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Abstract
Attachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be essential for infection, although 
how this binding event promotes infection is unknown. Recent studies have shown that 60% of all GII.4 epidemic strains may 
undergo a spontaneous post-translational modification (PTM) in an amino acid located adjacent to the binding pocket for 
HBGAs. This transformation proceeds with an estimated half-life of 1–2 days under physiological conditions, dramatically 
affecting HBGA recognition. The surface-exposed position of this PTM and its sequence conservation suggests a relevant 
role in immune escape and host-cell recognition. As a first step towards the understanding of the biological implications of 
this PTM at atomic resolution, we report the complete assignment of methyl resonances of a MILProSVProSA methyl-labeled 
sample of a 72 kDa protruding domain from a GII.4 Saga human norovirus strain. Assignments were obtained from methyl–
methyl NOESY experiments combined with site-directed mutagenesis and automated assignment. This data provides the basis 
for a detailed characterization of the PTM-driven modulation of immune recognition in human norovirus on a molecular level.
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Biological context

Noroviruses are the leading cause of viral gastroenteritis in 
humans. (Ahmed et al. 2014; de Graaf et al. 2016) While not 
often a fatal disease in the developed world, noroviruses are 
responsible for ~ 4.2 billion dollars in direct healthcare costs 
per year worldwide. (Bartsch et al. 2016) Efforts to develop 
broadly active vaccines have been thwarted by the ability 
of noroviruses to constantly evolve, generating new strains 
every 2–4 years. (de Graaf et al. 2016; Mallory et al. 2019; 
Melhem 2016; van Beek et al. 2018) Human noroviruses 
(hNoV) require attachment to histo blood group antigens 
(HBGAs) as first step for infection (Baldridge et al. 2016; 
Nasir et al. 2017; Taube et al. 2018). There is compelling 

evidence that the structure and composition of the binding 
pocket for HBGA recognition is highly conserved among 
the prevalent norovirus strains (Singh et al. 2015a, b) and 
therefore, it has been targeted for the development of entry 
inhibitors (Heggelund et al. 2017; Koromyslova et al. 2017; 
Koromyslova et al. 2015; Morozov et al. 2018; Netzler et al. 
2019; Prasad et al. 2016; Shang et al. 2013). However, the 
lack of effective human norovirus cell culture systems at the 
time these studies were conducted precluded their develop-
ment beyond the stage of hit discovery (Oka et al. 2018). 
Recently, two cell culture systems and an animal model for 
human noroviruses have been established, opening the pos-
sibility for infection assays in the near future (Ettayebi et al. 
2016; Jones et al. 2015; Van Dycke et al. 2019; Zhang et al. 
2013). Interestingly, it turned out that besides HBGAs, bile 
acids are important co-factors required to promote norovi-
rus infection (Bartnicki et al. 2017; Ettayebi et al. 2016). 
Although the underlying mechanisms are not yet well under-
stood, the structural basis for murine norovirus (Nelson 
et al. 2018) and human norovirus (Creutznacher et al. 2019; 
Kilic et al. 2019) binding to bile acids have already been 
addressed.
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The viral capsid of human noroviruses consists of 180 
copies of a single capsid protein VP1. The highly con-
served HBGA binding pocket is located in the outer-most 
region of the protruding domain (P-domain) of the VP1 
protein. Expression of protruding domains in Escherichia 
coli affords the so-called P-dimers, a 72 kDa homodimer 
that retains the specificity towards HBGAs and bile acids. 
Recently, we have obtained an almost complete backbone 
assignment of the P-domain of a human epidemic strain, 
GII.4 Saga4/2006 (Mallagaray et al. 2019). Unexpectedly, 
the NMR assignment exposed a fast and highly specific 
deamidation of Asn373, resulting in an isopeptide linkage 
and abrogating HBGA recognition. Chemical shift perturba-
tion (CSP)-based titrations using l-fucose and b-trisaccha-
ride disclosed dissociation constants KD in the mM range. 
CSPs were observed as far as 25 Å from the HBGA binding 
pocket at ligand saturation, suggesting the presence of an 
allosteric network regulated by HBGA binding. A recent 
study monitored the binding of human norovirus virus-like 
particles to glycosphingolipids embedded in a phospholipid 
bilayer (Parveen et al. 2019). From competitive titrations, 
it was concluded that the intrinsic (per binding site) bond 
energies of H type 1 and B type 1 glycosphingolipids are in 
good agreement with the KDs reported for HBGAs by NMR. 
It seems that affinities of hNoV for HBGAs had been signifi-
catively overestimated in previous studies. In addition, the 
impact of deamidation in early publications remains unclear, 
since at the time these studies were conducted the post-trans-
lational modification in hNoV had not been discovered.

