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Abstract
Code-based cryptography received attention after the NIST started the post-quantum cryp-
tography standardization process in 2016. A central NP-hard problem is the binary syndrome
decoding problem, on which the security of many code-based cryptosystems lies. The best
known methods to solve this problem all stem from the information-set decoding strategy,
first introduced by Prange in 1962. A recent line of work considers augmented versions of this
strategy, with hints typically provided by side-channel information. In this work, we consider
the integer syndrome decoding problem, where the integer syndrome is available but might
be noisy. We study how the performance of the decoder is affected by the noise. First we
identify the noise model as being close to a centered in zero binomial distribution. Second we
model the probability of success of the ISD-score decoder in presence of a binomial noise.
Third, we demonstrate that with high probability our algorithm finds the solution as long as
the noise parameter d is linear in t (the Hamming weight of the solution) and t is sub-linear in
the code-length. We provide experimental results on cryptographic parameters for the BIKE
and Classic McEliece cryptosystems, which are both candidates for the fourth round of the
NIST standardization process.
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1 Introduction

With the practical feasibility of a quantum computer of sufficient capacity getting more
and more probable by the day, the threat posed by Shor’s algorithm [47] on number theory
based cryptosystems grows as well. To address this threat, NIST began a standardization
process in 2016 for post-quantum cryptography. The fourth round of this process started
in July 2022 when, in the Key Encapsulation Mechanism category, four candidates were
submitted. Among them, the Classic McEliece [2] and the BIKE [3] cryptosystems are two
solutions based on error-correcting codes. Their security relies on the intractability of the
binary syndrome decoding problem (SDP) [6]. The SDP is the core hard problem of several
cryptographic constructions, e.g., the FSB hash function [4], the SYND stream cipher [28] or
the Stern identification scheme [51]. Given a parity-check matrix H of a binary linear code,
a binary syndrome vector s∗ and an integer t , the SDP consists in asking for fixed Hamming
weight (HW(x) = t) solution to the linear system Hx = s∗. There are three main techniques
for solving the SDP: statistical decoding [14, 18, 27, 34, 43], information set decoding (ISD)
[5, 9, 11, 12, 22, 23, 26, 36, 37, 39, 40, 46, 50] and generalized inverse based decoding [52].
Information Set Decoding was originally proposed by Prange in 1962 [46], and it has been
incrementally refined since by Lee and Brickell [36], Stern [30, 50] and, more recently, by
May, Meurer and Thomae [39] and by Becker, Joux, May and Meurer [5]. The complexity
of the ISD method has been used to better tune the parameters of the cryptosystems [24]
according to the required security levels.

1.1 Integer syndrome decoding

One recent line of work considers modified versions of the SDP, for which additional
information is available, for instance via side-channel analysis on implementations of the
aforementioned cryptosystems. In [33], authors study the case where parts of the error are
known, or only their Hamming weight. The case where the integer syndrome s is available,
instead of the binary one, as if the matrix-vector multiplication had been performed in the
integer ring instead of the binary finite field, is considered in [20]. One method to obtain the
integer syndrome is by laser fault injection attack, as presented in [15]. The problem one
has to solve in this case is the integer syndrome decoding, referred to as N − SDP, where
the input is the parity-check matrix H , the integer syndrome vector s and the weight of the
solution t . The same question is raised, whether Hx = s admits a solution of weight t . This
problem can be tackled down by means of Integer Linear Programming [15] or probabilistic
methods [25]. Another method of obtaining an integer syndrome, much more feasible and
realistic than laser fault injection, is by side-channel analysis [16].

Due to physical factors, the integer entries of the syndromemight not be perfectly accurate.
Hence, in the resulting problem, the N − SDP in the presence of noise, we are given a noisy
integer syndrome s̃ = s + ε, where ε models the noise as a vector of random variables.
The solution proposed in [16] uses a combination of ISD techniques and the score decoder
from [25]. In [16] the performance of the algorithm was evaluated by simulations. Still, no
theoretical evidence exists for the performance of the ISD-score decoder. On top of that, the
performance certainly depends on the distribution of the noise, and for that one needs to carry
a deeper investigation into the side-channel part.

Recently, the leakage model (Hamming weight or distance) as well as various noise
distributions were analyzed in [29]. It was shown that if an attacker has more that the final
result (or approximation of the final result) then ISD-score decoders can be enhances or even
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outperformed. In particular, in [29] the attacker model assumes intermediate estimates of the
syndrome computations are leaked. Hence, the extra information is used to locally correlate
the information with the solution, making the resulting attacks more powerful.

1.2 Related work

Learning with errors and hints Not only code-based cryptosystems are vulnerable to such
attacks. Similar results were obtained in the context of lattice-based cryptosystems by Bootle
et al. [10]. The BLISS cryptosystem was cryptanalysed by means of similar hybrid attacks,
where side-channel attacks revealed an Integer version of the Learning With Errors (ILWE).
The ILWEproblem is the lattice-based equivalent of theN−SDP. However, ILWEwas solved
with another technique that does not seem to work for N − SDP. Nevertheless, it points out
that such scenarios extend broader than code-based cryptography.

Quantitative group testing Quantitative Group Testing (QGT) is an active field of research,
lately boosted by the COVID-19 epidemic. In the QGT we are given a large population out
of which some individuals suffer from a disease, and the goal is to identify the infected
individuals. Possible applications of QGT go from bio-informatics [13], traffic monitoring
[54] and confidential data transfer [1, 19] to machine learning [38, 55]. The N− SDP can be
also seen as a QGT in presence of noise. As we shall demonstrate, the algorithm we propose
here, solves a noisy QGT instance, by adapting and improving (using coding theory tools,
such as ISD techniques) a recent solution to the classical QGT [25]. We compare our findings
with the results from [25] in two ways.

– In the noiseless setting (the algorithm we propose can be applied to a zero noise dis-
tribution) we obtain less restrictive conditions on the parameters for attaining a high
success probability. Also, smaller syndrome entries are required in our case for finding
the solution of N − SDP.

– In the noisy setting, by working on the proofs in [25], we derive a condition on the
parameters to successfully retrieve a solution. However, we show that these conditions
are more restrictive than ours, hence restraining even more the set of parameters.

1.3 Contributions

In this article, we analyze in detail the ISD-score decoder algorithm for the noisy N − SDP
problem and provide the following contributions.

Noise model We will focus on a Binomial noise model, more precisely, the vector ε is such
that each εi ∼ −d + B(2d, 1

2 ) (binomial centered in zero). One of the arguments for our
choice is based on then noise description from [16, 29]. Due to implementation restrictions
(width of the representation) there are differences in the observed noise for different widths
(parameterw in [29]). The first type of errors in the estimation of the integer syndrome come
from the accuracy of the side-channel distinguisher. Since, the accuracy corresponds to the
probability of a correct guess, anywrongguess of the side-channel distinguisherwill lead to an
overestimation of the exact values with high probability. The second type of errors mentioned
in [16, 29] is the double-cancellation and refers to the errors made in the approximation of the
hamming distance between two vectors using the Hamming weight of these vectors. Thirdly,
during computations the errors become dependent, inducing a propagation phenomenon.
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Here, we will experimentally consider all these factors and show that when the size of the
words increases the binomial noise model is a proper theoretical model for all the considered
instances.

We simulated realistic side-channel noise on all cryptographic parameters and noticed the
following. Our theoretical model, i.e. the binomial noise, fits all real cryptographic scenarios
with d being from linear in t in the worst case (high σ values for extreme real cases) down
to constant (for small and more realistic σ values). We show that all real scenarios lead to
d < t

4 which, as we shall see later, is an acceptable noise level for practical purposes.

Performance of the ISD-score decoder We demonstrate that the ISD-score decoder finds a
solution to the N− SDP in the presence of noise with high probability, as long as the weight
is sub-linear in n. Letting n, k, t, d be the N − SDP parameters, δ a small constant (usually
less than 3) and W (x) the Lambert W function, we demonstrate the following.

Theorem Let I =
[
√

t+2d
n−k W

(

n−t
n−k−t+δ+1

e
√
2

π

)2
, 1 −

√

t+2d−1
n−k W

(

t
δ+1

2e
π

)2
]

and εi ∼
−d + B(2d, 1

2 ). If I is non-empty, then there is a value β ∈ I such that the ISD-score
decoder succeeds in finding a solution with probability at least

(

1 − e(n − t)√
2πβ(n − k − t + δ + 1)

√

t + 2d

n − k
e− (n−k)β2

2(t+2d)

)(

1 − et

π(1 − β)(δ + 1)

√

t + 2d − 1

n − k
e− (n−k)(1−β)2

2(t+2d−1)

)

.

To reach our goal we partially build our demonstration on the techniques used in [25].
We incorporate the noise models into these techniques and, by using sharper inequalities,
determine a much clearer condition for having a higher probability of success. For a more
readable variant of our result we propose a slightly weaker version. We thus demonstrate the
following.

