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Abstract
Objective To understand the phenotypic and genotypic spectrum of genetic forms of rickets in 10 families.
Methods Detailed clinical, radiographic, and biochemical evaluation of 10 families with phenotypes suggestive of a genetic 
cause of rickets was performed. Molecular testing using exome sequencing aided in the diagnosis of six different forms of 
known genetic causes.
Results Eleven disease-causing variants including five previously reported variants (CYP27B1:c.1319_1325dup, 
p.(Phe443Profs*24), VDR:c.1171C>T, p.(Arg391Cys), PHEX: c.1586_1586+1del, PHEX: c.1482+5G>C, PHEX: c.58C>T, 
p.(Arg20*)) and six novel variants (CYP27B1:c.974C>T, p.(Thr325Met), CYP27B1: c.1376G>A, p.(Arg459His), CYP2R1: 
c.595C>T, p.(Arg199*), CYP2R1:c.1330G>C, p.(Gly444Arg),SLC34A3:c.1336-11_1336-1del, SLC2A2: c.589G>C, 
p.(Val197Leu)) in the genes known to cause monogenic rickets were identified.
Conclusion The authors hereby report a case series of individuals from India with a molecular diagnosis of rickets and 
provide the literature review which would help in enhancing the clinical and molecular profile for rapid and differential 
diagnosis of rickets.

Keywords Rickets · Vitamin-D-dependent rickets · Hypophosphatemic rickets · Exome sequencing

Introduction

Rickets is a disorder of growing bone caused by a defi-
ciency of calcium/phosphorous/vitamin D or defects in their 
metabolism. Defective mineralization and widening of the 
cartilaginous growth plates are the characteristic features 

of rickets [1]. Since the first description of the term “rick-
ets” in the medical literature [2], nutritional deficiency has 
been the most prevalent cause of rickets worldwide. Among 
nutritional deficiencies, vitamin D deficiency is reported as 
a common etiology [3]. In India, the prevalence rate ranges 
from 22%–92% in infants and 14%–24% in older children 
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[4]. However, there are other non-nutritional causes of rick-
ets including genetic causes, rickets due to drug ingestion, 
secondary rickets due to liver and kidney diseases, and mal-
absorption syndromes [5].

Hereditary forms of rickets are very rare and account for 
only about 13% [6]. Based on the underlying pathophysiol-
ogy, they have been broadly classified into two categories, 
vitamin-D-dependent rickets (VDDR) and hypophosphatemic 
rickets (HR). VDDR is further subclassified into four differ-
ent forms including VDDR1A, VDDR1B, VDDR2A, and 
VDDR2B, whereas hypophosphatemic rickets consists of 15 
distinct disorders which are grouped into FGF-23-dependent 
and FGF-23-independent hypophosphatemic rickets [7]. 
More recently VDDR type 3 (VDDR3) caused by disease-
causing variants in CYP3A4 has been reported [8]. Hitherto, 
19 genes are known to cause monogenic forms of rickets [7, 
9]. The overlap of the clinical spectrum of hereditary rickets 
with nutritional deficiency poses a challenge to diagnosis [9]. 
Therefore, molecular diagnosis is crucial for rickets persist-
ing after adequate treatment of underlying nutritional defi-
ciency and thereby initiating appropriate treatment. In this 
study, the authors detail the clinical and mutational spectrum 
of VDDR and hypophosphatemic rickets in 10 Indian fami-
lies along with their laboratory findings. This condition is not 
well studied in this population. Understanding the landscape 
of phenotype and genetic etiology would help in differential 
diagnosis at an early stage.

Materials and Methods

Ten unrelated individuals from different families with sus-
pected hereditary rickets were recruited for the study. A 
detailed history of illness, clinical photographs, and radio-
graphs were obtained after receiving written informed consent 
from the families. An appropriate biochemical investigation 
was performed on all the subjects and values along with refer-
ence ranges were recorded. The Institutional Ethics Commit-
tee (IEC) of Kasturba Medical College and Hospital, Manipal 
granted ethical clearance (IEC:921/2018) for this study.