Methyl TROSY experiments yield high-quality spectra 
even for protein ensembles far over 100 kDa (Schütz and 
Sprangers 2019; Tugarinov et al. 2003). The increased sen-
sitivity obtained by means of transverse relaxation optimized 
spectroscopy (TROSY) (Riek et al. 1999) combined with 
selective isotopic methyl-labeling in a perdeuterated back-
ground allows for fast spectral acquisition and high reso-
lution even for samples containing low protein concentra-
tions (Gossert and Jahnke 2016). This becomes critical for 
costly and unstable proteins, as is the case for Saga P-dimers. 
Hence, the assignment of the MILProSVProSA methyl-labeled 
P-dimers is essential for a precise biophysical characteri-
zation of HBGA and antibody recognition by noroviruses. 

These results will pave the way for the design of potent and 
selective entry inhibitors against human norovirus.

Methods and experiments

Protein expression and purification

Non-deamidated [U-2H] 13C-methyl labeled GII.4 
Saga4/2006 P domains (GenBank accession number 
AB447457, residues 225 to 530) were expressed accord-
ing to a modified version of previously described protocols 
(Creutznacher et al. 2019; Mallagaray et al. 2019). Mutants 
I293L, I317L, V413A and L507V from GII.4 Saga4/2006 
protruding domain were generated by site-directed mutagen-
esis (Eurofins Genomics). Mutations were confirmed by 
DNA sequencing. Primers used for mutagenesis are listed 
int Table 1.

For protein expression, E. coli BL21(DE3) were trans-
formed with a pMal-c2x expression vector encoding the 
genes for ampicillin resistance, a fusion protein of maltose-
binding protein (MBP), two His-tags, a HRV3C cleavage 
domain and the P-domain. Due to the cloning strategy, 
P-domains contain an extra GPGS sequence preceding 
K225. Bacteria were grown in 25 ml of supplemented TB 
medium at 37 °C for 6–8 h. A volume containing cells 
enough to give an OD600 of 0.1 in a 20 ml culture was spun 
down (11000xg at room temperature), the supernatant was 
discarded and the pellet was resuspended in 20 ml of M9+/
D2O minimal medium. The culture was incubated overnight 
at 37 °C. Like before, a culture volume for a final OD600 of 
0.1 in 20 ml was spun down, the supernatant was discarded, 
the pellet resuspended in 40 ml of M9+/D2O minimal 
medium and incubated at 37 °C until an OD600 of 0.4–0.5. 
The culture was diluted to the final volume (normally 250 
ml) by addition of M9+/D2O, and cells were incubated at 
37 °C until an OD600 of 0.6–0.8 was reached. 20 ml of the 
solution containing the isotopically labeled precursors were 
added and the culture was incubated at 16 °C for 1 h. Pro-
tein overexpression was induced with 1 mM isopropylthi-
ogalactoside (IPTG). Growth was continued at 16 °C until 
stationary phase was reached (normally after 4–5 days). To 

Table 1   List of primers used for 
site-directed mutagenesis

Entry Mutant Primers

1 I293L Forward: 5′-CGC​GGT​GAT​GTT​ACC​CAT​CTG​GCC​GGT​AGC​CGT​AAT​TATAC-3′
Reverse: 5′-GTA​TAA​TTA​CGG​CTA​CCG​GCC​AGA​TGG​GTA​ACA​TCA​CCGCG-3′

2 I317L Forward: 5′-GGA​ATA​ATT​ATG​ACC​CGA​CCG​AAG​AAC​TGC​CGG​CAC​CGC​TGG​G-3′
Reverse: 5′-CCC​AGC​GGT​GCC​GGC​AGT​TCT​TCG​GTC​GGG​TCA​TAA​TTA​TTC​C-3′

3 V413A Forward: 5′-CTA​TAG​CGG​TCG​TAA​TGC​GCA​TAA​TGT​GCA​TCT​GGC​ACCG-3′
Reverse: 5′-CGG​TGC​CAG​ATG​CAC​ATT​ATG​CGC​ATT​ACG​ACC​GCT​ATAG-3′

4 L507V Forward: 5′-GGT​CAG​CAT​GAT​GTG​GTT​ATT​CCG​CCT​AAT​GGC-3′
Reverse: 5′-GCC​ATT​AGG​CGG​AAT​AAC​CAC​ATC​ATG​CTG​ACC-3′
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maintain the antibiotic pressure, 100 µg/ml ampicillin were 
added every 36 h. Cells were harvested by centrifugation 
at 5000×g for 20 min at 4 °C, and pellets were stored at 
− 80 °C. For details on the preparation of supplemented 
TB medium, M9+/D2O minimal medium and isotopically 
labeled precursors see supplementary material.