Proposition Let Iβ =
[

√

2(t+2d)
n−k ln n−t

n−k−t+δ+1 , 1 −
√

2(t+2d−1)
n−k ln t

δ+1

]

and εi ∼ −d +
B(2d, 1

2 ). If Iβ �= ∅ then the probability of success of the ISD-score decoder is at least
⎛

⎝1 − e

2π

1
√

ln n−t
n−k−t+δ+1

⎞

⎠

⎛

⎝1 − e√
2π

1
√

ln t
δ+1

⎞

⎠ .

The technical details of our proofs also provide theoretical and numerical evidence of
the gain compared to [25]. In particular, for all the cryptographic parameters of BIKE and
Classic McEliece, our analysis shows theoretical evidence of high success probability while,
when using the results from [25], some parameters are outside of this scenario.

Information theoretic bounds Next, we demonstrate that our algorithm can retrieve solu-

tions of weight t ≤ O
(

n−k
ln(n−k)

)

, where n is the length of the code and k the dimension. We

also analyze the noise level tolerated by the N − SDP. We prove that the ISD-score decoder
can tolerate noise levels that are linear in the weight of the solution t .

Another consequence of our approach is that when the noise is null and the ISD part is
ignored, equivalently the ISD-score decoder boils down to the algorithm proposed in [25],
the conditions we propose on the range of parameters, namely on t , are larger than those
from [25]. In addition the techniques used in our demonstration allowed us to obtain sharper
lower bound on the number of syndrome entries, or the number of rows in the parity-check
matrix, required to find a solution, known as the information theoretic bound.
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Simulations We have demonstrated the performance of the N − SDP in the presence of
noise for different cryptographic parameters. To be more exact, we have chosen two code-
based candidates at the NIST standardization process, Classic McEliece and BIKE. For both
candidates we have considered increasing noise levels from B( t4 ,

1
2 ) to B(t, 1

2 ). For Classic
McEliece the parameter t exceeds a bit the maximum theoretic limit (t = n/ log2(n)). Still,
in simulations the ISD-score decoder finds the solution to the N − SDP with noise using
the optimization parameter δ = 3 and all the syndrome entries. In the case of BIKE, where
t = O(

√
n) with δ ≤ 3 only a fraction of 0.15 syndrome entries are sufficient for the

ISD-score decoder to find the solution.
On another track, we compare the ISD-score decoder with the ILP solution proposed in

[15, 20]. In the noiseless setting there is a significant gap between the two solutions in terms
of efficiency, and here we refer to timing and ratio of syndrome required. On both aspects
our algorithm outperforms the ILP solutions (interior points or simplex). In the noisy setting
the difference is even more significant, the ILP fails to find a solution even for the smallest
noise considered. While our algorithm benefits from the advantage of the ISD part, when
δ ≥ 3 it can be modified to continue with a generic ISD, the ILP on the other side does not
posses such a feature.

We insist on the cryptographic context since it represents the origin of the underlying prob-
lem. The algorithm presented here was applied on practical instances. Although the public
code of both BIKE and Classic McEliece are not random codes, they are indistinguishable
from random codes. Also, here we do not necessarily insist on the fact that these instances
are or not distinguishable, but on the fact that the public matrix entries follow a Bernoulli
distribution. There are many constructions where the public codes can be distinguished from
random codes, however, the their parity-check matrix is statistically "close" to a Bernoulli
matrix (e.g. Niederreiter variant based on Reed-Muller codes [49], or on polar codes [48]).
To support our models we have tested two hypothesis: i) the public parity-check matrix of
BIKE and Classic Mceliece is distributed as a Bernouilli matrix, ii) its entries are indepen-
dent; using a statistical test. We have noticed no significant difference, our hypothesis being
validated with a p-value greater than or equal to 0.999 for all cryptographic parameter sets.

Summaryof results compared toothermodels Let us briefly state howour results compare
to other models such as those from Table 1.

– Integer and noisy integer syndrome: the noisy scenario is much more realistic than the
perfect integer syndrome entries as shown in several articles [16, 29]. Hence compared

Table 1 Attacker model and algorithms for variants of SDP

Extra information Algorithms Performance Noise Refs.

Integer syndrome ILP Simulation − [15, 20]

ISD-score decoder Simulation − [16]

Noisy Integer syndrome ISD-score decoder Simulation Double Cancellation [16]

Theoretical + Simulation Side-channel This article

Double Cancellation

Integer syndrome and ISD-score decoder Simulation Side-channel [29]

intermediate values T-test Decoder Simulation Double Cancellation

Parts of the solution ISD with hints Theoretical + Simulation − [33]

Performance refers to success probability and complexity of the algorithms
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to [15, 16, 20] our results feature a more practical applicability. Also, the noise model
analyzed here comes frommore realistic scenarios compared to other works such as [16].
Indeed, by considering the side-channel leakage model in addition to the double cancel-
lation, we converge towards a real life scenario. In the noiseless scenario, our method
outperforms both the Quantitative Group Testing analysis [25] and the ILP decoder [15,
20].

– Parts of solution leakage model: This model is not yet realistic and the assumption of
having the exact value of some entries in the solution seems for the moment a bit unre-
alistic. Even-though the algorithm proposed here [33] are exponential in the Hamming
weight of the solution and do not tolerate any noise. Let us emphasize that our method
has the feature to incorporate this leakage model as well. Indeed, we can easily reduce
the dimension of our problem by simply updating the syndrome with the solution entries
equal to 1 and puncture the parity-check matrix on the positions of the solutions equal to
0.

– Intermediate values: This particular scenario requires one not only to obtain the noisy
integer entries but also to have access to additional information such as the intermediate
values involved in the computations. The T-test score decoder from [29] has better per-
formances in simulation compared to our method, however, no theoretical evidence was
presented.

Short note A 5 page short version of this article was presented at the Information Theory
Workshop (ITW) 2022 [21].We are extending on this short version by providing the following
contributions.

– We give full proofs of the results in [21] with additional comments. We extend the results
by providing sharper statement, quantifying exactly the error probability, e.g., Corollary
2 and Theorem 2 from [21]. On top of that the technical details from the proofs reflect
the gain of our method compared to [25].

– We provide a detailed numerical simulated evidence of the approximated real noise
model. We do illustrate that our theoretical model of noise provides a good approxima-
tion of the real noise model for the cryptographic parameters considered in the NIST
standardization process.

– Compared to the conference version [21], here, we compare other similar methods for
solving the N − SDP with the ISD-score decoder. Indeed, we complete the analysis by
including the ILP sovers in the comparison, from both a success rate point of view as
well as computation time point of view.

Outline of the article

In Section 2, we introduce the SDP and its variants, N − SDP and N − SDP in the presence
of noise. We also recall the cryptographic context where these problems occur. Section 3
begins by recalling the score decoder proposed in [16]. Then, it analyzes the distribution of
the discriminant function for the N − SDP in the presence of noise. The section ends with
the description of the ISD-score decoder. Next, we analyze the success probability of the
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ISD-score decoder in Section 4. The theoretical results from this part are being compared
with numerical values from our implementation of the algorithm in Section 5. The section
also makes a parallel between the efficiency of the ISD-score decoder and other methods
such as ILP. Finally, we conclude the article in Section 6.

2 Preliminaries

2.1 Definitions and notations

Let us begin by fixing the necessary notations. A finite field is denoted by F, and the ring
of integers by Z. The basis of the natural logarithm is denoted as by e, and ln denotes
natural logarithm. We write N

∗
n = {1, . . . , n} and Z−n,n = {−n, . . . , 0, . . . , n}. Matrices

and vectors are written in bold capital, respectively small letters. We also use HW(c) to
denote the Hamming weight of the vector c, i.e., the number of non-zero positions of c.

For p ∈ [0, 1] and n ∈ N
∗ a random variable X that follows a distribution depending on

p and n will be marked as X ∼ D, in particular, X ∼ Ber(p) for the Bernoulli distribution
and by X ∼ B(n, p) for the Binomial distribution.

We denote by W (x) the Lambert W function [32], which is the converse of the function
x = yey . In other words for any positive real number x the solution to the previous equation
is y = W (x) (to be more precise we only use the first real branch of W which is usually
denoted W0(x) [17]). We will also require the asymptotic expansion near x = ∞ which is

W (x) = ln x − ln ln x + O

(

ln ln x

ln x

)

.

Error correcting codes Let n and k be two positive integers such that k ≤ n. An [n, k] linear
code can be defined as a sub-vector space of dimension k of the vector space F

n . A code
can be specified either by its generator matrix G ∈ F

k×n (a basis for the code), or by its
parity-check matrix H ∈ F

(n−k)×n (a basis for the dual code). A code C is in standard form
if its generator matrix is G = (Ik | T ) . The minimum distance, or the Hamming distance of
a code C, is the minimum of all HW(v) for v ∈ C, v �= 0.

