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Abstract
For an (imaginary) hyperelliptic curve H of genus g, with a Weierstrass point �, taken as
the point at infinity, we determine a basis of the Riemann-Roch space L(� + m�), where
� is of degree zero, directly from the Mumford representation of �. This provides in turn a
generating matrix of a Goppa code.
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The first algorithm for the computation of a basis of the Riemann-Roch space L(D)

associated to a divisor D on a curve is ascribed to von Brill and Noether [2]. Because such a
basis allows both to construct algebraic geometric codes and to give addition formulas in the
divisor class group of the curve, it is an essential tool in Coding Theory andCryptography, and
many authors have worked on the problem to make its computation more effective (e.g., [5,
8]), often in the equivalent scenario of function fields (cf. [19, Remark 2.3.15]). In particular,
an algorithm,which is polynomial in the input size, is given in [7] with an arithmetic approach
to the Riemann-Roch problem, and other algorithms were developed in order to simplify the
computation, each under particular assumptions.

In this paper the class of hyperelliptic curves is considered. Many papers have been
devoted to the study of arithmetic in these curves, among the others we mention in particular
[3, 11, 12]. The interest on the subject does not seem to decline, as witnessed by more recent
publications (cf. [14, 20]). A significant literature has also been produced in order to consider

Supported by Budget strategico Dip (BsD), Supported by Sustainability Decision Framework (SDF)
Research Project – CUP B79J23000540005 – Grant Assignment Decree No. 5486 adopted on 2023-08-04.

B Giuseppe Filippone
giuseppe.filippone01@unipa.it

Giovanni Falcone
giovanni.falcone@unipa.it

1 Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi 34, Palermo
90123, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-024-00713-2&domain=pdf
http://orcid.org/0000-0002-5210-5416
http://orcid.org/0000-0001-7315-1852


Cryptography and Communications

codes over hyperelliptic curves [1, 13, 17], and hyperelliptic curves in Cryptography have
been investigated, e.g., in [10, 11, 18].

Both the Mumford representation of a divisor � of degree zero on a hyperelliptic curve
and the Riemann-Roch space L(D), where D = � +m�, are the subject of a large number
of papers, also due to their applications in Coding theory. The dimension of L(D) has been
computed in [1, Lemma 2.1, p. 155] and an explicit basis of L(D) has been indicated in [4,
Theorem 1, p. 275].

But it has not been indicated in the literature that a basis of the latter can be directly
found from the former, and it is the aim of the present note to give an explicit basis of L(D),
stressing the meaning of the Mumford representation of � in this context. Note that, for a
nodal curve, a data structure inspired by the Mumford representation has been used for the
same purpose in a recent paper by Le Gluher and Spaenlehauer [14], and that in a paper by
Garzón and Navarro [5] a basis of L(D) in the more general case of superelliptic curves is
provided, but for a given divisor D.

Algebraic geometric codes were introduced by Goppa in [6] several decades ago. These
codes turned out not only to be interesting in Coding Theory, but also to be applicable in
Cryptography, e.g. in public-key cryptographic systems [9, 16].

Using this basis, one constructs directly a generating matrix of an algebraic geometric
code over a hyperelliptic curve defined over a Galois field of characteristic p ≥ 2. Also, it is
possible to construct MDS codes. We make this for a toy model of MDS codes in Section 3.
Although the reduction of a divisor D to its reducedMumford formmight be an inconvenient
task, involving the application of the Cantor algorithm (see Remark 1), this difficulty does not
occur in the construction of algebraic geometric codes, because in that case one can directly
take D in the reduced form D = � + m�.

1 Notations and reduction to theMumford representation

Let K be the algebraic closure of the field k and letH be a hyperelliptic curve of genus g over
k with a rational Weierstrass point �. The non-singular curve H is described by an affine
equation of the form

y2 + yh(x) = f (x) (1.1)

where f (x) is a polynomial of degree d = 2g + 1, h(x) is a polynomial of degree at most
g, and � = [0 : 1 : 0] is the point at infinity of H [15, Prop. 1.2]. If char k �= 2, changing y
into y − h(x)/2, and f (x) into f (x) − h2(x)/4, transforms the above equation into

y2 = f (x),

whereas, if char k = 2, then it is not possible to reduce h(x) to zero.
Let D be a divisor of H. Since its Riemann-Roch space

L(D) = {F ∈ K(H) : div(F) + D is effective} ∪ {0}
is null both in the case where D has negative degree, and in the case where D has degree

zero and D /∈ Princ(H), whereas L(D) =
〈
F−1
0

〉
in the case where D = div(F0), from now

on we will assume D has positive degree m.