Exome sequencing (ES) was carried out in probands of all 
the families (Supplementary Fig. S1) using multiple sequenc-
ing platforms and capture kits as previously described [10]. 
Variant analysis was performed using a well-defined in-
house strategy and pathogenicity assessment was based 
on parameters including type of variant, genomic location, 
effect on protein, patterns of inheritance, clinical correla-
tion, allele frequency in population databases (gnomAD, and 
ExAC), in-house database (2155 exomes), and prediction 
scores of multiple in silico tools (including MutationTaster, 
REVEL, M-CAP, SIFT, Splice AI). Guidelines and criteria 
issued by the American College of Medical Genetics and 
Genomics and the Association of Molecular Pathologists 

(ACMG-AMP) were followed for classifying the disease-
causing variants [11].

Results

Ten unrelated Indian individuals (P1 to P10), their parents, 
and unaffected siblings from 10 families were recruited for 
the study. Consanguinity was observed in 7 families. Their 
ages at clinical diagnosis ranged from 2–23 y. Detailed clini-
cal and molecular information of affected individuals and 
families along with their laboratory investigation results 
are provided in Supplementary Material S1, Supplemen-
tary Table S1 and S2, and Table 1. All the variants identified 
in this study were submitted to ClinVar database (accession 
numbers: SUB10956971,SUB10957212, SUB10957214, 
SUB10957222, SUB10957254, SUB10957263,SUB10957267, 
SCV002053826.1, SCV002054009, SCV002053849.1). The 
summary of clinical, biochemical, and molecular findings of 
all the individuals based on the final diagnosis are enumerated 
below:

Vitamin-D-dependent rickets type 1A (VDDR1A): Three 
affected individuals (P1, P2, and P3) from unrelated families had 
clinical and radiological features suggestive of VDDR1A. P1 
had a severe spectrum of disease (Fig. 1) with early age of onset 
as compared to P2 and P3. The complete biochemical inves-
tigations were available for P1 and P3, which were consistent 
with the findings of VDDR1A. P3 had normal levels of vitamin 
D and calcium owing to the treatment with vitamin-D supple-
ments. ES helped in the identification of variants in the homozy-
gous state, c.974C>T in CYP27B1 in P1, c.1319_1325dup in 
CYP27B1 in P2, and variants in the compound heterozygous 
state, c.1376G>A, and c.1319_1325dup in CYP27B1 in P3. 
Thus, a molecular diagnosis of VDDR1A was ascertained.

Vitamin-D-dependent rickets type 1B (VDDR1B): One 
affected individual (P4) was presented with bowing of legs 
and had radiological features suggestive of rickets. Her 
biochemical investigation revealed low serum calcium and 
phosphate levels with increased ALP values. Molecular anal-
ysis aided in the identification of two novel variants in the 
compound heterozygous state c.595C>T and c.1330G>C 
in CYP2R1, thus, a diagnosis of VDDR1B was ascertained.

Vitamin-D-dependent rickets type 2A (VDDR2A): An 
affected individual (P5) was presented with a leg deformity 
and wrist widening (Fig. 2). He had a severe phenotype of 
rickets along with alopecia which was noticed since birth. 
His biochemical profile showed hypocalcemia, hypophos-
phatemia, and elevated ALP levels. Analysis of exome 
sequencing data led to the identification of a known mis-
sense variant, c.1171C>T in the homozygous state in VDR 
thereby asserting the diagnosis of VDDR2A.

X-linked dominant hypophosphatemic rickets (XLDHR): 
Three individuals (P6, P7, and P8) with clinical features 
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suggestive of hypophosphatemic rickets were presented 
with genu varum and abnormal gait. One of the individu-
als (P6) had a severe phenotype (Supplementary Material 
S1 and Fig. 3) with early onset of disease. The biochemical 
findings were available for P6; however, low levels of serum 
phosphate and increased values of ALP were observed in 
P7 and P8. On molecular analysis, one splice-site variant, 
c.1586_1586+1del in PHEX was observed in the heterozy-
gous state in P6. The c.1482+5G>C in PHEX was observed 
in P7, whereas c.58C>T was observed in heterozygous 
in PHEX in P8. Thus, a diagnosis of X-linked dominant 
hypophosphatemic rickets in all three individuals was made.