One of the main features of linear codes is their ability to decode noisy information/data.
Several general decoding strategies exist, the syndrome decoding problem being one of them.

Definition 1 (Binary syndrome decoding problem SDP)

Inputs: H ∈ F
(n−k)×n
2 , s∗ ∈ F

n−k
2 , t ∈ N

∗.
Output: x ∈ F

n
2 such that Hx = s∗, and HW(x) = t .

This problem is NP-Complete [6] and, as we shall quickly see, it constitutes the building
block of code-based solution for post-quantum cryptography.

2.2 The Niederreiter encryption framework

Both, Classic McEliece [2] and BIKE [3], are based on the Niederreiter encryption scheme
[42]. The key generation, encryption and decryption functions of the Niederreiter cryptosys-
tem are given in Algorithms 1, 2 and 3 respectively.

123



Cryptography and Communications

Algorithm 1 Niederreiter key generation
1: function KeyGen(n, k, t)
2: C an [n, k] code that corrects t errors
3: A parity-check matrix of C: H
4: An n × n permutation matrix P
5: An (n − k) × (n − k) invertible matrix S
6: Compute Hpub = SH P
7: pk = (Hpub, t)
8: sk = (S, H, P)

9: return (pk, sk)

Algorithm 2 Niederreiter encryption
1: function Encrypt(m, pk)
2: Encode m → x with HW() = t
3: Compute s∗ = Hpubx
4: return s∗

To practically instantiate the schemes one must choose a family of error correcting codes,
e.g., binary Goppa codes for Classic McEliece that posses strong security arguments. One
of the required feature is to be indistinguishable from random codes, which is the case of
all submitted proposals. Such a requirement has a theoretical implication (semantic security
arguments) and a practical implication, we can set parameters as if we were dealing with
random codes. In this is the case then breaking the confidentiality of the Niederreiter-like
schemes resumes to solving the SDP for a random-like code. Hence, the sets of (n, k, t)
parameters defined in [2] and [3] (see Table 2) are given with respect to the working factor of
the best algorithm for solving the SDP. There are two different type of algorithms for solving
SDP, statistical decoding [18, 34, 41, 44] and Information Set Decoding (ISD) [7, 8, 11, 22,
36, 37, 39, 40, 45, 50].

Algorithm 3 Niederreiter decryption
1: function Decrypt(s∗, sk)
2: Compute x

′ = Decode(S−1s∗, H)

3: Compute m from P−1x
′

4: return m

Table 2 (n, k, t) parameters for
Classic McEliece and BIKE

n k t

Classic McEliece 3488 2720 64

4608 3360 96

6688 5024 128

8192 6528 128

BIKE 24646 12323 134

49318 24659 199

81946 40973 264
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Let us shortly recall the ideas behind the ISD techniques, e.g., the Prange variant.

1. Randomly permute the columns of H (let P be the permutation matrix)
2. Compute the standard form of H∗ = HP , i.e.,

QH∗ = QHP = (T In−k
)

(1)

3. If HW(Qs∗) ≤ t then return P
(

0k
Qs∗

)

;

else go to Step 1

Since Hx = s we can see that

QHP P−1x
︸ ︷︷ ︸

x∗
= (T In−k

)

(

x∗
1

x∗
2

)

= Qs∗,

which yields
Tx∗

1 + x∗
2 = Qs∗.

Now, if x∗
1 = 0we deduce x∗

2 = Qs∗ and thus x∗ =
(

0
Qs∗

)

is a valid solution to the SDP.

Prange’s algorithm samples permutations until the vector x∗
1 equals zero, or equivalently until

an information set is found. Variants of ISD offer time optimizations by allowing different
relaxations of the weight condition on x∗

1.

2.3 Integer version of the syndrome decoding problem

Recent message recovery attacks are pointing the encryption step, where the cipher-text
is obtained from the multiplication of the public parity-check matrix Hpub and the secret
error vector x. Hence, in [15, 16, 29] the matrix-vector multiplication is targeted as leakage
point (line 3 in Algorithm 2). The physical scenario reveals the possibility of retrieving extra
information during the multiplications. More exactly, it was shown that it is possible to either
change the instruction code in the Flash memory and thus set it to ADD instead of XOR [15]
or to recover by side-channel measurements an approximation of the real/natural value of s∗
[16]. Both scenarios lead to a modified version of the binary SDP.

Definition 2 (N − SDP)

Inputs: H ∈ {0, 1}(n−k)×n , s ∈ N
n−k , t ∈ N

∗.
Output: x ∈ {0, 1}n , such that Hx = s, and HW(x) = t .

As pointed out in [29] the integer value s is often difficult to obtain. More exactly, in
[29] in was shown that there are different type of noise that interfere with the intermediate
estimations, fact that leads to a noisy integer syndrome. To define N − SDP in the presence
of noise as generally as possible, we model the noise ε = (ε1, . . . , εn−k) as a vector of
random variables εi ∼ D, where D is a discrete probability distribution. In the N − SDP in
the presence of noise, instead of having access to an instance of the N− SDP, i.e., (H, s, t),
we are given a noisy syndrome s̃ = s + ε and the value s∗ = s (mod 2) (component-wise).

Definition 3 N − SDP in the presence of noise ε)

Inputs: H ∈ {0, 1}(n−k)×n , s̃ ∈ Z
n−k

s∗ ∈ {0, 1}n−k , t ∈ N
∗
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Output: x ∈ {0, 1}n , such that Hx = s∗ with HW(x) = t
s∗ = s mod 2, and s̃ = s + ε.

Remark that N− SDP in presence of noise is the SDP with additional information. Under
certain conditions, we hope that, given (H, s∗, t, s̃), we can find x, solution to the SDP. Also,
when the noise is zero we face the classic N − SDP.

3 ISD-score decoder

The idea of assigning a score to each column was already used for the N− SDP in [16]. The
objective is to distinguish columns of H in the support of the solution vector from columns
which are outside the support. We shall begin by defining a score decoder, as introduced
in [25], that proved to be particularly discriminant in the context of N − SDP. For a better
illustration of the nice features of the decoder in the presence of noise, we will express it in
function of the noiseless decoder. As we shall see, this method allows not only to derive a
particularly simple relation between those two, but also to deduce conditions on the tolerated
noise level.

Definition 4 Let H ∈ {0, 1}(n−k)×n, s ∈ N
n−k and t ∈ Z

∗ be the input of N − SDP. Then
define the score of a column:

∀i ∈ N
∗
n ψi (s) =

n−k
∑

�=1

(

h�,i s� + (1 − h�,i )(t − s�))
)

. (2)

For the N − SDP in the presence of noise we shall use ψi (̃s). The next result, rephrased
from [25], expresses the capability of the score decoder to distinguish between columns in
the support of the solution vector from columns which are outside the support.

Theorem 1 Let H ∈ {0, 1}(n−k)×n be a random matrix, with distribution given by h j,i ∼
Ber( 12 ) and s ∈ N

n−k such that ∃ x ∈ {0, 1}n with HW(x) = t satisfying Hx = s. Then

ψi (s) ∼
{B((n − k)t, 1

2 ) , i /∈ Supp(x)

B((n − k)(t − 1), 1
2 ) + n − k , i ∈ Supp(x)

Straightforward from Theorem 1 we have E(ψi (s)) = (n − k)t/2 for i /∈ Supp(x) and
E(ψi (s)) = (n − k)t/2 + (n − k)/2 for i ∈ Supp(x).

The difference in the average value points out that ψ can be a distinguisher between
positions in the support and outside the support of the vector x. In addition, the variance also
differs, fact that will be used in the tail bounds. Moving forward, we will consider the noisy
version of this problem in the next section.

3.1 Score decoder in the presence of noise

As in [16], we make some assumptions on the noise considered here, i.e., εi are independent
and identically distributed random variables, the noise does not depend on the distribution
of the entries in H and the distribution D is symmetric.

Proposition 1 ([16]) For j ∈ Z
∗
n−k let ε j be independent and identically distributed discrete

random variables following a symmetric distribution over the set Z−d,d , such that ε j and
hi, j are independent.

123



Cryptography and Communications

Then

Prob (ψi (̃s) − ψi (s) = α) = Prob

⎛

⎝

n−k
∑

j=1

ε j = α

⎞

⎠ .

Proof Let Y�,i = (2h�,i − 1)ε�. Then we have,

ψi (̃s) =
n−k
∑

�=1

(

h�,i (s̃� + (1 − h�,i )(t − s̃�))
)

=
n−k
∑

�=1

(

h�,i (s� + ε� + (1 − h�,i )(t − s� − ε�))
)

ψi (̃s) = ψi (s) +
n−k
∑

�=1

(

h�,iε� − (1 − h�,i )ε�

)

︸ ︷︷ ︸

Yl,i

For any fixed value of � ∈ Z
∗
n−k we have Prob(Y�,i = α�) = Prob(ε� = α�) for any

α� ∈ Z−d,d (using the symmetry property and the independence of h�,i and ε�). Hence Y�,i

follows the same distribution as ε�. Thus, ψi (̃s) − ψi (s) ∈ Z−(n−k)d,(n−k)d with probability

distribution Prob(ψi (̃s) − ψi (s) = α) = Prob
(

∑n−k
j=1 ε j = α

)

.