Remark 1 In order to extend the use of Mumford representation to divisors of arbitrary
degree, first we recap the results in [3, 10].
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It follows from the Riemann-Roch theorem that each divisor ofH can be written uniquely
in the following form

D = P1 + P2 + · · · + Pt + (m − t)� + div(ψ(x, y))

for t points P1, . . . , Pt in H distinct from �, with t ≤ g, Pi + Pj − 2� /∈ Princ(H), and a
suitable ψ(x, y) ∈ K(H), that is, any divisor class D + Princ(H) ∈ Div(H)/Princ(H) can
be reduced to the form P1 + · · · + Pt + (m − t)�.

Let Pi = (xi , yi ) and note that any divisor

� = l1P1 + · · · + ls Ps − (l1 + · · · + ls)�

on the curveH, of degree zero and such that li > 0 for any index i , determines uniquely the
polynomiala(x) = (x − x1)l1 · · · (x − xs)ls and thepolynomialb(x)which is the polynomial
such that b(xt ) = yt (with a corresponding degree of contact with H, in the case where

li > 1, that is, such that
( d
dx

) j
(b2(x) + b(x)h(x) − f (x))|x=xi = 0, for 0 ≤ j ≤ li − 1).

Hence b2(x) + h(x)b(x) − f (x) is a multiple of a(x) and the degree of b(x) is smaller
than the degree of a(x), and conversely, a pair of polynomials a(x) and b(x) such that
b2(x) + h(x)b(x) − f (x) is a multiple of a(x) and the degree of b(x) is smaller than the
degree of a(x) defines such a divisor of degree zero, which is written as� = div(a(x), b(x)).
Note that an intersection point of the curve with the x-axis is contained in the support of �

if and only if GCD(a(x), a′(x), b(x)) �= 1. If GCD(a(x), a′(x), b(x)) = 1 and the degree
of a(x) is not greater than the genus g of the curve (or equivalently, if the support of �

contains at most g points which are mutually non-opposite), one says that div(a(x), b(x)) is
in Mumford form (or reduced form).

Now, we can directly extend the Mumford representation to any divisor D = D1 − D2

(with Di effective of degree mi ∈ Z) by writing it as

D = � + m� + div(ψ(x, y)),

with m = m1 − m2, for a suitable divisor � = div
(
u(x), v(x)

)
in Mumford form, and a

suitable function ψ(x, y), obtained with the following argument.
First, taking the vertical lines x − xi passing through the points in the support of D2 we

can write
−D2 = D′

2 − 2m2� − div(φ),

with φ = ∏
(x − xi ) and D′

2 effective, hence

D = D1 − D2 = D3 − 2m2� − div(φ),

with D3 = D1 + D′
2 an effective divisor of degree m1 + m2, hence of the form

D3 = div(a(x), b(x)) + (m1 + m2)�.

Secondly, applying the reduction step in Cantor’s algorithm (cf. [3], and [10] in the case
where char k = 2), we change D3 with

D′
3 = D3 − div(y − b(x)) = div(a′(x), b′(x)) + (m1 + m2)�,

which belong to the same divisor class, where

a′(x) = f (x) − b(x)h(x) − b2(x)

a(x)

123



Cryptography and Communications

and
b′(x) = −h(x) − b(x) mod a′(x).

This way deg a′(x) < deg a(x), hence after finitely many iterations one gets deg a′(x) ≤
g, and one can write

D = � + m� + div(ψ(x, y)),

where ψ(x, y) is the resulting function of the above reduction.
Finally, the function

� : L(D) �→ L(� + m�),

mapping F onto the product ψ(x, y)F , is an isomorphism.
Up to the latter isomorphism, we will directly assume that D = � + m�, m > 0.