Hypophosphatemic rickets with hypercalciuria (HHRH): 
One individual (P9) was presented with short stature and dif-
ficulty in walking. His radiographs and biochemical findings 
(low phosphate levels with elevated ALP) were suggestive 
of a monogenic form of hypophosphatemic rickets. Analysis 
of ES data revealed a novel variant c.1336-11_1336-1del in 
the homozygous state in SLC34A3, thereby the molecular 
diagnosis was identified.

Fanconi–Bickel syndrome (FBS): One affected girl (P10) 
of 8 y of age was referred with complaints of multiple frac-
tures. Generalized osteopenia and bowing of upper limbs 
were observed in her radiographs (Fig. 4). Low levels of 

Fig. 1  Radiographic profile 
of an individual with vitamin-
D-dependent rickets type I. 
P1 (age: 4 y) shows delayed 
tooth eruption at 8 y 9 mo (a), 
delayed carpal ossification 
(b), metaphyseal dysplasia at 
the ends of long bones (c–e): 
small epiphyses at the knee 
(c), bending of long bones (c, 
d), and small capital femoral 
epiphysis (e). The radiographic 
appearance was affected by his 
treatment

Fig. 2  Radiographs of an indi-
vidual with vitamin-D-dependent 
rickets type IIA. P5 (age 4 y) 
shows severe osteopenia, small 
epiphyses at the knee, irregular 
metaphyses, bending of the fibula 
(a), dorsal–lumbar kyphosis (b), 
and cupping of radius and ulna 
(c and d) 
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glucose, phosphate, and elevated serum ALP were observed 
in her laboratory profile. A provisional diagnosis of osteo-
genesis imperfecta was made. However, exome sequenc-
ing helped in the identification of a novel missense variant, 
c.589G>C in SLC2A2, which led to the diagnosis of FBS.

Discussion

The interplay of multiple genetic factors maintains the metabolic 
homeostasis of vitamin D, calcium, and phosphate in the body, 
and the perturbation of this essential balance leads to different 
genetic forms of rickets. Disease-causing variants in CYP27B1 
cause an autosomal recessive disease, vitamin-D-dependent 
rickets type 1A, VDDR1A (MIM # 264700) [12]. The three 
most reported variants in CYP27B1  are  c.1319_1325dup, 
c.262delG, and c.195+2T>G [13]. The most common vari-
ant, c.1319_1325dup is also found in two individuals in the 
present cohort (P2 and P3). Genotype–phenotype correlation 
for VDDR1A is not well established. However, by statistical 
analysis of reported disease-causing variants and clinical fea-
tures, a recent study has highlighted a few findings [13]. Accord-
ing to this study, c.195+2T>G leads to the most severe clinical 
presentation whereas in contrast patients with c.262delG variant 
present with the least severe phenotypic manifestation owing 
to age and height at evaluation. However, affected individuals 
with variant, c.1319_1325dup (as found in P2 and P3) had dif-
ferent phenotypic manifestations according to a study. One of 
the individuals had seizures along with the clinical presentation 
and another unrelated individual had all the other typical mani-
festations of VDDR1A without seizures [14]. All the affected 
individuals (P1, P2, and P3) in the present study had biochemi-
cal profiles similar to the findings of VDDR1A [7] (Supplemen-
tary Table S1). Three affected individuals are described in the 
present study with variants in CYP27B1, one of the individuals 
(P1) showed the complete and severe spectrum of disease with 
enamel hypoplasia and hypocalcemic seizures with early age of 
onset (4 mo of age). Interestingly, the novel variant identified 
in P1 was nonsynonymous as compared to truncating variant 
found in the other two individuals (P2 and P3). The difference 
in disease severity could be possibly due to phenotypic vari-
ability [14].