Keeping the difference ψi (̃s) − ψi (s) as small as possible resumes to controlling the sum
of ε j . The variance of ε j plays a crucial role in the distinguishing capacity of ψ .

Proposition 2 For any j ∈ Z
∗
n−k let ε j be a discrete randomvariable satisfying the conditions

from Proposition 1 and let σ 2 = Var(ε j ). Let g(n, k, t) be a function in the parameters of
N − SDP. Then for any α > σ

√
(n − k)g(n, k, t)

Prob(ψi (̃s) − ψi (s) ≥ α) ≤ 1

g(n, k, t)
. (3)

Proof Use Chebyshev’s inequality for the sum of ε j and the linearity of the variance.

The case of centered binomial noise

Corollary 1 Let d ∈ N and εi ∼ −d + B(2d, 1
2 ). Then

– for i /∈ Supp(x)

ψi (̃s) ∼ −d(n − k) + B
(

(n − k)(t + 2d),
1

2

)

;

– for i ∈ Supp(x)

ψi (̃s) ∼ −(d − 1)(n − k) + B
(

(n − k)(t − 1 + 2d),
1

2

)

.

Moreover, E(ψi (̃s)) = E(ψi (s)) and Var(ψi (̃s)) = Var(ψi (s)) + (n − k)d/2.

Tomaintain the capability to distinguish between positions inside the support and positions
outside the support, the noise parameter d from B(2d, 1

2 ) should be restricted.

123



Cryptography and Communications

Corollary 2 Let εi ∼ −d + B(2d, 1
2 ) and g(n, k, t) an unbounded function in t, n, k. Then

we have

Prob

(

|ψi (̃s) − ψi (s)| ≤
√

d(n − k)g(n, k, t)

2

)

≥ 1 − 2

g(n, t, k)
.

Moreover, for any d ≤ n−k
8g(n,k,t) , the function ψ(̃s) distinguishes positions in Supp(x) from

positions outside Supp(x).

The key idea of the distinguisher is that for i /∈ Supp(x) the upper limit of the confidence
interval will be smaller that the lower limit of the confidence interval for i ∈ Supp(x). More
exactly, to distinguish with probability at least 1 − 1

g(n,t,k) one needs to have

(n − k)t

2
+
√

d(n − k)g(n, k, t)

2
≤ (n − k)t

2
+ n − k

2
−
√

d(n − k)g(n, k, t)

2
, (4)

which yields d ≤ n−k
8g(n,k,t) . In particular, we can put g(n, k, t) = ln ln t or g(n, k, t) = ln ln n

depending on the wanted speed of convergence. Figure 1 shows the distribution of ψi values
for different levels of noise, ranging from d = 0, i.e. the noiseless setting, to a very high noise
ofB(2t, 1

2 ). Notice that the distinguishing capability is much higher for the BIKE parameters,
as shown in Fig. 1a, than for the Classic McEliece parameters, as shown in Fig. 1b.
Bernoulli noise

Proposition 3 Let εi ∼ Ber({0, 1}, 1/2). Then ψi (̃s) is a random variable that follows the
distribution

ψi (̃s) ∼
{B((n − k)(t + 2), 1

2 ) − (n − k) , i /∈ Supp(x)

B((n − k)(t + 1), 1
2 ) , i ∈ Supp(x)

Moreover, E(ψi (̃s)) = E(ψi (s)) and Var(ψi (̃s)) = Var(ψi (s)) + (n − k)/2.

Notice that, in the case of a Bernoulli type of noise, the behavior is equivalent to the
case of a centered binomial noise. (equivalent to d = 1 in Corollary 1). Indeed, the result in
Proposition 3 is equivalent to the one given in Corollary 1 with d = 1.

3.2 Combining ISD and score decoder

The idea in [16] was to boost the distinguishing capability of the score decoder with ISD-like
techniques. To this end, the score decoder is integrated in the “permutation" step of the ISD
method. Indeed, thismethod starts by performing a permutation on the columns of H that will
hopefully rearrange the solution in a usefulway. In the original ISDmethods, permutations are
sampled randomly until a “good” one is obtained. Thanks to the extra-information provided

Fig. 1 Distribution of ψi for ε ∼ −d + B(2d, 1
2 )
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by s or s̃, the function ψ allows to construct a permutation which by no means is random.
Indeed, we have seen that ψ , by its nature, allows one to distinguish between positions in the
support of x and positions outside. Hence, the underlying permutation, hopefully is a “good”
permutation. As pointed out in [16], sorting the list of values ψi (̃s) in descending order is
equivalent to generating a permutation �. Algorithm 4 finds a solution to theN− SDP in the
presence of noise as long as � is “good” enough.

Algorithm 4 Prange Score Decoder
1: function Prange Score Decoder(H, s̃, s∗, t)
2: Compute � from the list ψi (̃s)
3: Compute A∗, H∗ ← rref(H�)

4: if HW(A∗s∗) = t then

5: return x = �

(

A∗s∗
0n−r

)

� r = rank(A)

The procedure rref(H�), which stands for “reduced row echelon form”, is equivalent
to performing a partial Gaussian elimination over F2. Indeed, there is an (n − k) × (n − k)

non-singular matrix A∗ such that, A∗H� =
[[

Ir
0n−k−r,r

]

‖ B∗
]

where H� = [A ‖ B]

with A a (n − k) × r matrix satisfying A∗A =
[

Ir
0n−k−r,r

]

, and B∗ = A∗B.

In the case of a full rank matrix A we have A∗A = In−k. From the description of the
algorithm above, the following result can be deduced.

Proposition 4 ([16]) Prange Score Decoder outputs a valid solution as long as there
exists at least one set L ⊂ N

∗
n \ Supp(x) with #L ≥ n − r such that min{ψi (̃s), i ∈

Supp(x)} > max{ψi (̃x), i ∈ L}.
The overall time complexity of Prange Score Decoder is O((n − k)3), since it is

dominated by the partial Gaussian elimination, i.e. the computation of A∗.
Since the permutation � might not move all the positions in the support of x in the first

n − k positions, more powerful ISD methods may be used, e.g. Lee-Brickell [36], Stern [50]
or Dumer [22]. The idea is to allow a number of δ positions from Supp(x) outside the first
n − k positions. This is equivalent to extending Prange Score Decoder so that it covers
error vectors with a more general pattern. The Lee- Brickell Score Decoder, where δ

positions are searched exhaustively, is thus proposed in [16] as a possible solution.
When the Lee-Brickell variant is used and δ = O(1), k = O(n), the work factor of the

resulting algorithm becomes polynomial in n.

Proposition 5 The δ-ISD-score decoder outputs a valid solution as long as there are at most
δ indices i ∈ Supp(x) with values ψi (̃s) < ψ j (̃s) with j in a set J ⊂ Nn of cardinality
n − k.

4 Success probability of the ISD-score decoder

The following result gives a condition on the parameters for having a high probability of
success for the ISD score decoder on the N − SDP in presence of noise.
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Algorithm 5 Lee-Brickell Score Decoder ([16])
1: function Lee- Brickell Score Decoder(H, s̃, s∗, t)
2: Compute � from the list ψi (̃s)
3: Set H� = [A ‖ B]
4: Compute A∗, H∗ ←rref(H�) and B∗ = A∗B
5: Compute s

′ = A∗s∗
6: if HW(s

′
) == t then

7: return x = �(s
′ ‖ 0k )t

8: else
9: for i ← 1, δ do
10: S = Gener-Subsets({1, . . . , k},i)
11: for E in S do
12: x

′′ ← Vector({0, 1}, k, E)

13: x
′ ← s

′ − B∗x′′

14: if HW(x
′
) == t − i then

15: return
(

�(x
′ ‖ x

′′
)t , �

)

Theorem 2 Let I =
[
√

t+2d
n−k W

(

n−t
n−k−t+δ+1

e
√
2

π

)2
, 1 −

√

t+2d−1
n−k W

(

t
δ+1

2e
π

)2
]

and εi ∼
−d+B(2d, 1

2 ). If I is non-empty, then there is a value β ∈ I such that the ISD-score decoder
succeeds in finding a valid solution with probability at least

(

1 − e(n − t)√
2πβ(n − k − t + δ + 1)

√

t + 2d

n − k
e− (n−k)β2

2(t+2d)

)(

1 − et

π(1 − β)(δ + 1)

√

t + 2d − 1

n − k
e− (n−k)(1−β)2

2(t+2d−1)

)

.