2 Main theorem

In the following theorem we determine a basis of L(D), with D = � + m�, and � =
div(u(x), v(x)) is in Mumford representation, with deg u(x) ≤ g. We recall that, up to the
isomorphism defined in Remark 1, any divisor can be reduced in such a form. Also, the
kind of unexpected varying, according to m, of its dimension becomes manifest: in order to
determine dimL(D), in [1, Lemma 2.1] it is distinguished the case m ≥ 2g − t − 1 (with
t := deg u(x), where it is proved that, in spite of the general behavior, dimL(D) = m−g+1,
and the case t ≤ m < 2g − t − 1, where dimL(D) = ⌊m−t

2

⌋ + 1 (cf. Remark 2 for details).

Theorem 1 Given the hyperelliptic curve H of genus g and degree d = 2g + 1 defined by
(1.1), given the divisor D = � +m� of positive degree m onH, with � = div(u(x), v(x))
in Mumford representation, let t := deg u(x) ≤ g and let

�(x, y) = y + v(x)

u(x)
,

for char k = p > 2, and �(x, y) = y+v(x)+h(x)
u(x) , for p = 2.

Ifm < d−t , then a basis ofL(D) is provided by the set of functions xi , with 0 ≤ i ≤ m−t
2 .

If m ≥ d − t , then a basis of L(D) is provided by the set of functions xi and �(x, y) · x j ,
with 0 ≤ i ≤ m−t

2 and 0 ≤ j ≤ m−(d−t)
2 .

Proof In order to compute div(�(x, y)), recall that deg v(x) < deg u(x) ≤ g and that, in the
case where p = 2, deg h(x) ≤ g, as well.

Since l = max(deg v(x), deg h(x)) ≤ g, the degree of
( − v(x) − h(x)

)2 is smaller
than the degree of f (x), hence there are d = 2g + 1 (not necessarily distinct) intersection
points of the curve y + v(x) + h(x) = 0 and H in the affine plane, the remaining d(l − 1)
intersection points coinciding with�. More precisely, t intersection points in the affine plane
belong to the support of the divisor �̂ = div

(
u(x), w(x)

)
in Mumford representation, where

w(x) = −v(x) − h(x) mod u(x), therefore

div
(
y + v(x) + h(x)

) = �̂ + W + (
t + d(l − 1)

)
�,

where W is the effective divisor of degree d − t , whose support consists of the remaining
intersection points in the affine plane. Note that, in the case t = 0, the divisor � has the
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Mumford representation (1, 0) and the degree of W is d = 2g + 1 and the support of W
coincides with the intersections of H with the curve y + h(x) = 0.

On the other hand, the intersection of u(x) = 0 and H is simply

div
(
u(x)

) = � + �̂ + (td)�.

Summarizing, if t > 0, then

div(�(x, y)) = div
(
y + v(x) + h(x)

) − div
(
u(x)

)

= W − � − (d − t)�
(2.1)

and, if t = 0, then � = (1, 0) and �(x, y) = y + h(x), whence

div(�(x, y)) = div (y + h(x)) − div (1) = W − d�,

thus in both cases the equality (2.1) holds. Hence

�(x, y) ∈ L(D) if and only if m ≥ d − t . (2.2)

Letm ≥ d − t , that is, the case where �(x, y) ∈ L(D). First we consider the cases where
either t = 0 (hence m ≥ d = 2g + 1), or t = 1 (hence m ≥ d − 1), or t ≥ 2 and m ≥ d − 2,
as in these cases we know, by the theorem of Riemann-Roch, that the dimension of L(D) is
m − g + 1. Thus, in order to prove that

L(D) =
〈
xi , �(x, y) · x j

〉
, with 0 ≤ i ≤ m − t

2
and 0 ≤ j ≤ m − (d − t)

2
, (2.3)

it is sufficient to note that, for each of those values of the parameters i and j , these functions
belong to L(D), because

1 +
⌊
m − t

2

⌋
+ 1 +

⌊
m − (d − t)

2

⌋
= m − g + 1,

and the claim will follow from dimensional reasons. Now,

D + div(xi ) = (� + m�) + i · div(x), (2.4)

as well as

D + div (�(x, y) · x j ) = (� + m�) + j · div(x) + (
W − � − (d − t)�

)

= W + j · div(x) − (d − t − m)�,
(2.5)

are effective divisors, hence the functions belong to L(D).

