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Abstract
In this paper, we address an open problem posed by Bai and Xia in [2].We study polynomials
of the form f (x) = x4q+1 + λ1x5q + λ2xq+4 over the finite field F5k , which are not quasi-
multiplicative equivalent to any of the known permutation polynomials in the literature.
We find necessary and sufficient conditions on λ1, λ2 ∈ F5k so that f (x) is a permutation
monomial, binomial, or trinomial of F52k .
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1 Introduction

LetFq be a finite fieldwith q elements, where q is a prime power. A polynomial g(x) ∈ Fq [x]
is called a permutation polynomial (PP) overFq if g(x) is a bijection ofFq . Due to their simple
algebraic structure and extraordinary properties, there has been a great interest in permutation
polynomials with a few terms, such as binomials or trinomials. Permutation polynomials are
also very important in terms of their applications in areas such as cryptography, coding theory
and combinatorial designs. As far as we know, the studies on permutation polynomials go
back to the work done by Dickson and Hermite (see, [13, 17]). As an introduction, the books
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on finite fields (see, [28] and [29, Chapter 8]) could be very helpful for the interested reader
to get into the topic. Furthermore, the survey papers (see, [19, 21, 31, 39]) could also be
useful as they consist of many of the recent results on permutation polynomials over finite
fields. We refer the interested reader to [6, 7, 15, 20, 25, 26, 30] and the references therein
for more results on permutation polynomials over finite fields.

In [2], Bai and Xia proved that the polynomial g(x) = x (p−1)q+1+x pq −xq+p−1 over the
finite field Fq2 , where p = 3 or 5 and q = pk with k being a positive integer, is a permutation
trinomial for Fq2 if and only if k is even. Later, in [14] Gupta and Rai investigated the
trinomial f (x) = x4q+1 + αx5q + xq+4 over the finite field F52k , where α ∈ F

∗
5k

with k
being a positive integer. They proved that the trinomial f (x) permutes F52k if and only if
α = −1 and k is even. In this paper, our aim is to determine the permutation properties of the
more general trinomial f (x) = x (p−1)q+1 + λ1x pq + λ2xq+p−1 ∈ Fq [x] over Fq2 , where
Fq is of characteristic 5. Our results include the ones in [2, 14]. Note that while proving
our main result (see Theorem 2) in the absolutely irreducible case, we use a bound (see [23,
Theorem 5.28]) which is derived from the well-known Hasse-Weil bound for function fields.
For the characterization of some planar functions and related structures, like exceptional
polynomials and APN permutations, the theory of algebraic curves over finite fields and in
particular, Hasse-Weil type inequalities become a very useful instrument. In recent years,
there have been very interesting studies on these topics through the Hasse-Weil approach
(see for instance, [4], [8], [11], [18], [34] and the references therein).

The paper is organized as follows. Section 2 contains background material that is used in
the rest of the paper. Sections 3 and 4 contain our main results, where we prove necessary
and sufficient conditions on λ1, λ2 ∈ F5k so that f (x) permutes F52k . Finally, Section 5
investigates the quasi-multiplicative equivalence of the polynomial f (x) with the existing
permutation trinomials in odd or arbitrary characteristic.

2 Preliminaries

In order to determine whether a polynomial that can be written in the form f (x) =
xr h

(
x (qn−1)/d

)
permutes Fqn or not, mostly a well known criterion due to Wan and Lidl

[37], Park and Lee [32], Akbary and Wang [1], Wang [38] and Zieve [42] is being used,
which is given in the following lemma.

Lemma 1 [1, 32, 37, 38, 42] Let h (x) ∈ Fqn [x] and d, r be positive integers with d dividing
qn − 1. Then f (x) = xr h

(
x (qn−1)/d

)
permutes Fqn if and only if the following conditions

hold:

(i) gcd (r , (qn − 1) /d) = 1,
(ii) xr h (x)(q

n−1)/d permutes μd , where μd = {θ ∈ F
∗
qn | θd = 1}.

