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Abstract PsbP (23 kDa) is an extrinsic eukaryotic pro-

tein of photosystem II found in the thylakoid membrane of

higher plants and green algae. It has been proven to be

indispensable for proper functioning of the oxygen evolv-

ing complex. By interaction with other extrinsic proteins

(PsbQ, PsbO and PsbR), it modulates the concentration of

two cofactors of the water splitting reaction, Ca2? and Cl-.

The crystallographic structure of PsbP from Spinacia ol-

eracea lacks the N-terminal part as well as two inner re-

gions which were modelled as loops. Those unresolved

parts are believed to be functionally crucial for the binding

of PsbP to the thylakoid membrane. In this NMR study we

report 1H, 15N and 13C resonance assignments of the

backbone and side chain atoms of the PsbP protein. Based

on these data, an estimate of the secondary structure has

been made. The structural motifs found fit the resolved

parts of the crystallographic structure very well. In

addition, the complete assignment set provides preliminary

insight into the dynamic regions.

Keywords PsbP � Photosystem II � Oxygen evolving
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Abbreviations

AEBSF 4-(2-Aminoethyl) benzenesulfonyl fluoride

hydrochloride

BME Eagle’s basal medium

EDTA Ethylenediaminetetraacetic acid

IPTG Isopropyl b-D-1-thiogalactopyranoside
LB Lysogeny broth

OD Optical density

OEC Oxygen evolving complex

PI Protease inhibitors

Biological context

Photosystem II is a multi-protein, -lipid, and -pigment

complex, which spans the thylakoid membrane of all

photosynthetic organisms. Its protein fraction consists of

two major parts, an intrinsic cluster of proteins and a set of

extrinsic, ‘‘accessory’’, proteins. While the intrinsic pro-

teins are highly conserved among the photosynthetic spe-

cies, the extrinsic proteins have evolved, probably from

their homologous cyanobacterial precursors, as adaptations

to the different photosynthetic apparatus in eukaryotes as

compared to prokaryotes (Shen et al. 1998; Enami et al.

2005).

The PsbP protein is located on the lumenal side of

thylakoids, in the oxygen evolving complex (OEC) of
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Nové Hrady, Czech Republic

123

Biomol NMR Assign (2015) 9:341–346

DOI 10.1007/s12104-015-9606-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s12104-015-9606-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12104-015-9606-2&amp;domain=pdf


photosystem II, which is the site of the water-splitting

reaction yielding molecular oxygen. PsbP is part of a

barrier of extrinsic proteins, which surround the reaction

centre with the Mn4CaO5 cluster at the lumenal thylakoid

surface.

In total four extrinsic proteins have been found in most

higher plants: PsbO (30 kDa), PsbP (23 kDa), PsbQ

(16.5 kDa) and PsbR (10 kDa). The biggest of these, PsbO,

is conserved across the all photosynthetic phyla, unlike the

remaining three extrinsic proteins. The exact binding

topology and interactions of these proteins still remain

unclear, but recently more experimental data have yielded

a clearer picture of the assembly of the entire OEC (Bricker

et al. 2012; Järvi et al. 2013; Ido et al. 2014; Nishimura

et al. 2014; Mummadisetti et al. 2014).

One known function of PsbP is controlling the concen-

trations of two co-factors of water oxidation—Ca2? and

Cl- (Popelkova and Yocum 2007). Binding of PsbP to the

thylakoid membrane induces structural changes, which are

necessary for stable oxygen production during photosyn-

thesis. The N-terminal segment of PsbP is indispensable for

this conformational change to occur. When the PsbP pro-

tein is deprived of the 15 amino acids at the N-terminus, it

is no longer capable of changing the topology of the

membrane and the oxygen production decreases dra-

matically. In this case, it has been shown that PsbQ can

compensate such a defect in the PsbP protein and helps to

restore the levels of oxygen being released (Ifuku et al.

