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Abstract The plakin repeat domain is a distinctive hall-

mark of the plakin superfamily of proteins, which are found

within all epithelial tissues. Plakin repeat domains mediate

the interactions of these proteins with the cell cytoskeleton

and are critical for the maintenance of tissue integrity.

Despite their biological importance, no solution state res-

onance assignments are available for any homologue. Here

we report the essentially complete 1H, 13C and 15N back-

bone chemical shift assignments of the singular 22 kDa

plakin repeat domain of human envoplakin, providing the

means to investigate its interactions with ligands including

intermediate filaments.
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Biological context

Envoplakin is a member of the plakin family of cytolink-

ers. Plakin proteins connect elements of the cell

cytoskeleton to each other and to junctional complexes at

the cell membrane. The plakin proteins play a vital role in

the maintenance of tissue integrity, particularly in tissues

such as the heart and skin that are subjected to high levels

of mechanical stress (Al-Jassar et al. 2013). The plakin

superfamily consists of seven proteins in mammals,

namely envoplakin, periplakin, desmoplakin, plectin, bul-

lous pemphigoid antigen 1 (encoded by the dystonin gene),

microtubule-actin cross-linking factor 1 and epiplakin.

These proteins are widely expressed and have diverse

modular structures but all are characterized by the pres-

ence of either a plakin domain, a plakin repeat domain

(PRD), or both (Sonnenberg and Liem 2007; Bouameur

et al. 2014).

Envoplakin is a 2033 amino acid protein which forms

heterodimers with periplakin to initiate formation of the

cornified envelope (DiColandrea et al. 2000, Candi et al.

2005). The cornified envelope forms beneath the plasma

membrane of keratinocytes during the later stages of epi-

dermal differentiation and is a core component of the

epidermal permeability barrier in eukaryotes, preventing

water loss and excluding foreign substances and organisms

from the environment. In differentiating keratinocytes

envoplakin is localized to the plasma membrane, forming

contacts with desmosomes, the interdesmosomal mem-

brane and the cell cytoskeleton (Ruhrberg et al. 1996).

Envoplakin is targeted by autoantibodies in paraneoplastic

pemphigus (Zimmermann et al. 2010), an autoimmune skin

blistering condition that accompanies malignant and

benign neoplasia, although the role of these antibodies in

the aetiology of the disease remains to be determined.
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Of the various plakin proteins envoplakin is most clo-

sely related to the desmosomal protein desmoplakin. They

both contain an N-terminal plakin domain, followed by a

central coiled-coil rod domain and a C-terminal tail

domain. Three PRD domain subclasses have been desig-

nated; types A, B and C. The envoplakin tail domain has a

C-type PRD which is joined to the rod domain by a con-

served linker domain. The desmoplakin tail domain has one

of each type of PRD, in the order A, B, C, with the linker

domain joining PRDs B and C. PRD domains mediate

direct connections with the cell cytoskeleton that are

essential for tissue integrity. Mutations causing premature

truncation of the desmoplakin protein and loss of inter-

mediate filament binding cause lethal acantholytic epide-

molysis bullosa, a condition that is characterized by

catastrophic fluid loss and early death (Jonkman et al.

2005). Single point mutations in PRDs B and C of

desmoplakin have been linked to arrhythmogenic right

ventricular dysplasia, a heart muscle disorder causing

arrhythmia and sudden cardiac death (Alcalai et al. 2003;

Yu et al. 2008). To begin understanding the mechanisms,

crystal structures have been determined of desmoplakin

PRD-B and PRD-C (PDB: ILM7 and ILM5, Choi et al.

2002) and envoplakin PRD-C (4QMD) modules in the

absence of ligands. Herein, we report the backbone reso-

nance assignments for a 193 residue protein representing

wild-type human envoplakin PRD-C. This facilitates the

study of the PRD solution structure, dynamics and inter-

actions with ligands including diverse intermediate fila-

ment proteins and binding motifs, and analysis of the

mechanism of PRD proteins in tissue formation and disease

progression.