In this paper, we plan to apply Lemma 1 over the finite field Fq2 with d = q + 1 and r = 5,
using

h(x) = λ1x
5 + x4 + λ2x, withλ1, λ2 ∈ Fq . (1)

Condition (i) of Lemma 1 holds as gcd(r , (qn−1)/d) = gcd(r , q−1) = gcd(5, 5k−1) = 1.
Instead of finding the conditions for which g(x) = xr h(x)q−1 permutes μq+1, we will use
the following idea throughout the paper:

Let z ∈ Fq2 \ Fq be an arbitrary element. For any x ∈ Fq , let � : Fq ∪ {∞} −→ μq+1 be

the map defined by � (x) = x + z

x + zq
, where �(∞) = 1. It is not so hard to observe that �
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is one to one from Fq ∪ {∞} to μq+1 and thus onto since the number of elements on both

sides are equal. Then we obtain that �−1 (x) = xzq − z

1 − x
, for any x �= 1 with �−1 (1) = ∞.

In this setting, we have g(x) = xr h(x)q−1 is one to one on μq+1 and therefore permutes
μq+1 if and only if the map

(
�−1 ◦ g ◦ �

)
is one to one on Fq ∪ {∞}. In our situation,

g(1) = (λ1 + λ2 + 1)q−1 = 1 when h(1) �= 0. Then ∞ is a fixed-point of the map(
�−1 ◦ g ◦ �

)
, and it suffices to investigate its action on Fq . We note that an analogous idea

has been used in a few more studies before, see for instance [3, 6, 22].
This situation can be easily summarized in the diagram below:

Fq ∪ {∞} �−1◦g◦�−−−−−→ Fq ∪ {∞}
⏐
⏐
��

�
⏐
⏐�−1

μq+1
g−−−−→ μq+1

(2)

Moreover, we will make a suitable choice of the element z ∈ Fq2 \ Fq that results in
simpler computations.

3 The trinomial h(x) of degree 5 in arbitrary characteristic

As a preliminary step to apply Lemma 1,we investigate for which λ1, λ2 ∈ Fq the polynomial
h(x) = λ1x5 + x4 + λ2x ∈ Fq [x] does not have any roots in μq+1 without restrictions on
the characteristic.

If h(1) = 0 or h(−1) = 0, then h(x) has a root inμq+1 trivially. Thereforewe characterize
all such polynomials in the next proposition under the assumptions h(1) �= 0 and h(−1) �= 0.
For this we first need to prove some lemmas.

Lemma 2 The polynomial h(x) has a root inμq+1 \{1,−1} if and only if there exists A ∈ Fq

such that m(x) = x2 + Ax + 1 is irreducible over Fq and m(x) divides h(x).

Proof The set μq+1 \ {1,−1} contains exactly the elements θ ∈ Fq2 \ Fq with θq+1 = 1.
Let θ ∈ Fq2 \Fq be such that h(θ) = 0 and θq+1 = 1. As h(x) is a polynomial over Fq , θq

is another root of h(x). Thenm(x) = (x−θ)(x−θq) = x2−(θ +θq)+θq+1 = x2+ Ax+1
divides h(x). Moreover m(x) is the minimal polynomial of θ over Fq and hence irreducible.

For the converse, assume that an irreducible polynomial m(x) = x2 + Ax + 1 divides
h(x). The roots θ1 and θ2 of m(x) = (x − θ1)(x − θ2) are roots of h(x) as well. As m(x) is
irreducible, the roots lie in Fq2 \Fq and they are conjugates, i.e., θ2 = θ

q
1 . From the constant

coefficient of m(x) we find 1 = θ1θ2 = θ
q+1
1 .

Lemma 3 The polynomial h(x) = λ1x5 + x4 + λ2x ∈ Fq [x] is divisible by m(x) = x2 +
Ax + 1 with A ∈ Fq if and only if λ2 �= 0 and

s(λ1, λ2) = λ31 − λ21λ2 − λ1λ
2
2 + λ32 − λ2 = 0. (3)

Proof Let h1(x) = λ1x4+x3+λ2 such that h(x) = xh1(x). If h(x) is divisible bym(x), then
m(x) must be a factor of h1(x). If we divide h1(x) bym(x) = x2 + Ax + 1, the remainder is

(−A3λ1 + A2 + 2Aλ1 − 1
)
x − A2λ1 + A + λ1 + λ2 = c1x + c0. (4)
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The polynomial h1(x) is divisible by m(x) if and only if both c0 and c1 are zero. Direct
calculation shows that

s(λ1, λ2) = (−A2λ21 + A2λ1λ2 − Aλ2 + λ21 + 3λ1λ2 + λ22
)
c0

+ (
Aλ21 − Aλ1λ2 + λ2

)
c1. (5)

Hence s(λ1, λ2) vanishes when h1(x) is divisible by m(x). When λ2 = 0, condition (3)
reduces to λ31 = 0. Then h1(x) = x3, which contradicts divisibility by m(x).