4.1 Technicalities of theorem 2

To prove this theorem we shall use 3 steps. More precisely, we first give an estimation on the
tails of the distributions ψi (̃s), then we insert these results into a generic upper bound on the
probability of success of the ISD-score decoder, and finally we study the range of parameters
for which our conditions are valid.

4.1.1 Tail bounds on the distribution

Firstly we have the following result on the distribution of ψ in the noiseless scenario.

Theorem 3 Let β ∈ (0, 1) and Bβ = (n−k)t
2 + β(n−k)

2 . Then we have for i /∈ Supp(x)

Prob
(

ψi (s) ≥ Bβ

) ≤ e√
2πβ

√

t

n − k
e− n−k

2t β2
, (5)

for i ∈ Supp(x)

Prob
(

ψi (s) ≤ Bβ

) ≤ e

π(1 − β)

√

t − 1

n − k
e− n−k

2(t−1) (1−β)2
. (6)

Moving forward, in the case of a binomial noise we have

Theorem 4 Let εi ∼ −d +B(2d, 1
2 ), β ∈ (0, 1) and Bβ as previously defined. Then we have

for i /∈ Supp(x)

Prob
(

ψi (̃s) ≥ Bβ

) ≤ e√
2πβ

√

t + 2d

n − k
e− (n−k)β2

2(t+2d) , (7)
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for i ∈ Supp(x)

Prob
(

ψi (̃s) ≤ Bβ

) ≤ e

π(1 − β)

√

t + 2d − 1

n − k
e− (n−k)(1−β)2

2(t+2d−1) . (8)

The proof of the two theorems above is given in the Appendix. Let us denote the two
upper bounds in Theorem 4 by UbSupp(x)(n, k, t, β) and UbSupp(x)c (n, k, t, β).

4.1.2 A general bound on the success probability using tail estimations

A general theorem regarding the success probability of ISD-score decoder can be stated. For
that we suppose that the distribution ψi (̃s) when i ∈ Supp(x) has to be different from ψi (̃s)
when i /∈ Supp(x), e.g., it is at least shifted. If not it is obvious that ISD-score decoder can
not retrieve a valid solution with high probability.

Theorem 5 Letψi (̃s) be random variables and f (n, k, t, d, B), g(n, k, t, d, B) be two func-
tions such that

Prob(ψi (̃s) ≤ B) ≤ e− f (n,k,t,d,B) , i ∈ Supp(x) (9)

Prob(ψi (̃s) ≥ B) ≤ e−g(n,k,t,d,B) , i /∈ Supp(x) (10)

The ISD-score decoder finds the solution if ∃B∗ such that

• 0 ≤ 1 − t
δ+1e

− f (n,k,t,d,B∗) ≤ 1,

• 0 ≤ 1 − n−t
n−k−t+δ+1e

−g(n,k,t,d,B∗) ≤ 1,

• t
δ+1e

− f (n,k,t,d,B∗) + n−t
n−k−t+δ+1e

−g(n,k,t,d,B∗) is close to zero,

Typically, the theorem gives a sufficient condition for having a high probability of success.
Indeed, if one finds a value Bβ for which the lower bound tends to 1 then the Score function
achieves its goal, namely to distinguish positions in the support of x from those outside it.
The proof of this result is given in the Appendix.

Combining the tail bounds on the distribution ofψi (̃s)with the condition on β∗ for having
a high probability of success enables the following result. Denote

LbSupp(x)c = 1 − e(n − t)√
2πβ(n − k − t + δ + 1)

√

t + 2d

n − k
e− (n−k)β2

2(t+2d) ,

LbSupp(x) = 1 − et

π(1 − β)(δ + 1)

√

t + 2d − 1

n − k
e− (n−k)(1−β)2

2(t+2d−1) .

Proposition 6 Let εi ∼ −d + B(2d, 1
2 ). If ∃β∗ ∈ (0, 1) such that LbSupp(x),LbSupp(x)c ∈

[0, 1]. The probability that ISD-score decoder succeeds in finding a valid solution is at least
LbSupp(x)LbSupp(x)c .

Corollary 3 When d = 0 and δ = 0 the condition on β∗ simplifies to

• 0 ≤ et
π(1−β)

√

t
n−k e

− (n−k)(1−β)2

2t ≤ 1,

• 0 ≤ e(n−t)
(
√
2πβ)(n−k−t)

√

t
n−k e

− (n−k)β2

2t ≤ 1,

• et
π(1−β)

√

t
n−k e

− (n−k)(1−β)2

2t + e(n−t)
(
√
2πβ)(n−k−t)

√

t
n−k e

− (n−k)β2

2t is close to zero,
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To fairly compare with state-of-the-art techniques such as the algorithm in [25], which
is only valid for the noiseless scenario, we adapted the conditions from [25] to the noise

model considered here. This gives two similar functions in β, namely 1 − n−t
n−k−t e

− (n−k)β2

2(t+2d) ,

and 1− te− (n−k)(1−β)2

2(t+2d−1) . In Fig. 2, we plot the modified functions from [25] (dashed lines) and
LbSupp(x),LbSupp(x)c (solid lines).

In dark green and light green, the valid interval/region for the adapted functions from
[25], and our functions, respectively, are represented. Notice that for all parameter sets and
all noise levels considered here, our function offers a larger interval. Hence, this implies that
for some sets of parameters, e.g., in Fig. 2d, the interval is empty w.r.t. conditions in [25],
while w.r.t. our conditions the interval exists.

4.1.3 Range of valid parameters

Here, we shall determine the conditions on the parameters such that the conditions in Propo-
sition 6 are satisfied. We will begin by determining the existence of β∗. We will need to
denote by W (x) the Lambert W function.

Proposition 7 For any β ≥
√

t+2d
n−k W

(

n−t
n−k−t+δ+1

e√
2π

)2
we have that

n−t
n−k−t+δ+1UbSupp(x)c (n, k, t, d, β) ≤ 1, and for any β ≤ 1−

√

t+2d−1
n−k W

(

t
δ+1

e
π

)2
we have

that t
δ+1UbSupp(x)(n, k, t, d, β) ≤ 1.

Having both functions positive and strictly smaller than 1, at the same time, can be achieved
as long the interval defined by the two extreme points, in the previous proposition is non-

empty, i.e.,

√

t+2d
n−k W

(

n−t
n−k−t+δ+1

e√
2π

)2 ≤ 1 −
√

t+2d−1
n−k W

(

t
δ+1

e
π

)2
.

To give a more sensitive meaning of our result, we could approximate the value of the
Lambert W function by W (m) = lnm − ln lnm + ln lnm

lnm as m tends to infinity. Using only

Fig. 2 Valid β interval from the bounds in [25] (dashed lines) and the proposed ones (solid lines)
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the first term we define Iβ =
[

√

2(t+2d)
n−k ln n−t

n−k−t+δ+1 , 1 −
√

2(t+2d−1)
n−k ln t

δ+1

]

. Hence, we

deduce the following result.

Proposition 8 If Iβ �= ∅ then the probability of success of the ISD-score decoder is at least
⎛

⎝1 − e

2π

1
√

ln n−t
n−k−t+δ+1

⎞

⎠

⎛

⎝1 − e√
2π

1
√

ln t
δ+1

⎞

⎠ .

Typically, our result gives a sub-interval where the conditions are safely satisfied. When
simulations are to be performed, one could solve the inequalities in order to determine a more
accurate interval. However, using more terms in the expansion ofW (m) yields the following.

Corollary 4 Let fn,k,t,δ = n−t
n−k−t+δ+1 and f ∗

t,δ = t
δ+1 . The extreme points of the interval

where the first two conditions in Theorem 6 are satisfied, converges to
√

t+2d
n−k

(

2 ln fn,k,t,δ − ln 2 ln fn,k,t,δ + ln 2 ln fn,k,t,δ
2 ln fn,k,t,δ

)

,

and 1 −
√

t+2d−1
n−k

(

2 ln f ∗
t,δ − ln 2 ln f ∗

t,δ + ln 2 ln f ∗
t,δ

2 ln f ∗
t,δ

)

.

4.2 Information-theoretic bounds

4.2.1 Bounding the value of t

To see how large the weight of the error t must be to in order to still posses a non-empty
interval, the following rough estimate can be used.

Theorem 6 (Upper bound on t ) Let k ≤ n − t + δ + 1 − (n − t)(δ + 1)/t and d = ct/2.
Then Iβ �= ∅ as long as we have

t ≤ n − k

8(1 + c)W
(

n−k
8(1+c)(δ+1)

) (11)

Moreover, when n → ∞, we have that t ≤ O
(

n−k
ln(n−k)

)

.

Using a first term approximation for the Lambert W function near infinity, we obtain a
threshold on t . More exactly this value can be approximated by n−k

8(1+c) ln n−k
8(1+c)(δ+1)

.