Secondly, we consider the case where d − t ≤ m < d − 2. In this case, the dimension of
L(D) is not necessarily m − g + 1, but still �(x, y) ∈ L(D).

If 0 ≤ ε ≤ t − 2, and if, for short, we put m = mε = d − 2 − ε, then

Lε := L(� + mε�),

hence the space L0 = L(� + (d − 2)�) is generated, by the above case, by the functions
xi and �(x, y) · x j with 0 ≤ i ≤ m0−t

2 and 0 ≤ j ≤ m0−(d−t)
2 . Of course, Lε+1 ⊆ Lε ,

and we will see that dim(Lε+1) = dim(Lε) − 1. Indeed, by (2.4) and (2.5), the functions
xi , �(x, y)x j of Lε belong to Lε+1 as long as i ≤ mε+1−t

2 , and j ≤ mε+1−(d−t)
2 , that is,

dim(Lε+1) = 1 +
⌊
mε+1 − t

2

⌋
+ 1 +

⌊
mε+1 − (d − t)

2

⌋
,
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and our assertion is proved. In particular, we found that dim(Lε+1) = dim(Lε) − 1, because
mε+1 = mε − 1 and

dim(Lε) = 1 +
⌊
mε − t

2

⌋
+ 1 +

⌊
mε − (d − t)

2

⌋
,

where the missing function is, once for one, xi or �(x, y)x j , because d is odd and changes
the parity of mε+1 − t in that of mε+1 − (d − t).

Now we consider the cases where m < d − t , that is, the cases where, by (1.1), �(x, y) /∈
L(D). If t = 0 and m ∈ {d − 2, d − 1}, or if t = 1 and m = d − 2, then on the one hand
�m−t

2 � = m − g and, on the other hand, by the theorem of Riemann-Roch, the dimension of
L(D) is m − g + 1. Thus, by dimensional reasons, L(D) = 〈

xi
〉
, where 0 ≤ i ≤ �m−t

2 �.
In order to prove that L(D) = 〈

xi
〉
, where 0 ≤ i ≤ (m−t)

2 also in the remaining cases
where either t = 0, 1 and m < d − 2, or 2 ≤ t ≤ m < d − t , write m = mε = d − t − ε

with 1 ≤ ε ≤ d − 2t , and again put, for short,

Lε := L(� + mε�).

Note that appending the value ε = 0, that is, considering also the casewherem = m0 = d−t ,
by (2.3) we have L0 = 〈

xi , �(x, y)
〉
, with 0 ≤ i ≤ m0−t

2 .
Of course, Lε+1 ⊆ Lε for any 0 ≤ ε ≤ d − 2t , but in this case we will see that

dim(Lε+1) =
{
dim(Lε) if mε − t is odd,
dim(Lε) − 1 if mε − t is even.

(2.6)

Indeed, by (2.2) �(x, y) /∈ Lε as soon as ε > 0, and since, by (2.4), the functions xi of Lε

belong to Lε+1 as long as i ≤ mε+1−t
2 , we see that

dim(Lε+1) = 1 +
⌊
mε+1 − t

2

⌋
,

and we get the equalities in (2.6), because mε+1 = mε − 1. But this equality shows, as well,
that the theorem is true for any value of m. 
�
Remark 2 It is remarkable that the dimensions in [1, Lemma 2.1] look different from the
ones above: for m = 2g − t, 2g − t − 1, in our theorem we find dimL(D) = 1 + ⌊m−t

2

⌋
,

whereas in [1, Lemma 2.1] we read dimL(D) = m − g + 1. Of course, the two values
coincide exactly for m = 2g − t, 2g − t − 1.

In particular, the necessary condition in [1, Lemma 2.1] to have dimL(D) �= m − g + 1,
that is, m < d − t − 2, is also sufficient.