For the converse, assume that λ2 �= 0 and define

h1,1(x) = x2 + λ21−λ22
λ2

x + 1 (6)

and h1,2(x) = λ1x2 + (−λ21 + λ22)x + λ2. (7)

Direct calculation shows that

h1(x) − h1,1(x)h1,2(x) =
(

(λ1 + λ2)x2 − x3

λ2

)
s(λ1, λ2). (8)

Hence the condition in (3) implies that the polynomial h1,1(x) in (6) is a factor of h(x). 	


Combining Lemma 2 and Lemma 3, we obtain the following characterization of the roots
of h(x) in μq+1 \ {1,−1}.
Proposition 1 The polynomial h(x) = λ1x5+x4+λ2x ∈ Fq [x] has a root inμq+1 \{1,−1}
if and only if all the following conditions hold:

(i) λ2 �= 0,
(ii) s(λ1, λ2) = λ31 − λ21λ2 − λ1λ

2
2 + λ32 − λ2 = 0,

(iii) (a) λ1/λ2 − 3 is not a square in Fq when q is odd,

(b) λ1 �= λ2 and Tr

(
λ2

λ21 − λ22

)

= 1 when q is even.

Proof By Lemma 3, conditions (i) and (ii) are equivalent to h(x) having a factor m(x) =
x2 + Ax + 1. From the proof of Lemma 3 it follows that m(x) = h1,1(x) given in (6). If
m(x) was a multiple of h1,2(x), then λ1 = λ2, which by (ii) implies −λ2 = 0, contradicting
(i). In order to apply Lemma 2, we have to investigate when h1,1(x) is irreducible. For odd
characteristic, this is the case if and only if the discriminant D of h1,1(x) is not a square in
Fq . Direct calculation yields

D = λ1/λ2 − 3 +
(

λ1 + λ2

λ22

)

s(λ1, λ2) = λ1/λ2 − 3. (9)

For the last equality, we have used condition (ii). In even characteristic,m(x) = x2+Ax+1 is
irreducible if and only if A �= 0 and Tr(1/A) = 1. Applying this criterion tom(x) = h1,1(x)
yields the conditions in case (b) of (iii). We are left to investigate whether the second factor
h1,2(x) in (7) has a root in μq+1 \ {1,−1}. If that is the case, we get λ1 = λ2. Then
s(λ2, λ2) = −λ2 = 0, a contradiction to condition (i). 	


Note that necessity of condition (ii) was shown in [14, Lemma 3.1] for the polynomial h1(x)
of degree four in the case of characteristic five.
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4 PPs over finite fields of characteristic five

With this preparation, we study the action of g(x) = x5h(x)q−1 on the set μq+1, using the
idea of diagram (2). Assuming that h(x) has no roots inμq+1 and using the relation xq+1 = 1
for x ∈ μq+1, we have

g(x) = x5
h(x)q

h(x)
= x5(λ1x5q + x4q + λ2xq)

λ1x5 + x4 + λ2x
=

x5
(

λ1
1

x5
+ 1

x4
+ λ2

1

x

)

λ1x5 + x4 + λ2x

= λ1 + x + λ2x4

λ1x5 + x4 + λ2x
.

Let z be an arbitrary element in Fq2 \Fq and let�(x) = x + z

x + zq
and�−1 (x) = xzq − z

1 − x
,

for any x �= 1. We obtain

(g ◦ �)(x) = λ2(x + z)4(x + zq) + (x + z)(x + zq)4 + λ1(x + zq)5

λ1(x + z)5 + (x + z)4(x + zq) + λ2(x + z)(x + zq)4
(10)

Let �(z, x) = λ2(x + z)4(x + zq) + (x + z)(x + zq)4 + λ1(x + zq)5, then we have

�(zq , x) = λ2(x + zq)4(x + z) + (x + zq)(x + z)4 + λ1(x + z)5.

Then we get

(�−1 ◦ g ◦ �) = �(z, x)zq − z�(zq , x)

�(zq , x) − �(z, x)
.