Methods and experimental

A construct comprising the complete human envoplakin

PRD module (residues 1822–2014) was expressed with a

cleavable N-terminal His-tag using the pProEx HTc vector

(Life Technologies) in BL21 (DE3) E. coli cells. Cells
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Fig. 1 The 1H,15N-HSQC spectrum of the human envoplakin plakin

repeat domain in 50 mM HEPES, 50 mM NaCl, 0.5 mM TCEP, pH

7. Data was collected at 298 K on a Varian 800 MHz spectrometer.

Backbone 1H,15N peaks are labelled with their residue assignments.

An expanded section of the central, overlapped region of the spectrum

is shown
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were grown in M9 media supplemented with 15NH4Cl and
13C-glucose at 37 �C until an OD600 of 0.6 was reached.

The temperature was then reduced to 18 �C and protein

expression induced by the addition of 1 mM isopropyl-b-D-
thiogalactopyranoside. Cells were grown for a further 16 h,

harvested by centrifugation (7000 g for 15 min) and resus-

pended in phosphate buffered saline with complete EDTA-

free protease inhibitors (Roche). The cells were lysed using

an EmulsiFlex-C3 (Avestin) and the lysate cleared by cen-

trifugation (75,000 g for 45 min). The envoplakin PRD was

purified from the supernatant by nickel affinity chromatog-

raphy using HisTrap HP columns (GE Life Sciences). The

poly-His tag was cleaved using Tobacco Etch Virus pro-

tease, leaving 8 exogenous residues. The PRD was further

purified by size exclusion chromatography using a Super-

dex-75 column (GE Life Sciences).

NMR experiments were performed at 298 K on Agilent

NMR spectrometers equipped with cryogenic Z-axis pulse

field gradient probes. Backbone assignments were made

using BEST versions of the HNCA, HNCACB, HNCOCA,

HNCO and HNCACO experiments (Schanda et al. 2006)

and a standard CBCACONH pulse sequence (Grzesiek and

Bax 1992). The HNCA, HNCACB, HNCO and HNCOCA

experiments were performed on a 900 MHz spectrometer

while HNCACO and CBCACONH experiments were col-

lected on a 600 MHz spectrometer. Spectra were processed

using NMRPipe (Delaglio et al. 1995) and analysed using

CCPN software (Vranken et al. 2005).

Extent of assignments and data deposition

The 1H, 15N HSQC of the envoplakin PRD is shown

(Fig. 1). Backbone assignments have been completed for

96 % of amide groups, 95 % of C0, 94 % of Ca and 93 %

of Cb non-proline residues. The C0, Ca and Cb have been

determined for all of the proline residues. Assignments for

residues 1–3, 7 and 8 of the artefactual remnants of the

N-terminal His-tag are missing, and those peaks which are

assigned for this element exhibited sharp NMR signals,

indicative of disorder. The resonance assignments of

Asp1823, Phe1825, Thr 1854, Gln1900, Val1910, Ile1955,

Asn1890, Thr1893 and Gln1894 are incomplete. Analysis

using TALOS? (Shen et al. 2009) indicated that Asp1823,

Asn1890, Val1910 and Phe1925 are in unstructured ele-

ments, Thr1893, Gln1894 and Gln1900 are found in the

fourth helix of the protein, and Ile1955 is located in the

eighth helix of the domain. Although the latter four resi-

dues are in a structured region of the PRD, according to

TALOS? and structure comparison with the known

desmoplakin PRD structures (ILM5 and ILM7, Choi et al.

2002) and the crystal structure of the envoplakin PRD

(4QMD), the repetitive nature of the 4.5 plakin repeat

motifs that define the PRD fold creates difficulties in

resolving the highly overlapped chemical shifts of these

particular residues (Fig. 1). The chemical shift values for

the 1H, 13C and 15N resonances of envoplakin PRD have

been deposited at the BioMagResBank (http://www.bmrb.

wisc.edu) under accession number 26642.
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