Vitamin-D-dependent rickets type 1B, VDDR1B (MIM 
# 600081) is an autosomal recessive disease caused by bial-
lelic variants in CYP2R1 [15]. Only 6 variants in 31 patients 
have been described in literature hitherto [16]. Through the 
present study, the authors add two more novel variants in the 
literature, c.595C>T and c.1330G>C, which are identified 
in compound heterozygous state in CYP2R1 in P4. Recently, 
Bakhamis et al. suggested a semi-dominant inheritance pat-
tern of this disease affecting individuals equally with both 
biallelic and single-heterozygous variants [16]. The only 
clinical feature different in both groups of individuals was 
hypocalcemic manifestations. The typical biochemical 

Fig. 3  Lower limb radiograph of P6 with X-linked hypophosphatemic 
rickets (age 22 y). Bowing of long bones, and osteopenia with frayed 
metaphyses are seen (a) 

Fig. 4  Radiographic profile of P10 (age 8 y) with Fanconi–Bickel 
syndrome. Multiple sites of fracture and osteopenia are seen in her 
upper and lower limbs (a–c) 
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findings of VDDR1B (except for PTH and 25-OH vitamin D 
levels) corroborate with the parameters of the affected sub-
ject (P4) in the present study (Supplementary Table S1) [7].

The third entity of the VDDR group of disorders, vitamin-
D-dependent rickets type 2A, VDDR2A (MIM # 277440), is 
an autosomal recessive disease caused by biallelic variants in 
the vitamin D receptor gene, VDR [17]. VDR constitutes two 
functional domains, namely the N-terminal dual zinc finger 
DNA binding domain (DBD), and the C-terminal ligand-
binding domain (LBD) [17]. Genotype–phenotype correla-
tion in VDDR2A suggests that all the inactivating biallelic 
variants found in the DBD result in severe clinical presenta-
tion (with alopecia) due to complete loss of function whereas 
a milder phenotype is observed in individuals with variants 
in the LBD due to partial loss of function of VDR [18, 19]. 
However, there are exceptions to this rule [20]. The affected 
individual (P5) in the present cohort also had a severe spec-
trum (with alopecia) of disease presentation; however, the 
variant was located in LBD. Functional analysis performed 
for this variant revealed that Arg391Cys leads to poor VDRE 
binding in vivo and reduced transactivation thus leading to a 
severe phenotype [20]. The biochemical findings (except for 
PTH and 25-OH vitamin D levels) observed in the affected 
boy (P5) in the present study corroborate with the laboratory 
profile of VDDR2A (Supplementary Table S1) [7].

X-linked dominant hypophosphatemic rickets, XLDHR 
(MIM # 307800) belongs to the FGFR3-dependent rickets 
category, and it is caused by pathogenic variants in PHEX 
(phosphate-regulating endopeptidase homolog X-linked). A 
recent study has stated that individuals harboring pathogenic 
variants in the N-terminal region have an earlier onset of dis-
ease as compared to subjects with variants in C-terminus [21]. 
Nevertheless, the affected individuals (P6, P7, and P8) in the 
present cohort had similar ages of onset of disease (average: 
2 y) irrespective of the location of variants (2 variants in C 
terminus and 1 variant in N terminus). The authors report three 
known truncating variants, c.1482+5G>C, c.1586_1586+1del 
and c.58C>T in PHEX reported earlier to cause XLDHR 
[22–24]. Both the canonical and noncanonical splice variants 
cause the skipping of exons 13 and 14, respectively. The phe-
notype observed in P6 harboring the canonical splice variant 
was comparatively more severe (Supplementary Material S1) 
than in the other two individuals (P7 and P8). The biochemical 
findings of affected individuals (P7 and P8) with variants in 
PHEX are mentioned in Supplementary Table S1.