Choosing zq = −z, i.e., z is the square root of a non-square inFq , we get that the denominator
is

�(zq , x) − �(z, x) = (−λ2 + 1)(zx4 + z3x2) + (2λ1 + 2λ2 − 2)z5. (11)

Similarly, computing the numerator we get

�(z, x)zq − z�(zq , x) = −2z(λ1 + λ2 + 1)x5 + (λ2 + 1)z3x3 + (λ2 + 1)z5x . (12)

The following theorem is our main result.

Theorem 2 Let Fq be a finite field, where q = 5k . Let h(x) = λ1x5 + x4 + λ2x with
λ1, λ2 ∈ Fq and assume that h(1) = λ1 + λ2 + 1 �= 0, h(−1) = −λ1 − λ2 + 1 �= 0. Then
f (x) = x5h(xq−1) = λ1x5q + x4q+1 + λ2xq+4 is a permutation polynomial of Fq2 if and
only if one of the following holds:

(i) λ1 = 0, λ2 �= ±1 and k is even,
(ii) λ1 = 1, λ2 = −1 and k is even,
(iii) λ1 = −1, λ2 = 1 and k is even,
(iv) (λ1, λ2) = (2, 1) or (λ1, λ2) = (3,−1) for q = 5.

Proof By Lemma 1, we have to show that g(x) = x5h(x)q−1 permutes the set μq+1. We
apply the idea shown in diagram (2) and hence show that (�−1 ◦ g ◦ �) permutes Fq . For
this, we consider the curve defined by

C(x, y) = (�−1 ◦ g ◦ �)(x) − (�−1 ◦ g ◦ �)(y)

x − y
(13)

and show that is has no rational points off the line x = y over Fq .
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We first assume that −λ2 + 1 �= 0, that is, λ2 �= 1 and consider the map (�−1 ◦ g ◦�)(x)
which is given by

2
λ1 + λ2 + 1

λ2 − 1

⎛

⎜
⎜
⎝

x5 + 2λ2 + 2

λ1 + λ2 + 1
z2x3 + 2λ2 + 2

λ1 + λ2 + 1
z4x

x4 + z2x2 + 3λ1 + 3λ2 + 2

λ2 − 1
z4

⎞

⎟
⎟
⎠ . (14)

We investigate whether this map in injective on Fq . Recall that h(x)may not have any root in
μq+1. In particular, h(1) = λ1+λ2+1 �= 0, i.e., the prefactor in (14) is non-zero. Moreover,
we have assumed λ2 �= 1, i.e., the prefactor does not have a pole, and we can ignore it.

The denominator of the expression in brackets in (14) is the quartic polynomial

x4 + z2x2 + 3λ1 + 3λ2 + 2

λ2 − 1
z4, (15)

and we investigate when it has a root in Fq . First note that the constant coefficient is non-zero,
since h(−1) = −λ1 − λ2 + 1 �= 0. Using the substitution t = x2, we obtain a quadratic
polynomial for t with discriminant

D1 = 3λ1 − λ2 + 1

λ2 − 1
z4. (16)

When D1 is not a square in Fq , then there is no solution for t in Fq , and hence (14) has no

pole in Fq . Note that z4 is a square in Fq , and hence it is sufficient that
3λ1 − λ2 + 1

λ2 − 1
is a

non-square in Fq .
Next assume that D1 is a square in Fq , i.e., D1 = δ2z4 for some δ ∈ Fq . Then (15) factors

as (
x2 − 2(1 + δ)z2

)(
x2 − 2(1 − δ)z2

)
. (17)

Hence, (15) has a root in Fq when D1 is a square in Fq and additionally 2(1 + δ)z2 or
2(1 − δ)z2 is a square in Fq . As z2 is a non-square in Fq , the second part is equivalent to
2(1 + δ) or 2(1 − δ) being a non-square.

First consider the special case that D1 = 0, i.e., λ2 = 3λ1 + 1. Then (17) has a root in
Fq if and only if 2z2 is a square in Fq , which is equivalent to q = 5k with k odd. The roots
are ±√

2z. For these values of x , the numerator of (14) is nonzero, i.e., (14) has a pole. That
implies that we do not get a permutation polynomial when λ2 = 3λ1 + 1 �= 1 and q = 5k , k
odd.

