) cells, and large-
scale protein over-production was performed using 2 L of 
defined  [15N, 13C]-labeled MOPS media, containing 1 g/L 
of 15N-labeled NH4Cl and 2.5 g/L of 13C-labeled D-Glucose 

per liter of media. IPTG (0.5 mM) was added to the media 
when the  A600 cell density reading was between 0.7 and 0.8 
O.D., at which time the cells were grown for an additional 
18 h at 25 °C. At the end of the growth period, the cells 
were centrifuged for 15 min at 4000 r.p.m, and the pellets 
were weighed and resuspended in a lysis buffer containing 
50 mM Tris–HCl, pH 8.0, 500 mM NaCl, 10 mM BME 
such that 3 mL of lysis buffer were added per gram of wet 
pellet. Prior to sonication, the cell lysate was incubated at 
4 °C for 1 h with DNase, 10 mM  CaCl2 and 10 mM  MgCl2. 
Three cycles of sonication at 50% power amplitude were 
performed next and followed by centrifugation at 15,000 
r.p.m for 45 min at 4 °C to remove cell debris. The clear 
supernatant was filtered and loaded onto a previously equili-
brated HiPrep 16/60 IMAC column with buffer A (20 mM 
Tris–HCl, pH 8.0, 300 mM NaCl, 10 mM BME). Upon addi-
tion of buffer B (buffer A plus 1 M imidazole) to the column, 
the RBD2 construct was eluted at ~ 150 mM imidazole into 
5 mL fractions and analyzed by SDS-PAGE. The RBD2-
containing fractions were pooled, concentrated, and injected 
onto a Superdex S200-PG size exclusion column previously 
equilibrated with 15 mM HEPES buffer, pH 7.0, 150 mM 
NaCl, and 0.5 mM DTT. Fractions containing the RBD2 
construct were eluted from the S200 column and shown to 
be pure via SDS- and native-PAGE (> 99%). The yield of 
the RBD2 domain was typically > 50 mg of purified protein 
per liter of bacterial cell culture, and its concentration was 
adjusted to ~ 1 mM, aliquoted, and stored at − 80 °C, prior 
to preparing NMR samples.

NMR spectroscopy

NMR data was collected at 25 °C on Bruker 950 MHz, 
800 MHz, and 600 MHz spectrometers. The NMR samples 
all contained 0.5 mM of the RBD2 domain, 15 mM HEPES 
buffer, pH 7.0, and 150 mM NaCl in 90%  H2O and 10% 
 D2O. The NMR sample was of high-quality as judged by 
a 2D 1 H,15 N-edited HSQC spectrum shown together with 
sequence-specific resonance assignments (Fig. 1a). The 
observable backbone and sidechain 1H, 13C, and 15N reso-
nances were assigned via pairwise comparison of inter- and 
intra-residue 13 Cα, 13Cβ and 13 C´ chemical shift values 
from 3D HNCA, HN(CO)CA, HNCACB – CB optimized, 
CACB(CO)NH, HC(CO)NH, C(CO)NH, and HNCO experi-
ments (Grzesiek 1992; Kay et al. 1994; Wittekind 1993; 
Montelione et al. 1992). The NMR data were processed with 
NMRPipe and analyzed using CcpNMR software (Delaglio 
et al. 1995; Vranken et al. 2005), and the secondary structure 
prediction was achieved using a Chemical Shift Index (CSI) 
algorithm on the CSI 2.0 web server (Berjanskii 2005). All 
proton chemical shifts were referenced to external trimethyl-
silyl propanoic acid (TSP) at 25 °C (0.00 ppm) with respect 
to residual  H2O (4.698 ppm). The 15N and 13C chemical shift 
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values reported were indirectly referenced using zero-point 
frequency ratios of 0.101329118 and 0.251449530, respec-
tively (Wishart et al. 1995).