Now, recall that we have determined a preliminary condition on d , such that theψ function
can distinguish between positions in the support of the solution and outside it. This condition
was d ≤ n−k

8 ln ln(n−k) . Taking a slightly smaller noise level, e.g. d = n−k
8 ln(n−k) ≤ n−k

8 ln ln(n−k)

validates the choice in the hypothesis d = ct/2, as per Theorem 6 t ≤ O
(

n−k
ln(n−k)

)

. Taking

into account this condition and the hypothesis of Theorem 6, i.e. d = ct/2, we deduce the
following upper bound on t

d = ct

2
≤ n − k

8 ln t
⇒ t ln t ≤ n − k

4c
. (12)

This improves the constant term by t ≤ n − k

4cW ( n−k
4c )

.
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Remark 1 When we consider the conditions from Proposition 7 we can deduce a similar, but
stronger condition on t . Indeed under the same assumption on k we have

t ≤ n − k

(12(1 + c)W

(

1
3

(

n−k
4(1+c)(δ+1)

) 2
3
) (13)

Asymptotically we obtain the same behavior, however, the constant factors matter when
numerical simulations are performed (Table 3).

4.2.2 Bounding the required ratio of syndrome entries

The existence of a value such that the ISD-score decoder succeeds in finding a solution
using fewer syndrome entries could be deduced. It suffices to replace (n − k) with γ (n − k),
where γ ∈ (0, 1] represents the percentage of syndrome entries required to achieve a high
probability. This value can be deduced from Theorem 6. Typically, given a number of rows
n − k, the maximum value of t for which the success probability is close enough to 1 also
determines the minimum number of required rows. More exactly, for a fixed value of t and
n− k, we can compute γ (n− k), the value for which t satisfies 8t(1+ c) ln t

δ+1 = γ (n− k).
By Theorem 6, with only γ (n − k) rows, one can recover a solution of weight at most t with
high probability. Formally, the following holds.

Corollary 5 Let d = ct/2 where c is a constant. Then the minimum quantity of information
required by the ISD-score decoder to find a valid solution is 4(1 + c)t ln t

δ+1 . Moreover, in
the noiseless scenario, the minimum quantity of information becomes 4t ln t

δ+1 .

Consequently, we deduce that one could improve the constant term, however, not lower
than 2(1 + c)t ln t

δ+1 .
On a parallel track, when we analyze the condition on n − k from Theorem 6 we find

that n − k ≥ t + (δ + 1)n/t − 2(δ + 1). Equivalently this leads to a minimum dimension
of order O (max(t, n

t )
)

. Hence, there is a universal condition on the fraction on syndrome

Table 3 Theoretical upper bounds on t

n − k 1000 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

δ = 0, c = 0 35 129 230 324 415 502 588 672 755 836 916

43 156 276 388 495 598 699 798 895 990 1084

δ = 3, c = 0 50 167 291 406 515 620 722 822 920 1016 1111

62 206 356 493 624 749 871 990 1106 1220 1333

δ = 0, c = 0.25 30 107 190 268 343 415 485 554 622 689 755

36 130 230 322 410 495 578 659 739 817 895

δ = 3, c = 0.25 42 140 243 338 428 515 599 681 762 841 920

52 173 298 412 520 624 724 822 919 1013 1106

δ = 0, c = 0.5 26 92 164 230 293 355 415 473 531 588 644

32 112 198 276 352 424 495 564 632 699 765

δ = 3, c = 0.5 37 122 210 291 368 443 515 585 654 722 789

46 150 258 356 448 537 624 708 790 871 950
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entries required to solve the problem regardless of the relation between d and t . Indeed,
choosing the particular relation d = ct/2 allows to determine the maximum value of t , but
this value depends on d. Typically, all these variables are linked together. That is why we
can express the tolerated noise level in function of the syndrome entries and weight t , or the
minimum syndrome entries in function of the maximum decodable weight t which depends
on the noise level.

5 Experimental results

The following experiments have been carried out on a standard laptop embedding an 8-core
processor running at 1.6 GHz and 32 GB of RAM. The ILP solver we used is provided
by the Scipy Python package [53] under the scipy.optimize.linprog function. The
score decoder is implemented using the Numpy Python package [31] to perform matrix
computations.

5.1 Noise model

We have simulated the noise model as per [29]. More exactly, we will handle here two
type of errors, coming from the accuracy of the side-channel distinguisher and double-
cancellation. Thus, the noise will consist of two parts HW(bi, j ) + N(0, σ 2), where the
Hamming weight HW depends on the width of the representation (8, 32 or 64-bit values)
and the noise variance σ 2 affects the side-channel distinguisher accuracy. The accuracy of

distinguisher (a) is approximated using the 3-σ rule a � erf
(

1
2
√
2σ

)

, where erf is the

Gauss error function [56]. We have also taken into account the parity of s∗ to correct wrong
estimated values of s̃. The noise model for σ = 0.25, σ = 0, 5 and two parameter sets for the
Classic McElieceKEM are illustrated in Fig. 3. The plotted distribution is a truncated shifted
distribution since, i) one out of two values are equal to 0 (correction with respect to the parity
of the binary syndrome) and ii) shifted depending on the width of the representation and the
values of σ .

To determine the closest distribution to the simulated noise, we have first plotted in Fig. 4a
a possible interval of values d where the most probable B(d, 0.5) could be. Then we have
computed the Euclidean distance between the simulated noise distribution andB(2d, 0.5)−d
for d = 5..100. The sequence of distances is decreasing from d = 5 to d = 40 where the
minimum is reached (the distance for d = 40 equals 0.004), and then increasing.

Fig. 3 Simulated noise distribution
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Fig. 4 Binomial model for simulated noise (σ = 0.5) in the case of the Classic McEliece of parameters
n = 8192, t = 128

In Table 4, we have computed the "best" (the closest w.r.t. the Euclidean distance) binomial
distributions for the simulated noise. Light green signifies values of d close to t/8, while
dark colors indicates large values of d , typically larger than 3t . As expected, the value of
d is increasing with σ and decreasing with w. The first parameter (σ ) induces errors in the
estimation of the intermediate weights which obviously affects negatively the parameter d .
We can see that in Table 4a where we have computed the values for values of σ up to 0.75

Table 4 Closest binomial distributions to simulated noise. Each value represents the best value for the param-
eter d in B(2d, 0.5) − d
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(extremely noisy setting). In real situations [16] the largest values do not exceed σ = 0.2.
The second parameter (w) has a converse influence on d , since the larger the width of the
registers the lower the noise level. This mainly comes from the fact that when the registers
are large there are fewer blocks n/w on which the noise gets accumulated. Hence, there is
a smaller influence in the intermediate estimated values that comes from this side. Keeping
all these in mind, we see that light green colors are predominating in the small σ and large
w region. For realistic scenarios in Table 4b the first two lines in each parameter set shows
that d < t/4 for all w.

5.2 Success probability and ratio of syndrome entries

The following experiments look at the number of syndrome entries required to bring t − δ

ones in the first n − k positions, as dictated by the ISD method. Results are shown in Fig. 5,
for both the Classic McEliece and the BIKE cryptosystems. Let us explain the meaning of
the plots, when these are read horizontally. One way this could be read is as the weight of
solutions retrieved by the ISD-score decoder with probability 1. The green stripe represents
the region corresponding to possible values of δ. The value of δ for the [t − δ; t] interval is
lower for the BIKE cryptosystem since it comes with much larger values of n, making the
exhaustive search for the correct permutation much more costly. Conversely, we allow for
δ = 3 in the case of Classic McEliece since the n values are smaller. For example, when
n = 8192 and noise level equal to t we can hope to retrieve solutions of weight at most 122
(which is smaller than the proposed parameters), while for the same length and noise smaller
than t/2 we can retrieve any solution of weight at most 128 using the ISD-score decoder
using δ = 3, or equivalently solutions of weight 125 using the Prange-score decoder. To
summarize, except for the case n = 8192 with noise levels strictly greater than t/2, all the
plots suggest that the ISD-score decoder is able to retrieve with high probability a valid
solution of weight t in presence of noise.

We can also read the plots vertically. This gives us the ratio of syndrome entries required to
find a solution of givenweight with high probability. The abscissa of the points of intersection
between the curves and the green stripe gives minimum percentage of syndrome entries
required in the ISD-score decoder to successfully retrieve a valid solution of weight t . For
the BIKE cryptosystem, the ratio of syndrome entries required to bring at least t − 1 ones in
the first n− k positions ranges from 4.75% to 6.5%. For the Classic McEliece cryptosystem,
the ratio of syndrome entries required to bring at least t − 3 ones in the first n − k positions

Fig. 5 Number of ones in the first n−k positions for some of theClassicMcEliece andBIKE sets of parameters
and different levels of a centered binomial noise

123



Cryptography and Communications

ranges from 48% to 62%. We have also computed the best theoretical lower bound we could
hope for, i.e., the percentage of syndrome entries should be at least 2(1+c)t

n−k ln t
δ+1 . When

comparing the experimental results shown in Fig. 5 and Table 5, we observe that theoretical
values are around 10% smaller than the experimental values.