For protein purification, the pellet was resuspended in 
PBS buffer and then lysed using a high pressure homog-
enizer (Thermo). The lysate was clarified by centrifuga-
tion, and the fusion protein was purified using a Ni-NTA 
resin (Qiagen). MBP and the His-tag were cleaved from 
the P-domain using HRV 3C protease (Novagen). Cleaved 
P-domain protein eluted from Ni-NTA resin and was further 
purified by size-exclusion chromatography using a Superdex 
26/600 75 pg column (GE Healthcare) in 20 mM sodium 
phosphate buffer (pH 7.3). Protein purity and dimer con-
centration were monitored by SDS-polyacrylamide electro-
phoresis and UV absorption (ε280 70,820/M/cm), respec-
tively. Separation of native and deamidated P-dimer species 
was achieved by cation exchange chromatography using a 
6 ml Resource S column (GE Healthcare). Protein samples 
were prepared in 20 mM sodium acetate buffer (pH 4.9) 
and eluted using a 78.4 ml linear salt gradient up to 195 
mM NaCl with a flowrate of 1 ml per min. All steps were 
conducted at 6 °C. Samples were kept in this buffer at 6 °C 
to slow the deamidation reaction.

Sample preparation and NMR spectroscopy

Saga P-dimers were exchanged into NMR buffer using 
Zeba™ Spin Desalting Columns (MWCO 40 KDa, Thermo 
Scientific), which had been pre-equilibrated in the NMR 
buffer. The abundance of non-deamidated Saga P-dimers 
during NMR experiments was monitored from the 1H,13C 
HMQC spectra. NMR samples were prepared in 3 mm 
NMR tubes in 75 mM sodium phosphate, pH* 7.40, 100 
mM NaCl, 100 µM DSS-d6, 100 µM imidazole and 0.02% 
NaN3 in > 99.9% D2O. We used the imidazole signals as 
internal standard to monitor possible pH drifts during the 
measurements produced by NH3 released due to deamidation 
of P-dimers. (Baryshnikova et al. 2008)

For identification of residue types, 2D 1H,13C HMQC 
experiments (Tugarinov et al. 2003) were conducted with 
P-dimer concentrations ranging between 25–200 µM with 
1024 × 512 points in the direct and indirect dimensions, 
respectively. Spectra were acquired for [U-2H], δ1-[13C1H3]-
Ile-labeled (I), [U-2H], δ1-[13C1H3]-Ile, γ1,2-[13C1H3]-Val-
labeled (IV), [U-2H], δ1-[13C1H3]-Ile, γ2-[13C1H3]-Val, 
δ2-[13C,1H3]-Leu-labeled (ILProSVProS), [U-2H], ε-[13C,1H3]-
Met, δ1-[13C1H3]-Ile, γ2-[13C1H3]-Val, δ2-[13C,1H3]-
Leu-labeled (MILProSVProS) and [U-2H], ε-[13C,1H3]-Met, 
δ1-[13C1H3]-Ile, γ2-[13C1H3]-Val, δ2-[13C,1H3]-Leu, 
β-[13C1H3]-Ala-labeled (MILProSVProSA) P-dimers.

2D HMQC-NOESY spectra were acquired using a stand-
ard Bruker pulse sequence (hmqcetgpno) with 50, 100, 150, 
200 and 300 ms mixing times (tmix) and 1024 × 400 data 
points in the direct and indirect dimensions, respectively. 
Intensities for ten randomly selected NOE cross-peaks 
were extracted and plotted against tmix. Based on the NOE 
build-up curves, a tmix of 125 ms was selected for the 4D 
HMQC-NOESY-HMQC experiment. The 4D HMQC-
NOESY-HMQC experiment (Tugarinov and Kay 2004; 
Tugarinov et al. 2005; Wen et al. 2012) was recorded using 
30% non-uniform sampling (NUS) according to a Poisson 
Gap sampling schedule (Hyberts et al. 2010) with 9329 com-
plex NUS data points in a grid of 52 (13C) × 92 (1H) × 52 
(13C) points in the indirect dimensions. 1024 were acquired 
in the direct dimension. The spectrum was processed on 
a Mac-BookPro running Yosemite 10.10.5 using Multi-
Dimensional Decomposition (MDD, Bruker).