An interesting phenomenon occurs when g < m < 2g − 1 and t ∈ {g, g − 1, g − 2},
because in these cases m ≥ d − t − 2, hence dimL(D) = m − g + 1, regardless of the
theorem of Riemann-Roch.

3 Applications to coding theory

A [n, k, δ] linear code ofminimal distance δ is a k-dimensional subspace of the n-dimensional
vector space over the Galois field GF(q), such that any two vectors of the code differ in at
least δ entries (we address the reader to, e.g., [19] for a general reference). The number of
entries for which any two vectors are different defines the Hamming distance, and it is easy
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to prove, by using the triangular inequality, that corrupting a vector of a [n, k, δ] linear code
in at most δ−1

2 entries does not give a vector belonging to the code, thus avoiding possible
misunderstandings in communication. The distance between a vector w and the zero vector
is the weight of w, and it is manifest that the minimal distance of a code coincides with the
minimal weight of a non-zero vector. The Singleton bound states that δ ≤ n − k + 1, and a
linear code is optimal or MDS (maximum distance separable) if the equality holds.

Algebraic geometric linear codes are defined by taking a divisor D on a curve C over a
finite field GF(q) and a divisor R = ∑n

i=1 Pi , with P1, . . . , Pn fixed rational points of the
curve, not in the support supp(D) of D, then

CL(R, D) = {( f (P1), . . . , f (Pn)) : f ∈ L(D)}
is an [n, k, δ] code with parameters k = 
(D) − 
(D − R), where 
(∗) = dim(L(∗)), and δ

satisfying the Goppa lower bound δ ≥ n − deg(D) (cf. [6]).
Under the additional hypothesis n − deg(D) > 0, we have that the divisor D − R has

negative degree, thus 
(D − R) = 0 and k = 
(D). In this case, evaluating the k functions
f1, . . . , fk of a basis of L(D) on the points Pi ∈ supp(R), the vectors

(
f j (P1), . . . , f j (Pn)

)
give the rows of a generator matrix of CL(R, D).

In this section we assume k = GF(pc), where p ≥ 2 is a prime number and c a positive
integer.

Note that, for any polynomials u(x) and v(x), with u(x) of degree t , and v(x) of degree
smaller than t (and, if p = 2, for any arbitrary non-zero polynomial h(x)), there is a
hyperelliptic curve of arbitrary genus g ≥ max{t, deg(h)}, of equation y2 + yh(x) =
v2(x) + v(x)h(x) − c(x)u(x), for each polynomial c(x) of degree 2g + 1 − t , passing
through the support of D = � + m�, with � = div

(
u(x), v(x)

)
in Mumford representa-

tion, and all of these curves determine the same Riemann Roch space L(D) for D. That is, in
order to give a basis of the space L(D) one does not have to know the curve containing the
support of D. Note also that one does not need to give explicitly the points in the support of
D, a sensible advantage in the construction of algebraic geometric codes, as we will see in
Example 1. In that Example, we compute the generatingmatrix of a toymodel of an algebraic
geometric code of length n = 10 and dimension k = 5, arising from a hyperelliptic curves
of genus g = 11, and which is a MDS code, although here the Goppa lower bound is equal
to −5, and D − R has positive degree.

Remark 3 Note that, for p ≤ m−t
2 , the polynomials x and x pc in the basis of L(D) take

the same values in the field k = GF(pc), and the same occurs, for p ≤ m−(d−t)
2 , to the

functions�(x, y)x and�(x, y)x pc . This fact must be taken into account, for instance, when
constructing a Goppa code.

Theorem 2 Let k be a field of characteristic p ≥ 2, let u(x) be a monic polynomial of degree
t and v(x) be a polynomial with deg(v) < t , such that GCD(u(x), u′(x), v(x)) = 1, and let
Ps = (xs, ys) be n pairs such that u(xs) �= 0, for any s = 1, . . . , n.