When D1 is a non-zero square, we have roots of (15) with

x2 = 2(1 ± δ)z2. (18)

Recall that the constant coefficient of (15) is non-zero, and hence x �= 0. In order to obtain
a permutation polynomial, (14) must not have a pole in Fq , i.e., it is necessary that the
numerator of (14) vanishes as well for the roots (18) that lie in Fq . We fix one root x and
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compute for the fixed choice of the sign in the factor 1 ± δ:

0 = x5 + 2λ2 + 2

λ1 + λ2 + 1
z2x3 + 2λ2 + 2

λ1 + λ2 + 1
z4x

= x

(
x4 + 2λ2 + 2

λ1 + λ2 + 1
z2x2 + 2λ2 + 2

λ1 + λ2 + 1
z4

)

= x

(
4(1 ± δ)2z4 + 2λ2 + 2

λ1 + λ2 + 1
2(1 ± δ)z4 + 2λ2 + 2

λ1 + λ2 + 1
z4

)

= xz4
(
4(1 ± δ)2 + (

4(1 ± δ) + 2
) λ2 + 1

λ1 + λ2 + 1

)
. (19)

Using that both x and z are non-zero, this reduces to the condition

(
4(1 ± δ)2 + (

4(1 ± δ) + 2
) λ2 + 1

λ1 + λ2 + 1

)
= 0. (20)

From (16) we get the condition

δ2 = 3λ1 − λ2 + 1

λ2 − 1
. (21)

For either choice of the sign in the factor 1± δ, combining (20) and (21) implies that λ1 = 0
or s(λ1, λ2) = 0. This can be shown computing an elimination ideal in Magma. These cases
are treated below, yielding reduced equations for C(x, y) in (31) and (36).

In summary, excluding the last two cases, (14) does not have a pole if and only if one of
the following conditions holds:

(i)
3λ1 − λ2 + 1

λ2 − 1
is a non-square in Fq , (22)

(ii) λ2 = 3λ1 + 1 and q = 5k, k even, (23)

(iii)
3λ1 − λ2 + 1

λ2 − 1
= δ2 with δ ∈ Fq

and 2(1 + δ), 2(1 − δ) are both squares in Fq . (24)

In the calculations with the possible factorizations of the curve (26) below, we check every
possible outcome in terms of these conditions and we verify that they all satisfy one of the
conditions above. Therefore, we do not add these conditions in the statement of the theorem.

Returning to the curve (13), consider the normalized denominator and numerator in (11)
and (12) to obtain

x5 + A1x3 + A0x

x4 + B1x2 + B0
− y5 + A1y3 + A0y

y4 + B1y2 + B0

x − y
. (25)

Simplifying this expression and considering the numerator, we obtain the following curve
defined by a polynomial

C(x, y) :=x4y4 + B1(x
4y2 + x2y4) + B0(x

4 + y4) + (B1 − A1)x
3y3

+ (B0 − A0)(x
3y + xy3) + (B0 + A1B1 − A0)x

2y2

+ A1B0(x
2 + y2) + (A1B0 − A0B1)xy + A0B0, (26)
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where we have used

A0 = −(λ2 + 1)

2(λ1 + λ2 + 1)
z4, A1 = −(λ2 + 1)

2(λ1 + λ2 + 1)
z2,

B0 = (2λ1 + 2λ2 − 2)

−λ2 + 1
z4, B1 = z2. (27)

Recall that we have chosen z ∈ Fq2 \ Fq such that z2 ∈ Fq .
First assume that the curve in (26) is absolutely irreducible. Note that the underlying idea

here is first of all estimating the number of Fq -rational points of the curve C(x, y) in (26).
For this purpose, one can use Hasse-Weil type bounds (see for instance [33, Theorem 5.2.3]
for the Hasse-Weil bound given in terms of algebraic function fields, [24] for the Lang-Weil
bound). In this paper we use [23, Theorem 5.28] which involves a bound obtained from the
Hasse-Weil bound. Let C̃(X , Y , Z) ∈ Fq [X , Y , Z ] be the homogeneous polynomial defined
as

C̃(X , Y , Z) = Z8C
(
X

Z
,
Y

Z

)
.