2011; Kakiuchi et al. 2012; Tomita et al. 2009). Pre-

liminary studies in our group have provided the first so-

lution structure of PsbQ. (Horničáková et al. 2011; Rathner

2013).

The three dimensional structure of PsbP from Spinacia

oleracea has been resolved recently by X-ray crystallog-

raphy at high resolution (1.98 Å) (Kopecký et al. 2012;

Kohoutová et al. 2009), see Fig. 1. The resolved part of the

structure compares very well with an earlier structure of

PsbP from Nicotiana tabacum (Ifuku et al. 2004). The

electron density was not resolved in the N-terminal resi-

dues (1–19) and in two internal sections (res. 94–111 and

139–143), although the crystal did not contain any degra-

dation products. Additional data from Raman spectroscopy

and molecular dynamics simulation suggested a dynamic

nature for these regions. The N-terminus was modeled to

contain a b-sheet element and the two unresolved internal

regions to form two loops. Intrinsic disorder of the N-ter-

minal part would be in accordance with its suggested

function (Tomita et al. 2009; Ido et al. 2012).

In this paper we present the first NMR resonance as-

signment of PsbP as a foundation for further solution NMR

studies of this protein, which will ultimately include in-

teraction experiments with co-factors and other Psb

proteins.

Methods and experiments

Protein expression and purification

The expression protocol followed Kohoutová et al. (2009)

with some modifications. The gene coding for PsbP was

included in the JR3133 plasmid, which also includes a His6
tag attached to the N-terminus of the protein. The trans-

formed E. coli BL21DE3 cells were grown in 25 ml of LB

medium (Kanamycin, 30 lg/ml) as an overnight culture.

After 12 h of cultivation at 37 �C, the culture was diluted

1:100 and used to inoculate 1L of fresh LB medium. When

the optical cell density reached 1 (after 2–3 h of cultivation at

37 �C with stirring at 150 rpm), the culture was centrifuged

(45 min, 4000g, 30 �C). The pellet was resuspended in the

corresponding amount ofM9mediumcontaining (98 %) 15N

ammonium sulfate (Sigma Aldrich) for the singly labeled

protein and—in the case of doubly labeled protein produc-

tion—(99 %) universally 13C labeled glucose (Sigma

Aldrich). In both cases, theminimalmediumwas spikedwith

1 ml of vitaminmixture (BMEvitamins 1009 solution). The

cells were grown for 1 h at 37 �C and then induced with

1 mM IPTG. After induction, the cultivation temperature

was lowered to 28 �C in order to prevent the undesirable

formation of inclusion bodies. The cells were afterwards

incubated overnight extending the total incubation time to

24 h, where an OD of 3 was achieved.

The harvested pellets were resuspended in 50 ml of ice-

cold phosphate buffer (20 mM KH2PO4, 500 mM NaCl,

20 mM imidazole, 1 mM AEBSF, pH 7.4) and repeatedly

Fig. 1 Cartoon representation of the X-ray crystallographic structure

of PsbP (PDB ID: 2VU4) (Kopecký et al. 2012). The inner four

stranded anti-parallel b-sheet core is surrounded by five short a-
helices. The missing segments, labeled at the adjacent residues, are

represented as dotted lines. The residues G1, V117 and L118, which

are highlighted as well, could not be assigned by NMR. Numbering

includes the four amino acids remaining from the His tag linker. The

image was created using PyMOL (The PyMOL Molecular Graphics

System, version 1.5.0.4 Schrödinger, LLC) from PDB ID: 2VU4
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sonicated on ice to release the soluble protein fraction. The

lysate was filtered through a GVS filter (pore size 0.22 lm)

to remove insoluble cell debris.