If g ≥ t , then, for any g − t + 2 ≤ k < n, the rows of the matrix G = (γrs)

⎧
⎨
⎩

γrs = xr−1
s for 1 ≤ r ≤ η + 1

γrs = �(xs, ys) · xr−η
s for η + 2 ≤ r ≤ k

(
where η =

⌊
k + g − 1 − t

2

⌋)
(3.1)

generate an algebraic geometric code, of dimension rank(G) ≤ k, and n − k + 1 − g ≤
δ ≤ n − rank(G) + 1, and with �(xs, ys) = ys+v(xs )+h(xs )

u(xs )
, where h(x) = 0, if p > 2, or
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h(x) is an arbitrary non-zero polynomial with deg(h) ≤ g, if p = 2. If n > k + g − 1, then
rank(G) = k; hence G is the generator matrix of a [n, k, δ] code.

Proof Let c(x) be a polynomial of degree 2g + 1 − t such that

c(xs) = v(xs)2 + h(xs)v(xs) − y2s − ysh(xs)

u(xs)
,

for any (xs, ys) with s = 1, . . . , n.
Hence, there is an hyperelliptic curve of genus g of equation

y2 + yh(x) = f (x) = v(x)2 + h(x)v(x) − c(x)u(x),

passing through the n points (xs, ys) and the points belonging to the support of the divisor
div(u(x), v(x)).

The claim follows from the fact that the functions taken into account in the theorem give
in turn a set of generators of the Riemann-Roch space L(D), where D = div(u(x), v(x)) +
(k + g − 1)�, whose dimension is k, under the additional assumption that n > k + g − 1.
�

Remark 4 Note that, as long as k < g−t+2 and the n points Ps = (xs, ys)wherewe evaluate
the functions of the basis of L(D) have different abscissæ xs , the algebraic geometric code
coincides with the [n, k, n − k + 1] Reed-Solomon code on the n values {x1, . . . , xn} ⊂ k.

In the next Example 1, the additional assumption n − deg(D) ≥ 0 does not hold. Instead,
we choose the points in the support of the divisor R as in the followingCorollary, yet obtaining
a k-dimensional MDS code.

Corollary 3 Under the assumption of Theorem 2, for any s = 1, . . . , l,

• let (xs,±ys) be n = 2l distinct pairs with ys �= 0, if p > 2, or
• let (xs, ys), (xs,−ys − h(xs)) be n = 2l distinct pairs with h(xs) �= 0, if p = 2, where

h(x) is an arbitrary non-zero polynomial with deg(h) ≤ g,

such that xi �= x j , for any i �= j , u(xs) �= 0. Then the matrix G has full rank k. Furthermore,
if n = 2k, then the code having G as generator matrix has minimal distance δ ≥ n − k.

Proof Let as = �(xs, ys) and let bs = �(xs,−ys) if p > 2, or bs = �(xs,−ys − h(xs)) if
p = 2, for all indices s. Since

G :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1
x1 x1 · · · xn xn
...

...
. . .

...
...

xη
1 xη

1 · · · xη
l xη

l
a1 b1 · · · al bl
x1a1 x1b1 · · · xlal xlbl

...
...

. . .
...

...

xk−η−2
1 a1 xk−η−2

1 b1 · · · xk−η−2
l al x

k−η−2
l bl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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subtracting to the even columns their preceding columns, one gets the following matrix:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 1 0
x1 0 · · · xl 0
...

...
. . .

...
...

xη
1 0 · · · xη

l 0
a1 c1 · · · al cl
x1a1 x1c1 · · · xlal xncl

...
...

. . .
...

...

xk−η−2
1 a1 xk−η−2

1 c1 · · · xk−η−2
l al x

k−η−2
l cl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where cs = bs − as is equal to −2 ys
u(xs )

if p > 2, while cs is equal to
h(xs )
u(xs )

if p = 2. In both
cases they are non-zero, and, collecting the odd columns on the left and the even columns on
the right, we reduce the matrix to the following block matrix form

(
V 0

∗ V′

)

where V is a (rectangular) Vandermonde matrix, and V′ is obtained by multiplying the
columns of a (rectangular) Vandermonde matrix times cs , thus the rank of G is k.

In order to prove that for n = 2k the code having G as generator matrix has minimal
distance δ ≥ n − k, we look for a vector w of the code of minimal weight δ

w = (u1, . . . , uk) · G
= (

f1(x1) + a1f2(x1), f1(x1) + b1f2(x1), . . . , f1(xl) + al f2(xl), f1(xl) + bl f2(xl)
)
,

where f1(xs) = ∑η+1
i=1 ui · x (i−1)

s , and f2(xs) = ∑k
i=η+2 ui · x (i−η−2)

s , for all s = 1, . . . , l. It
is harmless to assume that η ≥ k − η − 2.