To verify that the public parity-check matrix is close to a Bernoulli matrix, we verify the
bias of the coefficients. We use a χ2 test with the null hypothesis that the distribution of 1
and 0’s follows a uniform distribution. For all sets of parameters, we obtain a p-value higher
than 0.999, allowing us to accept the null hypothesis. We also check that the distribution of
transitions between the coefficients follow a uniform distribution, using a χ2 test and uniform
distribution as null hypothesis. We obtain a p-value higher than 0.999, allowing us to accept
the null hypothesis.

5.3 ILP solver and ISD-score decoder

Percentage of required entries To compare the ILP solver with the ISD-score decoder we
used the parameters for the Classic McEliece proposal. We decided to consider only the
Classic McEliece because the execution time of the ILP solver for the smallest parameters
of BIKE exceeded tens of minutes for a single instance of the N − SDP. Obtaining in a
reasonable time a solid statistical evidence of the performance of the ILP solver for BIKE,
would assume a much more optimized implementation of the solver, which is not the main
purpose of this article. The results for the ILP solver in the noiseless scenario are given in
Fig. 6a. The success rate is computed for ten evenly spaced ratios ranging from 1 to 100%.

We observe that the behavior is the same for all sets of parameters. When considering
30% of syndrome entries, the ILP solver failed at recovering the error vector ten times out
of ten. Conversely, when considering 40% of syndrome entries, the ILP solver succeeded at
recovering the error vector ten times out of ten. Hence, the main drawback of the ILP solver,
when compared to the ISD-score decoder, is that the ILP cannot be used when only a small
percentage of syndrome entries are known.
Noisy setting In a noisy setting, the differences between the ILP solver and the ISD-score
decoder is even more dramatic. Indeed, the ILP solver either succeeds in finding a valid
solution, with t ones in the first t positions, or it fails. Conversely, the ISD-score decoder
succeeds if t − δ ones are in the first (n − k) positions, providing a much larger margin in
the noisy setting.

Table 5 Theoretical lower bound on the ratio of syndrome entries necessary for the ISD-score decoder

n noiseless B
(

t
4 , 1

2

)

B
(

t
2 , 1

2

)

B
(

3t
4 , 1

2

)

B
(

t, 1
2

)

Classic McEliece

3488 0.46 0.58 0.69 0.81 0.92

4608 0.49 0.61 0.73 0.86 0.98

6688 0.53 0.67 0.80 0.93 1.00

8192 0.53 0.67 0.80 0.93 1.00

BIKE

24646 0.09 0.11 0.14 0.16 0.18

49318 0.07 0.09 0.11 0.13 0.15

81946 0.06 0.08 0.09 0.11 0.13
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Fig. 6 ILP and ISD-score decoder performance for N − SDP

Eventually, the permutation returned by the ISD-score decoder is always better than a
random permutation. Therefore, one can always resort to exhaustive search afterwards.
Computation timeWhen comparing the time required by the two algorithms for retrieving a
valid solution, we notice a significant gap between the two algorithms. From Fig. 6b we can
see that it takes less than 0.1 s for the ISD-score decoder, while for the ILP it takes at least
10 s for any of the parameters of the Classic McEliece scheme. Broadly speaking, the ILP
solver is three orders of magnitude slower than the ISD-score decoder.

6 Conclusion

This article evaluated the efficiency of the score decoder for integer syndrome decoding in
the presence of noise. We proved that, even in the presence of noise, this decoder is indeed
able to successfully bring t − δ ones in the first n − k positions, as required by the ISD-
based methods. We then experimentally validate this capability considering the parameter
sets of two post-quantum cryptosystems, Classic McEliece and BIKE. Future works could
investigate other types of noise, improve the efficiency of the decoder, or consider other type
of distributions. For example, LDPC orMDPC parity-check matrices offer interesting results
in simulations, fact that opens the following question. What is the influence of the matrix
sparsity on the success probability?

Appendix A proof of theorem 1

Proof By definition 4 we have that

ψi (s) =
n−k
∑

�=1

(

h�,i s� + (1 − h�,i )(t − s�))
)

. (14)

Let us denote X� = h�,i s� + (1 − h�,i )(t − s�)). As s� =
∑

j∈Supp(x)

h�, j we deduce that

X� = h�,i

∑

j∈Supp(x)

h�, j + (1 − h�,i )(t −
∑

j∈Supp(x)

h�, j )). (15)
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If i /∈ Supp(x) then

X� =

⎧

⎪

⎨

⎪

⎩

∑

j∈Supp(x)

h�, j = s� , if h�,i = 1

t − ∑

j∈Supp(x)

h�, j = t − s� , if h�,i = 0

As s� ∼ B(t, 1
2 ) we deduce that X� ∼ B(t, 1

2 ) for all i /∈ Supp(x), and by independence we

obtain ψi (s) ∼ B((n − k)t, 1
2 ), then E(ψi (s)) = (n−k)t

2 and Var(ψi (s)) = (n−k)t
4 .

If i ∈ Supp(x)we have that s� and h�,i are dependent random variables. Hence we obtain

X� =

⎧

⎪

⎨

⎪

⎩

1 + ∑

j∈Supp(x)\{i}
h�, j , if h�,i = 1

1 + (t − 1) − ∑

j∈Supp(x)\{i}
h�, j , if h�,i = 0

As s� − h�,i ∼ B(t − 1, 1
2 ) we deduce that X� ∼ 1 + B(t − 1, 1

2 ) for all i ∈ Supp(x),
and by independence of the variables X� we obtain ψi (s) ∼ (n − k) +B((n − k)(t − 1), 1

2 ).

Appendix B proof of corollary 2

Proof Apply Proposition 2 and Corollary 1 to obtain the the results. In order to determine
the upper bound on d , we start by computing the intervals of confidence for ψi (̃s) from
Proposition 2. This yields an interval Ĩs(i) defined by the two extremal points E(ψi (̃s)) ±
√

d(n−k)g(n,k,t)
2 , i.e.,

• i /∈ Supp(x) the points (n−k)t
2 ±

√

d(n−k)g(n,k,t)
2

• i ∈ Supp(x) the points (n−k)t
2 + n−k

2 ±
√

d(n−k)g(n,k,t)
2 .

The two intervals are disjoint if we have

2

√

d(n − k)g(n, k, t)

2
≤ n − k

2
(16)

Hence, we obtain d ≤ n−k
8g(n,k,t) .

Appendix C proof of theorem 3 and theorem 4

Let us begin by a useful result.

Lemma 1 ([35]) Let X ∼ B(n, 1
2 ) and

n
2 ≤ α ≤ n. Then

Prob(X ≥ α) ≤ α + 1

2α − n + 1
Prob(X = α). (17)

Lemma 2 ([25]) Let X ∼ B(n, 1
2 ) and α ≤ n

2 . Then

Prob
(

X = n

2
+ α
)

≤ e

2π

√

n
n2
4 − α2

e− 2α2
n . (18)
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Proposition 9 Let X ∼ B(n, 1
2 ) and α < n. Then

Prob
(

X ≥ n

2
+ α

2

)

≤ e

2π

(

1 + n + 1

α + 1

)√

n

n2 − α2 e
− α2

2n . (19)

Proof Use Lemma 1 and 2.

We can now proceed to the proof of Theorem 3.

Proof Recall that

ψi (s) ∼
{B((n − k)t, 1

2 ) for i /∈ Supp(x)

n − k + B((n − k)(t − 1), 1
2 ) for i ∈ Supp(x)

By Proposition 9, for i /∈ Supp(x) we have that

Prob
(

ψi (s) ≥ Bβ

) ≤
e
2π

(

1 + (n−k)t+1
(n−k)β+1

)√

(n−k)t
(n−k)2t2−(n−k)2β2

e
(n−k)2β2
2(n−k)t

(20)

≤ e

2πβ

√

t + β

t − β

√

t

(n − k)
e− (n−k)β2

2t (21)

≤ e√
2πβ

√

t

(n − k)
e− (n−k)β2

2t (22)

For i ∈ Supp(x) we have that E(ψi (s)) = (n−k)t
2 + n−k

2 . Hence, by Proposition 9 we

obtain that Prob
(

ψi (s) ≤ (n−k)t
2 + (n−k)β

2

)

is upper bounded by

≤
e
2π

(

1 + (n−k)(t−1)+1
(n−k)(1−β)+1

)√

(n−k)(t−1)
(n−k)2(t−1)2−(n−k)2(1−β)2

e
(n−k)2(1−β)2
2(n−k)(t−1)

(23)

≤ e

2π(1 − β)

√

t − β

t + β + 2

√

t − 1

(n − k)
e− (n−k)(1−β)2

2(t−1) (24)

≤ e

2π(1 − β)

√

t − 1

(n − k)
e− (n−k)(1−β)2

2(t−1) . (25)

As for Theorem 4 we have:

Proof Recall that we have

• for i /∈ Supp(x)

ψi (̃s) ∼ −d(n − k) + B
(

(n − k)(t + 2d),
1

2

)

;

• for i ∈ Supp(x)

ψi (̃s) ∼ −(d − 1)(n − k) + B
(

(n − k)(t − 1 + 2d),
1

2

)

.