Since the protein included anN-terminal His6 tag, the first

purification step was affinity chromatography using a Ni-

Sepharose High Performance (GE Healthcare) column

charged with NiSO4 and equilibrated with the binding buffer

A (20 mM KH2PO4, 500 mM NaCl, 20 mM imidazole, pH

7.4). The lysate was applied to the column and immediately

after the elution of the flow-through volume, His6-PsbP was

eluted by a linear gradient of elution buffer A (20 mM

KH2PO4, 500 mM NaCl, 500 mM imidazole, pH 7.4). The

His-PsbP containing eluates were combined and concen-

trated with Amicon Ultra-15 filters (cut-off[10 kDa) and

swapped into binding buffer B (20 mM Bis Tris, 1 mM

EDTA, pH 6.0). The protein mixture was loaded onto a ca-

tion-exchange SP Sepharose Fast Flow column (GE

Healthcare), which was washed with the binding buffer B.

The elution was achieved with a linear gradient of elution

buffer B (20 mMBis Tris, 1 mMEDTA, 1 MNaCl, pH 6.0).

The eluted His6-PsbP was concentrated to 2.3 mg/ml in

11 ml and swapped into the tag cleavage buffer (20 mM

Bis Tris, 100 mM NaCl, pH 6.0). The His6 tag was cleaved

off by incubation with human plasma thrombin (Sigma

Aldrich, 1.5 U per 1 mg of protein) for 3 h at 25 �C. The
enzymatic digestion was quenched by addition of protease

inhibitors (AEBSF). To remove the cleaved tag and the

protease, size exclusion chromatography was employed as

the last purification step. The mixture was loaded onto a

Superdex 75 Prep Grade column (GE Healthcare) and pure

PsbP was eluted with the running buffer (20 mM Bis Tris,

200 mM NaCl, pH 6.0) under constant flow of 0.3 ml/min

after 3 h. Four additional amino acids (GSHM) from the

His6 tag linker/cleavage site remained at the N-terminus of

a final PsbP sample, bringing the total amino acid count to

190. The numbering used in this paper refers to the se-

quence of this recombinant protein.

NMR experiments

All spectra were recorded on a 700 MHz Bruker Avance III

spectrometer equipped with a TCI cryoprobe. The uni-

formly 15N, 13C labeled PsbP samples were exchanged into

the NMR buffer (20 mM Bis Tris, 1 mM EDTA, 0.05 mM

NaN3, pH 6.0, 10 % D2O) to a final concentration of

500 lM and transferred into 5 mm Shigemi tubes. The

cleaving off of the N-terminal part could be prevented by

adding a protease inhibitors cocktail (complete Mini,

EDTA free from Roche Diagnostics) to each NMR sample

(concentration of 12 tablets per 100 ml). This proved

essential in order to prevent sample degradation over the

long measurement periods at elevated temperature (sam-

ples remained stable at 40 �C for typically 21 days).

For the backbone assignment, the following set of

spectra was recorded: 1H–15N HSQC, 1H–13C HSQC,

HNCO, HNCACB, CBCA(CO)NH (Grzesiek and Bax

1992), HNHA (Vuister and Bax 1993), 1H–15N HSQC

(Palmer et al. 1991). In order to achieve assignment of the

aliphatic side chains, additional spectra were obtained:

HCCH–COSY (Kay et al. 1993), H(CCO)NH, C(CO)NH

(Montelione et al. 1992) and hCCH–TOCSY (Kay et al.

1993). All NMR spectra were processed using Bruker

Topspin 3.1 or 3.2 software. The resonance assignment was

carried out manually in the CARA (Keller 2004) and

Sparky programs (Goddard and Kneller 2000). Secondary

structure was analyzed using the online version of the

Talos N program (Shen and Bax 2013), where the torsion

angles u, w and v are estimated from experimental back-

bone chemical shifts (HN, Ha, Ca, Cb, CO, N).