In order to count the maximal possible number of zeros in the entries f1(xs)+ asf2(xs) or
f1(xs) + bsf2(xs) of w, first we observe that we can annihilate f2(xs) on k − η − 2 values xs ,
and since η ≥ k − η − 2, we can annihilate f1(xs) there, as well, taking f1(x) = f2(x)f3(x)
for a suitable polynomial f3(x). This argument gives 2(k−η−2) zero, pairwise consecutive,
entries of w.

On the remaining entries, where f2(xs) must be non-zero, we can still annihilate f1(xs) +
asf2(xs)onη−(k−η−2)+1values xs , because the polynomial f3(x)has degreeη−(k−η−2).
This argument gives exactly 2η−k+3 further zero entries ofw, because now f1(xs)+bsf2(xs)
must be non zero.

Therefore themaximal possible number of zeros ofw is 2(k−η−2)+(2η−k+3) = k−1,
so δ ≥ n − (k − 1), thus reaching the Singleton bound.

On the other hand, in the case gcd(f1(x), f2(x)) �= f2(x), we note that themaximal number
of zeros ofw is at most n2 = k since f1(xs)+asf2(xs) = 0 implies that f1(xs)+bsf2(xs) �= 0,
and vice versa. Thus, δ ≥ n − k = k in this case. 
�
Example 1 Let k = GF(101), choose a pair of polynomials (u(x), v(x)) with GCD(u(x),
u′(x), v(x)) = 1, for instance (u(x), v(x)) = (x11 + 1, x6 + 1), and consider the function

�(x, y) = y + v(x)

u(x)
= y + x6 + 1

x11 + 1
.

Choose five pairs (xs, ys) such that xr �= xl whenever r �= l, such that u(xs) �= 0 for any
index s, for instance (15, 45), (53, 48), (58, 10), (64, 13), (80, 2). Evaluating the functions
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{
1, x, x2, �(x, y), x�(x, y)

}
on the ten points (15,±45), (53,±48), (80,±2), (58,±10),

(64,±13), one obtains a matrix

G :=

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1
15 15 53 53 80 80 58 58 64 64
23 23 82 82 37 37 31 31 56 56
73 41 35 92 1 45 99 71 48 21
85 9 37 28 80 65 86 78 42 31

⎞
⎟⎟⎟⎟⎠

which, by the above Corollary 3, is a generating matrix of a linear code C over GF(101),
having minimal distance δ ≥ 5. Furthermore, since all the 5× 5 minors of G can be checked
to have full rank, the code C is [10, 5, 6] MDS code.

In order to give the equation of a hyperelliptic curve H realizing the above code as an
algebraic geometric code, defined by D = div(u(x), v(x)) + 15� (following the proof of
Theorem 2) by evaluating the functions in L(D) on the above five points (xs, ys), we note
that the genus g ofHmust be equal at least to the degree of u(x). With g equal to the degree
of u(x), hence with the degree of H equal to 23, we need eight further points, because H
passes through the five points (xs, ys) and through the eleven points (in the affine plane) of the
support of div(u(x), v(x)). Choose arbitrarily eight pairs (xs, ys) (now with s = 6, . . . , 13)
such that u(xs) �= 0 and xi �= x j for all 1 ≤ i < j ≤ 13, for instance (48, 80), (58, 91),
(64, 88), (89, 16), (95, 33), (53, 4), (51, 85), (71, 35).

With this choice, the curve H defined by the equation

y2 = v2(x) − c(x)u(x),

where c(x) is the polynomial such that

c(xs) = v(xs)2 − y2s
u(xs)

,

for s = 1, . . . , 13, has degree 23, passes through the 13 points (xs, ys) and the eleven points
(in the affine plane) of the support of div(u(x), v(x)), thus realizing the [10, 5, 6] code as the
algebraic geometric code defined by L(D) and the ten points (xs,±ys), for s = 1, . . . , 5.
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