Homogenization of C(x, y) in (26) by substituting

(
X

Z
,
Y

Z

)
yields a homogeneous poly-

nomial of degree d = 8. Let P2(Fq) denote the projective space consisting of projective
coordinates (X : Y : Z). Let N = |{(x, y) ∈ Fq × Fq | C(x, y) = 0}| be the number of
affine Fq -rational points of C. Let V = |{(X : Y : Z) ∈ P

2(Fq) | C̃(X , Y , Z) = 0}| be the
number of projective Fq -rational points of C̃. Let V0 and V1 be the numbers of projective
Fq -rational points of C̃ corresponding to the cases z = 0 and z �= 0 respectively. Namely,

V0 = |{(X : Y : 0) ∈ P
2(Fq) | C̃(X , Y , 0) = 0}|

and V1 = |{(X : Y : 1) ∈ P
2(Fq) | C̃(X , Y , 1) = 0}|.

It follows from the definitions that N = V1 and V = V0 + V1. Moreover it follows from
(26) that C̃(X , Y , 0) = X4Y 4. This implies V0 = |{(1 : 0 : 0), (0 : 1 : 0)}| = 2. Using [23,
Theorem 5.28] we get

|V − q| ≤ (d − 1)(d − 2)q1/2 + c(d) = 42q1/2 + 197, (28)

where c(d) = 1
2d(d − 1)2 + 1 and d = 8. The arguments above imply that

V = N + 2. (29)

Combining (28) and (29) we conclude that

|N − q| = |(V − q) − 2| ≤ |V − q| + 2 ≤ 42q1/2 + 199.

Note that
|{(x, y) ∈ F

2
q | C(x, y) = 0 and x = y}| ≤ 8

as C(x, x) is a polynomial of degree 8 in Fq [x]. Therefore, if q − 42q1/2 − 199 > 8, then
C(x, y) has an affine point off the line x = y. We note that q − 42q1/2 − 199 > 8 for any
q = 5k with k ≥ 5. As a result, we deduce that f (x) is not a permutation polynomial of
Fq2 if C(x, y) is absolutely irreducible and q ≥ 5k . In characteristic 5, it remains to consider
q ∈ {5, 25, 125, 625}. Using MAGMA [9], we obtained the following:

1. Over F5, f (x) permutes F25 when (λ1, λ2) = (2, 1) and (λ1, λ2) = (3,−1).
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2. Over F25, f (x) permutes F625 when (λ1, λ2) = (−1, 1), (λ1, λ2) = (1,−1) and
(λ1, λ2) = (0, ζ ) where ζ ∈ F25 \ {1,−1}.

3. Over F125, f (x) is not a PP of F56 for any (λ1, λ2) ∈ F
2
125 \ {(0, 0)}.

4. Over F625, the situation is similar to F25, with ζ ∈ F625 \ {1,−1}.
Hence, except the first item corresponding to item (iv) of Theorem 2 where C(x, y) is abso-
lutely irreducible, all the remaining cases are covered by items (i)–(iii) of Theorem 2.

In order to obtain a permutation polynomial for q ≥ 55, the polynomial C(x, y) in (26)
has to be reducible. We consider all possible non-trivial factorizations of C(x, y), noting the
symmetrywhich keeps C(x, y)fixedwhenwe interchange x and y.Without loss of generality,
we fix a monomial ordering by taking x > y and start with all factorizations of the leading
monomials x4y4 which are symmetric with respect to interchanging x and y. There are 22
possibilities listed in 5. Each factor has the form

pm(x, y) = m(x, y) +
∑

m′<m

cim
′(x, y),

where m(x, y) is the leading monomial from the factorization of x4y4. For each of the
monomials m′(x, y) with m′ < m and for each of the factors pm(x, y) we use a different
variable ci as coefficient.

We use the notion of Gröbner bases (see for instance [12]) in order to solve for the
coefficientswith the help of the computer algebra programMAGMA[9].Namely,we subtract
the products of the generic factors pm(x, y) from C(x, y) in (26) and compute aGröbner basis
of the ideal generated by the coefficients of this difference. The elimination ideal with respect
to λ1 and λ2 provides necessary conditions on λ1 and λ2 for the particular factorization to
exist. More details can be found in 5. A similar approach has, for example, been used in [5].
We obtain the following necessary conditions:

(a) λ1 = 0, or
(b) λ1 = 1 and λ2 = −1, or
(c) λ31 − λ21λ2 − λ1λ

2
2 + λ32 − λ2 = 0.