Assignments and data deposition

Assignments

First NMR experiments were run at 293 K due to the low

stability of the protein sample. However, 1H–15N HSQC as

well as preliminary triple resonance experiments were

hampered by high signal overlap (see Fig. 2) and severe

broadening of some resonances, which precluded any sig-

nificant number of assignments. To overcome this problem,

all NMR experiments for assignment were then recorded at

elevated temperature of 313 K after optimizing sample

stability by a protease-inhibitor stabilized preparation (see

preceding Section). This temperature increase led to a

drastic improvement of resolution through narrowing of

many broad lines presumably from regions of protein

subject to internal dynamics. When the sample is cooled

down to 293 K again, identical poorly resolved spectra are

obtained implicating that the broadening effects are re-

versible and due to the dynamic properties of the protein.

Preliminary diffusion experiments at 293 and 313 K show

that the diffusion coefficient measured respectively, in-

creases only by a factor of 1.13 (the diffusion coefficients

were corrected for the change in water viscosity at given

temperatures). This indicates that there is no significant

change in the aggregation state upon temperature increase.

The spectral dispersion observed at high temperature is

characteristic of a well-folded protein and already upon

visual inspection a high b-sheet content of PsbP can be

recognized. With the spectra recorded at 313 K, 96 % of

the backbone residues were assigned sequence-specifically

(Fig. 2). Only, G1, V117, L118 and the amide nitrogen

atoms of the 8 prolines could not be assigned. Assignment

of side-chain resonances was accomplished to 81 %. Thus

in total, 87 % of all resonances were assigned. This
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assignment enables us to proceed with the resolving of the

solution structure of PsbP and to provide a basis for in-

teraction studies between the Psb proteins. The assigned

resonances have been deposited in the Biological Magnetic

Resonance Data Bank under the Accession number 25379.

The central framed regions are magnified on the left

sides of the spectra for better comparison. The spectra were

recorded with two scans per increment and 2048 9 256

data points in the 1H and 15N dimensions, respectively.

Secondary structure

Chemical shift based analysis of secondary structure ele-

ments was performed using the online platform version of

Talos N (Shen and Bax 2013). The respective propensities

of the three main secondary structure categories—a-helix,
b-sheet and random coil were compared with the available

crystallographic structure of PsbP (PDB ID: 2VU4)

(Kopecký et al. 2012) as represented in Fig. 3. The juxta-

positioning yielded almost perfect agreement within the

crystallographically well-resolved b-sheet core and a-he-
lices. From the NMR chemical shifts the secondary struc-

tures of the segments which were not deducible from the

crystallographic electron densities, were estimated to be

random coil in solution by Talos N. These results are

corroborated by experimental NMR data at lower tem-

peratures (293 K), where only resonances of these flexible

regions appear well resolved in 1H–15N HSQC. Moreover

no evidence for a-helix or b-sheet patterns in those par-

ticular regions (residues 1–19, 94–111 and 139–143) was

found in 1H–15N NOESY–HSQC. The absence of peaks for

V117 and L118 may be related to the dynamics of the

nearby flexible loop. These findings confirm that under the

above-mentioned conditions, the NMR sample contains a
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AFig. 2 a 1H–15N HSQC

spectrum of 500 lM 15N, 13C

PsbP at 313 K (20 mM Bis Tris,

1 mM EDTA, 0.05 mM NaN3,

pH 6.0, 10 % D2O, PI). The

cross peaks are labeled with the

respective residue types and

numbers in the full recombinant

protein sequence. The side

chain NH peaks from the two

tryptophan residues are labeled

as well. Side chain NH2 peaks

of glutamine and asparagine

residues are connected by thin

horizontal lines. b 1H–15N

HSQC of PsbP recorded at

293 K under otherwise identical

conditions
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largely well-folded PsbP protein, which is well suitable for

further detailed structural investigations by NMR, espe-

cially of its dynamic properties. The ultimate target of this

ongoing research is the elucidation of the interaction net-

work of PsbP with other Psb proteins, in particular PsbQ,

PsbO and PsbR as well as their contacts to the thylakoid

and intrinsic parts of photosystem II.
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