Extent of assignment and data deposition

Sequence-specific resonance assignments shown in Fig. 1a 
were determined unambiguously using heteronuclear mul-
tidimensional NMR methods for 110 out of the 115 pos-
sible  HN–15N correlations (~ 96%) of the receptor-binding 
domain-2 (RBD2) of CDTb. Of those 110 correlations, 100% 
of the CA, 95% of the CB, and 94% of the CO chemical 
shifts were determined. It was also possible to assign 7 of the 
12 residues in the His-tag, which are labeled with an asterisk 
(*) in Fig. 1. The 120-residue RBD2 domain has five pro-
line residues (Pro776, Pro790, Pro832, Pro835, and Pro865) 
that do not provide 1H–HN correlations. Four of the other 
five residues that do not appear in the 2D 1 H,15 N-edited 
HSQC spectrum reside in a small stretch of sequence in 
the C-terminal region of RBD2 (Thr854, Tyr855, Lys856, 

Lys857), and the fifth missing correlation was for residue 
Leu829. It is likely that non-proline missing correlations 
were the result of conformational averaging occurring on 
the chemical shift timescale. Two residues, Thr781 and 
Ileu783, were each found to have two  HN correlations hav-
ing different 1H and 15N chemical shift values with varying 
intensities (~ 80:20), but the chemical shift values for their 
respective pairs of inter- and intra-residue carbon correla-
tions to carbon (i.e. HNCA, HNCACB, etc.) were identical. 
While it is possible that peak doubling such as this could 
arise from a cis-trans proline isomerization, on the slow 
chemical shift timescale, a more likely explanation is that 
the sidechain of Tyr782 has two slowly exchanging confor-
mational states. Nonetheless, providing a foolproof conclu-
sion to this question of doubling is beyond the scope of this 
assignment note, and requires additional experimentation 
that will be reported elsewhere. The chemical shift values 
assigned for RBD2 were used next as input for a chemical 
shift index (CSI) algorithm to map the secondary structure 
of RBD2. As shown in Fig. 1b, the secondary structure from 

Fig. 1  Resonance assignments and secondary structure of the recep-
tor binding domain 2 (RBD2) domain of CDTb. a  The 2D 1H,15N-
edited HSQC spectrum of RBD2 (residues 757–876) recorded on a 
Bruker 950 MHz spectrometer at pH 7.0 and 25 °C. Residue type and 
number indicate assignments from backbone amide  HN correlations. 
Horizontal lines are illustrated for 1H-15N correlations arising from 
sidechain asparagine (Asn) and glutamine (Gln) residues, and cor-
relations labeled with an asterisk (*) arise from residues within the 

His-tag region of the RBD2 construct. b The secondary structure of 
RBD2 predicted from the chemical shift index method is illustrated 
and consists of 8 beta strands (β1, I767-N775; β2, T781-A789; β3, 
Q802-T809; β4, K816-N827; β5, T837-N841; β6, I852-Y855; β7, 
K857-I863; β8, R868-V875) shown with blue arrows and 2 alpha 
helices (α1, D758-A764; α2, K795-Y800) highlighted in red. The 
remaining regions of RBD2 are predicted to exist as random coil and 
are shown with a black line in the secondary structure representation
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CSI analyses predicts that the RBD domain has eight beta 
strands (I767-N775; T781-A789; Q802-T809; K816-N827; 
T837-N841; I852-Y855; K857-I863; R868-V875) and 2 
alpha helices (D758-A764; K795-Y800), which is fully con-
sistent with the X-ray and cryoEM structures reported previ-
ously (Xu et al. 2020). In summary, the chemical shift values 
for backbone and sidechain resonances of RBD2 obtained 
here were deposited in the Biological Magnetic Resonance 
Bank database (http://www.bmrb.wisc.edu) under accession 
number 28,131, and these data will be important for next-
stage NMR studies that map RBD2 biomolecular interac-
tions and for developing inhibitors targeting CDTb.
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