All NMR spectra were recorded on a Bruker AV III 500 
MHz NMR spectrometer equipped with a TCI cryogenic 
probe at 298 K. If not stated otherwise, spectra were pro-
cessed with TopSpin 4.0.2 and peak positions and intensities 
were extracted using CCPNMR Analysis 2.4.2 software suit 
(Vranken et al. 2005). 1H chemical shifts were referenced 
according to the DSS-d6 peak, and 13C signals were refer-
enced indirectly. A complete list of samples prepared and 
experiments performed can be found in Table 2.

Assignment and data deposition

Several strategies have been developed for the assign-
ment of protein methyl groups in the recent years. Classic 
approaches rely on systematic site-directed mutagenesis 
(Amero et al. 2011). However, this approach demands 
the preparation of many isotopically labeled samples, and 
can be very cost-intensive. Pulse sequences transferring 
magnetization from backbone amides or carbonyls to side 
chain methyl groups can be used when backbone assign-
ments are available (Tugarinov and Kay 2003). Recently, 
structure-based assignment strategies have emerged as a 
powerful alternative, allowing the assignment of supra-
molecular structures of hundreds of kDa (Proudfoot et al. 
2016; Sprangers and Kay 2007; Velyvis et al. 2009; Xiao 
et al. 2015). Such approaches require high-resolution crys-
tal structures of the protein of interest, which serve as a 
structural scaffold for the assignment. Short- and long-
range spatial restraints can be obtained from 3D or 4D 
HMQC-NOESY experiments (Tugarinov et al. 2005; Wen 
et al. 2012) and paramagnetic NMR experiments (Flugge 
and Peters 2018; Venditti et al. 2011), respectively. Sev-
eral algorithms have been developed to perform structure 
based methyl group assignments automatically, as is the 
case for MAP-XSII (Xu and Matthews 2013), FLAMEnGO 
(Chao et al. 2014), MAGMA (Pritisanac et al. 2017) and 
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MAGIC (Monneau et al. 2017). Spatial restraints can be 
combined with chemical shift predictions to increase num-
ber of assignments (Han et al. 2011; Sahakyan et al. 2011).

Here, we used a structure-based strategy to obtain the 
sequence-specific assignments of the methyl groups of 
MILProSVProSA 13C-methyl labeled P-domains from GII.4 
Saga4/2006. Methyl groups from Met, Ile δ1, Leu δ2 (pro-
S), Val γ2 (pro-S) and Ala β were 13C labeled in a perdeuter-
ated background, yielding a total of 77 13C-methyl groups to 
be assigned. The labeling pattern was chosen to maximize 
the methyl probe density and to minimize signal overlapping. 
The use of stereoselective labeling with ValProS and LeuProS 
employing 2-(13C)methyl-4-(2H3)-acetolactate (Gans et al. 
2010; Tugarinov et al. 2003) as precursor greatly reduced 
signal overlapping in the usually crowded Leu and Val spec-
tral region. Methyl groups are well distributed over the entire 
P-domain, as can be seen from Fig. 1a and S1. In a first 
step, the methyl resonances were assigned to their respec-
tive amino acid types. Five differently 13C-methyl labeled 
Saga P-dimers samples were prepared for the amino acid 
type differential assignment. Specifically, we synthesized I-, 
IV-, ILProSVProS-, MILProSVProS- and MILProSVProSA-methyl 
labeled P-dimers. (Fig. 1b and Table 2, entries 1 to 5). Com-
parison of the 2D 1H,13C HMQC spectra delivers unam-
biguous assignment of each cross peak to its corresponding 
amino acid type.

The 4D methyl–methyl NOESY experiment provided 
174 unambiguous cross-peaks, which were the only spatial 
restraints during the assignment process. A scheme showing 
the complete NOE network can be inspected in the supple-
mentary material (Fig. S2). As structural model, the crys-
tal structure with PDB code 4 X06 was selected because of 
its high resolution. In a first attempt, 69 out of 77 peaks 

could be assigned following the rational described in (Xiao 
et al. 2015). The assignment of amino acids I293, I317, 
V413 and L507 by site-directed mutagenesis combined 
with the transfer of Cβ assignments from a previously pub-
lished backbone assignment (Mallagaray et al. 2019) for 
A356, A466 and A468 resulted in a 100% assignment of 
the MILProSVProSA-methyl labeled P-dimers.