For each of these cases, we recompute the equation for the curve C(x, y) in (25).
First, assume that λ1 = 0. In this case, (13) yields

2
λ2 + 1

λ2 − 1

(
x2y2 + 2z2(x + y)2 + z4

x2y2 + 2z2(x2 + y2) − z4

)
, (30)

and from the numerator we get the equation

C(x, y) = x2y2 + 2z2(x + y)2 + z4. (31)

The equation factors as

C(x, y) = (
xy + 2αz(x − y) − z2

) (
xy − 2αz(x − y) − z2

)
(32)

where α2 = 2. For q = 5k and k odd, α ∈ Fq2 \ Fq and αq = −α. Then (αz)q = αz, i.e.,
C(x, y) factors over Fq . For y = −x , equation (30) reduces to

2
λ2 + 1

λ2 − 1

(
x2 − 2z2

x2 + 2z2

)
.

This implies that the curve has the Fq -rational point (αz,−αz) off the line x = y, and we
do not get a permutation polynomial for k odd.
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For k even, α ∈ Fq . Then the two factors in (32) are conjugates over Fq2 [x, y]. Any
Fq -rational point is hence a root of both factors, and also of their difference which equals
αz(x− y). Hence the curve has no Fq -rational points off the line x = y, we get a permutation
polynomial when k is even. This completes the proof of item (i) in Theorem 2.

Next, for case (b) assume that λ1 = 1 and λ2 = −1. Then (13) yields

x4y4 + z2(x4y2 + x3y3 + x2y4) − z4(x4 + x3y + x2y2 + xy3 + y4)

(x2 − 2z2)2(y2 − 2z2)2
, (33)

and from the numerator we get the equation

C(x, y) = x4y4 + z2(x4y2 + x3y3 + x2y4)

− z4(x4 + x3y + x2y2 + xy3 + y4). (34)

The equation factors as

C(x, y) = (
x2y2 + 2αz(x2y + xy2) + z2(2x2 + xy + 2y2)

)

(
x2y2 − 2αz(x2y + xy2) + z2(2x2 + xy + 2y2)

)
, (35)

where α2 = 2. Eq. (33) must not have a pole. Condition (23) requires that q = 5k with k
even, and hence α ∈ Fq . Then the two factors in (35) are conjugates over Fq2 [x, y]. Any
Fq -rational point is hence a root of both factors. Computing the prime decomposition of
the zero-dimensional ideal generated by the two factors we find that the only solutions are
(0, 0) ∈ F

2
q and (αz,−αz), (−αz, αz) ∈ F

2
q2

\F2
q . As the curve has no Fq -rational points off

the line x = y, we get a permutation polynomial when k is even. This completes the proof
of item (ii) of Theorem 2.

For case (c), assume s(λ1, λ2) = λ31 − λ21λ2 − λ1λ
2
2 + λ32 − λ2 = 0. As the case λ1 = 0

is covered in case (a), we can assume λ1 �= 0. Then the equation for the curve is

C(x, y) =(λ1 + λ2 + 1)x2y2 − z2(λ21 + 2λ1 − λ22 + 2λ2 − 2)(x2 + y2)

+ z2(λ1 − λ2 − 1)xy + z4(−λ21 + 2λ1 + λ22 + 2λ2 + 1). (36)

Using similar techniques as described in 5, we find that λ1 = 0 for all possible non-trivial
factorizations of this polynomial of degree 4. As this contradicts our assumption, there are
no permutation polynomials in this case. Note, however, that case (c) is not excluded by
Proposition 1. The condition s(λ1, λ2) = 0 is only necessary for h(x) to have a root in
μq+1 \ {1,−1}, i.e., that one does not obtain a permutation polynomial.

Going back to (11) and (12), we now consider the case when λ2 = 1. Recall that

(�−1 ◦ g ◦ �) = �(z, x)zq − z�(zq , x)

�(zq , x) − �(z, x)
.

Again choosing z ∈ Fq2 \ Fq with zq = −z we get that the denominator is

�(zq ; x) − �(z; x) = 2λ1z
5.

Similarly, computing the numerator we get

�(z; x)zq − z�(zq ; x) = −2z(λ1 + 2)x5 + 2z3x3 + 2z5x .