Hypophosphatemic rickets with hypercalciuria, HHRH 
(MIM # 241530) is an autosomal recessive disease caused 
due to biallelic variants in SLC34A3 (solute carrier family 
34, member 3) [25]. A review of all the previously reported 
patients shows that affected individuals with rickets have 
markedly low levels of serum phosphate as compared to 
subjects with only renal phenotype. Additionally, most indi-
viduals with homozygous variants have rickets as compared 

to subjects with compound heterozygous variants whose 
phenotype is variable [26]. The affected individual (P9) 
in the present cohort harbored a novel variant, c.1336-
11_1336-1del (in SLC34A3) in the homozygous state with 
all the characteristic features of HHRH including clini-
cal and biochemical profiles (Table 1 and Supplementary 
Table S1) [7]. Subjects with a single-heterozygous variant 
(carriers) have also been reported earlier with mild symp-
toms [26].

Hypophosphatemia is a common feature of many other 
diseases which are not considered to be a classical form of 
HR. Fanconi–Bickel syndrome, FBS (MIM # 227810) an 
autosomal recessive disease is one such entity that mimics 
hypophosphatemic rickets as well as osteogenesis imperfecta 
(OI) [27]. FBS is caused due to biallelic variants in SLC2A2 
(solute carrier family 2 member 2) or GLUT2 (glucose trans-
porter 2 protein) known to mediate bidirectional glucose 
transport [28]. Affected individuals with variants in this gene 
are also susceptible to noninsulin-dependent diabetes mel-
litus (NIDDM) [29]. The variant, c.589 G>C (in SLC2A2) 
observed in the present study (in P10) is a novel alternate 
variant for the first-ever reported variant in SLC2A2 in the 
homozygous state which causes a different missense change 
at the same amino acid codon [28]. The reported variant, 
c.589G>A p.Val197Leu (in SLC2A2) has been in discus-
sion since its first description as it was also reported in het-
erozygous state in African American women with diabetes 
mellitus (DM). Genotype–phenotype correlation by a recent 
study highlights that biallelic/nonfunctional variants show a 
complete spectrum of FBS including hepatonephromegaly 
owing to glycogen accumulation, renal tubular dysfunction, 
and hypophosphatemic rickets whereas subjects with single-
heterozygote variants are susceptible to NIDDM owing to 
impaired sugar transport in the kidney [29]. Clinical features 
and biochemical findings (Supplementary Table S1) observed 
in the patient described in the present study (P10) are con-
cordant with the complete phenotypic spectrum of FBS.

Diagnosis of rickets requires a multifaceted approach 
which begins with the collection of detailed family history, 
clinical evaluation, radiographic and biochemical investiga-
tions, and use of next-generation sequencing (NGS) to receive 
a definitive molecular diagnosis. Often, the clinical profile of 
monogenic rickets is similar to classical nutritional deficiency 
rickets, which leads to a delay in diagnosis and failure of treat-
ment. However, in the present era, a low index of suspicion 
of genetic rickets and early deployment of genetic tests are 
necessary to achieve a rapid and accurate diagnosis. Recently, 
Marik et al. reported a cohort of 63 individuals affected 
with rickets and proposed a gene panel for the diagnosis of 
hypophosphatemic rickets [30]. Molecular diagnosis plays a 
major role in early intervention and helps in redirecting the 
treatment plan which would lead to significant improvement 
in clinical, biochemical, and radiological features.
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Conclusion

In this study, the authors have presented profiles of six differ-
ent genetic forms of rickets including vitamin-D-dependent 
(VDDR1A, VDDR2A, and VDDR2B) rickets, hypophos-
phatemic rickets (XLDHR and HHRH), and a disease entity with 
rickets as one of the clinical features, Fanconi–Bickel syndrome 
(FBS). With the addition of six novel variants in four known 
genes (CYP27B1, CYP2R1, SLC34A3, and SLC2A2), the present 
study provides an update to the mutation spectrum.
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