For validation, we computed an independent assign-
ment based on MAP-XSII (Xu and Matthews 2013). MAP-
XSII performs a fully automated assignment based on 
experimental restraints and a structural model supplied. 
Chemical shifts of Ala, Ile, Leu (pro-S) and Val (pro-S) 
were predicted using CH3Shift (Sahakyan et al. 2011), 
and Met chemical shifts were calculated with SHIFTX2 
(Han et  al. 2011). Twenty Metropolis Monte Carlo 
(MMC) tests were computed for cut-off distances between 
4.5 and 11.5 Å, and the ten runs showing the highest 
scores at each cut-off distance were selected for assign-
ment. Calculations were run with and without using the 
seven independent assignments as restraints. Automated 
and manual assignments were compared, and results were 
plotted in Fig. 2a, b (dotted bars). In both scenarios, a 
complete match between manual and automated assign-
ments was observed over 8.5 Å threshold distances. How-
ever, it is worth mentioning that the inclusion of predicted 
chemical shift in the automated assignment increases the 
number of assignments, although at a significant cost 
of accuracy (Pritisanac et al. 2017). Thus, when MAP-
XSII was run without predicted chemical shifts a 100% 
match between manual and automated assignments was 
again obtained over 8.5 Å with the inclusion of the seven 
independent assignments, thus validating our preliminary 
manual assignment (Fig. 2a, b, filled bars). Finally, we 

Table 2   List of samples 
prepared in this study

Entry Labeling Construct Concentration 
(µM)

NMR experiment

1 MILProSVProSA Wt 200 4D HMQC-NOESY-HMQC, 
2D HMQC-NOESY, 1H,13C 
HMQC

2 MILProSVProS Wt 75 1H,13C HMQC
3 ILProSVProS Wt 60 1H,13C HMQC
4 IV Wt 115 1H,13C HMQC
5 I Wt 50 1H,13C HMQC
6 ILProSVProS I293L 55 1H,13C HMQC
7 ILProSVProS I317L 37 1H,13C HMQC
8 ILProSVProS V413A 55 1H,13C HMQC
9 ILProSVProS L507V 41 1H,13C HMQC
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used the Ala Cβ assignments as semi-quantitative indica-
tor of the goodness of the assignment. Alanines can be 
considered as a good reporter of the quality of the assign-
ment, since they are present in almost every NOE cluster. 
Ala Cβ chemical shifts obtained in this study matched 
perfectly with a previously reported backbone assignment 
(Mallagaray et al. 2019) after the corresponding correc-
tion for the deuterium isotope effect (Fig. 2c).

The chemical shift assignments for non-deamidated 
MILProSVProSA 13C-methyl labeled P-domains from GII.4 
Saga4/2006 have been deposited in the BioMagResBank 
(http://www.bmrb.wisc.edu) under the accession number 
28030. A list of chemical shifts of amino acids showing 
chemical shifts perturbations > 1 σ after conversion of 
Asn373 into isoD373 can be found in the supplementary 
material (Table S3).
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Fig. 1   a Crystal structure of Saga P-dimers (PDB entry 4X06). 
One monomer is depicted as a grey cartoon and the other as a pale 
green molecular surface. For clarity, only the pro-S methyl groups 
of Leu and Val are shown. A summary of the amino acids labeled 
is provided in the middle. B-trisaccharide is shown in purple sticks 
only as orientation, but was not added to the samples. b Superpo-
sition of 1H,13C HMQC spectra. Each spectrum is colored indi-
vidually (I black, IV blue, ILProSVProS red, MILProSVProS orange and 
MILProSVProSA green). Carbons of 13C-labeled methyl groups in one 

monomer are highlighted as spheres and colored with the same color 
scheme as in a. c Strategy followed for the assignment of the Ala, Ile, 
LeuProS, Met and ValProS methyl groups from GII.4 Saga P-dimers. d 
1H,13C HMQC spectrum acquired for a MILProSVProSA sample show-
ing the complete assignment. All samples were prepared in Na phos-
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which was prepared in Tris 25 mM and NaCl 0.3 M pH* 7.25. All 
samples were measured at 500 MHz and 298 K.
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