The proof is thus identical with that of Theorem 3 by simply putting t ′ = t + 2d when
i /∈ Supp(x) and t ′ = t + 2d − 1 when i ∈ Supp(x).
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Appendix D proof of theorem 5

Proof Let XB denote the number of indices j ∈ Supp(x) for which ψi (̃s) ≤ B, and YB the
number of indices j /∈ Supp(x) for which ψi (̃s) ≥ B. The probability of success of our
algorithm equals

∑

B

Prob(XB ≤ δ) · Prob (YB ≤ n − k − t + δ)

=
∑

B

(1 − Prob(XB ≥ δ + 1)) · (1 − Prob(YB ≥ n − k − t + δ + 1))

≥
∑

B

(

1 − t

δ + 1
e− f (n,k,t,d,B)

)

·
(

1 − n − t

n − k − t + δ + 1
e−g(n,k,t,d,B)

)

.

In the last equation we have used Markov’s inequality. Also, the last sum is over those
values B for which the two terms in the sum are both positive and smaller than 1. Now
suppose that a B∗ satisfying the required condition exists. Then the probability of success is

≥
(

1 − t

δ + 1
e− f (n,k,t,d,B∗)

)

·
(

1 − n − t

n − k − t + δ + 1
e−g(n,k,t,d,B∗)

)

≥ 1 − t

δ + 1
e− f (n,k,t,d,B∗) − n − t

n − k − t + δ + 1
e−g(n,k,t,d,B∗).

Appendix E range of valid parameters: proofs and comments

Let us denote f (n, k, t, d, β) = t
δ+1UbSupp(x)(n, k, t, β) and g(n, k, t, d, β) =

n−t
n−k−t+δ+1UbSupp(x)c (n, k, t, d, β). The first useful results concerns the monotony of the
two upper bounds.

Lemma 3 The functions f (n, k, t, d, β), g(n, k, t, d, β) in β ∈ (0, 1), are positive increas-
ing, and positive decreasing, respectively.

Proof We have that both functions f , g are positive. We also have

∂ f (n, k, t, d, β)

∂β
= (n − k)(1 − β)2 + (t + 2d − 1)

(1 − β)(t + 2d − 1)
f (n, k, t, d, β)

∂g(n, k, t, d, β)

∂β
= − (n − k)β2 + (t + 2d)

β(t + 2d)
g(n, k, t, d, β).

Using the fact that f and g are positive we deduce the wanted result.

Now we can demonstrate Proposition 7.

Proof Let us consider the limit point β where the two functions equal 1. As the first function
is decreasing we then obtain a lower bound on β.

g(n, k, t, d, β) = 1 ⇔ (26)

n − t

n − k − t + δ + 1

e√
2πβ

√

t + 2d

n − k
e− (n−k)β2

2(t+2d) = 1 ⇔ (27)

(

n − t

n − k − t + δ + 1

e√
2π

)2 t + 2d

(n − k)β2 = e
(n−k)β2

t+2d . (28)
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By letting y = (n−k)β2

t+2d we have

yey =
(

n − t

n − k − t + δ + 1

e√
2π

)2

, (29)

admitting a real solution y = W
(

n−t
n−k−t+δ+1

e√
2π

)2
, where W is the Lambert W function.

From this we deduce β =
√

t+2d
n−k W

(

n−t
n−k−t+δ+1

e√
2π

)2
. The second function is increasing

hence, it gives an upper bound on β.

f (n, k, t, d, β) = 1 ⇔ (30)

t

δ + 1

e

π(1 − β)

√

t + 2d − 1

n − k
e− (n−k)(1−β)2

2(t+2d−1) = 1 ⇔ (31)

(

t

δ + 1

e

π

)2 t + 2d − 1

(n − k)(1 − β)2
= e

(n−k)(1−β)2

t+2d−1 . (32)

As in the first case we obtain 1 − β =
√

t+2d−1
n−k W

(

t
δ+1

e
π

)2
.

Proposition 8 gives a slightly weaker condition, however, it helps understanding the order
of magnitude of the parameters. Let us demonstrate the result.

Proof Let β ≥ β1 =
√

2 t+2d
n−k ln n−t

n−k−t+δ+1 . Then we have

g(n, k, t, d, β) = n − t

n − k − t + δ + 1

e√
2πβ

√

t + 2d

n − k
e− (n−k)β2

2(t+2d) (33)

≤ n − t

n − k − t + δ + 1

e

2π
√

ln n−t
n−k−t+δ+1

e− ln n−t
n−k−t+δ+1 (34)

= e

2π

1
√

ln n−t
n−k−t+δ+1

. (35)

Let 1 − β ≥ β2 =
√

2 t+2d−1
n−k ln t

δ+1 . Then

f (n, k, t, d, β) = t
δ+1

e

π(1 − β)

√

t+2d−1
n−k e− (n−k)(1−β)2

2(t+2d−1) (36)

≤ e√
2π

1
√

ln t
δ+1

. (37)

From this we deduce √
2(t + 2d)√
n − k

√

ln
n − t

n − k − t + δ + 1
≤ β (38)

β ≤ 1 −
√
2(t + 2d − 1)√

n − k

√

ln
t

δ + 1
. (39)
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Now, suppose that [β1, β2] is non-empty and take β∗ ∈ [β1, β2]. Since f (n, k, t, d, β) is
increasing in β, this implies that

f (n, k, t, d, β∗) ≤ f (n, k, t, d, β2) = e√
2π

1
√

ln t
δ+1

< 1, (40)

as long as t > 1.45(δ + 1). Also, as g(n, k, t, d, β) is decreasing in β we have that

g(n, k, t, d, β∗) ≤ g(n, k, t, d, β1) = e

2π

1
√

ln n−t
n−k−t+δ+1

< 1, (41)

as long as k > 0.16(n − t) + δ + 1.
Equations (40) and (41) thus imply

⎛

⎝1 − e

2π

1
√

ln n−t
n−k−t+δ+1

⎞

⎠

⎛

⎝1 − e√
2π

1
√

ln t
δ+1

⎞

⎠ . (42)

The last result to demonstrate from this section is Theorem 6.

Proof Taking the simplified interval for β, the existence of this interval implies
√
2(t + 2d)√
n − k

√

ln
n − t

n − k − t + δ + 1
≤ 1 −

√
2(t + 2d − 1)√

n − k

√

ln
t

δ + 1
(43)

√

ln
n − t

n − k − t + δ + 1
+
√

ln
t

δ + 1
≤
√

n − k

2(t + 2d)
(44)

Using the condition on k we deduce
√

ln
n − t

n − k − t + δ + 1
≤
√

ln
n − t

n − (n − t + δ + 1 − (n−t)(δ+1)
t ) − t + δ + 1

(45)

√

ln
n − t

n − k − t + δ + 1
≤
√

ln
t

δ + 1
. (46)

Hence, the following should hold

2

√

ln
t

δ + 1
≤
√

n − k

2(1 + c)t
(47)

t

δ + 1
ln

t

δ + 1
≤ n − k

8(1 + c)(δ + 1)
, (48)

which is satisfied as long as t ≤ n−k
8(1+c)W ( n−k

8(1+c)(δ+1) )
. The initial condition on k implies

t ≤ n − k + 2δ + 2 −√(n − k + 2δ + 2)2 − 4n(δ + 1)

2

which is greater than or equal to n−k
8(1+c)W ( n−k

8(1+c)(δ+1) )
.

As for the asymptotic, use one termapproximation for theLambertW function near infinity.
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Proof of Remark 1.
√
t + 2d√
n − k

√

W

(

n − t

n − k − t + δ + 1

)2

≤ 1 −
√
t + 2d − 1√

n − k

√

W

(

t

δ + 1

)2

(49)

W () being increasing we deduce

2

√
t + 2d − 1√

n − k

√

W

(

t

δ + 1

)2

≤ 1 (50)

√

W

(

t

δ + 1

)2

≤ 1

2

√

n − k

(1 + c)t
(51)

W

(

t

δ + 1

)2

≤ n − k

4(1 + c)t
(52)

yW (y)2 ≤ n − k

4(1 + c)(δ + 1)
, (53)

where y = t/(δ + 1). Letting N � n−k
4(1+c)(δ+1) , the solution in y to the last equation is

y = N

(3W ( N
2
3
3 ))

, which leads to

t ≤ n − k

(12(1 + c)W

(

1
3

(

n−k
4(1+c)(δ+1)

) 2
3
)
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