In this case
(�−1 ◦ g ◦ �)(x) − (�−1 ◦ g ◦ �)(y)

x − y

123



Cryptography and Communications

is a polynomial inFq2 [x, y], and hence has nopoles.After simplifyingweobtain the following
curve

C(x, y) = x4 + x3y + xy3 + y4 + x2y2 + A(x2 + xy + y2) + B, (37)

where A = −z2

λ1 + 2
, B = −z4

λ1 + 2
. The degree of the curve in (37) is smaller than the degree

of the curve in (26). Therefore the case of C(x, y) being absolutely irreducible has already
been covered above.

Hence, assume that C(x, y) in (37) is not absolutely irreducible and it is decomposed as
follows:

(x2 + α1xy + α2y
2 + α3x + α4y + α5)(β1x

2 + β2xy + β3y
2 + β4x + β5y + β6).

Comparing the coefficients of this decomposition and C(x, y) in (37) we first obtain that
β1 = 1, β2 = 3, β3 = 1, α1 = 3, α2 = 1, β4 = −α3, β5 = −α4, β6 = α5. Moreover, we get
that β2

6 = B and β6 = 2A. Thus B = (2A)2 which implies that

4z4

(λ1 + 2)2
= −z4

λ1 + 2
, (38)

and so λ1 = −1.
Now assume that λ1 = −1 and λ2 = 1. Then the curve has the equation

C(x, y) = x4 + x3y + x2y2 − z2(x2 + xy + y2) + xy3 + y4 − z4. (39)

The equation factors as

C(x, y) = (
(x − y)2 + αz(x + y) − 2z2

)
(40)

(
(x − y)2 − αz(x + y) − 2z2

)
,

where α2 = 2. As before, αz ∈ Fq for q = 5k and k odd. For y = −x , we get

C(x,−x) = (x + 2αz)2(x − 2αz)2. (41)

This implies that the curve has the Fq -rational point (2αz,−2αz) off the line x = y and we
do not get a permutation polynomial for k odd.

For k even, α ∈ Fq and the two factors in (15) are conjugates over Fq2 [x, y]. Any
Fq -rational point is hence a root of both factors. Computing the prime decomposition of
the zero-dimensional ideal generated by the two factors we find that the only solutions are
(αz,−αz), (−αz, αz) ∈ F

2
q2

\F2
q .As the curvehas noFq -rational points,weget a permutation

polynomial when k is even.
For all the other decompositions of C(x, y) in (37), we obtain a contradiction after com-

puting its Gröbner basis by MAGMA. This completes the proof of item (iii) of Theorem
2.

In all items in the statement of Theorem 2, the values of λ1 and λ2 do not satisfy at least
one of the conditions of Proposition 1 and thus h(x) does not have any roots in μq+1. 	


Remark 1 Items (ii) and (iii) in Theorem 2 have already been obtained in [2] and [14],
respectively.
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5 Comparison with existing permutation trinomials

Definition 1 [36] Two permutation polynomials f (x), g(x) ∈ Fq [x] are said to be quasi-
multiplicative (QM) equivalent, if there exists d ∈ Z, 1 ≤ d ≤ q − 1 with gcd(d, q − 1) = 1
and f (x) = ag(cxd) (mod xq − x) , where a, c ∈ F

∗
q . If c = 1, then f (x), g(x) ∈ Fq [x]

are called multiplicative equivalent.

In this section, we show that the permutation trinomial considered in this paper is not QM
equivalent to someknown classes.Wefirst observe that twoQMequivalent permutationsmust
have exactly the same number of terms. Therefore, we only need to compare the permutation
trinomials found in this paper with known permutation trinomials over Fq2 where q = 5k .
We use the method in [36] for this purpose. In order to determine whether the permutation
polynomial f (x) = x4q+1 + λ1x5q + λ2xq+4 ∈ Fq [x] is QM equivalent to any permutation
trinomial of the form g(x) = a1xs1 + a2xs2 + a3xs3 ∈ Fq [x], we will use the following
strategy:
Step 1: Determining whether there exists an integer k, 1 ≤ k ≤ q2 −1, such that gcd(k, q2 −
1) = 1 and {ks1, ks2, ks3} ≡ {4q + 1, 5q, q + 4} mod (q2 − 1).
Step 2: Comparison of the coefficients of f (x) and b2g(b1xk). In the above strategy, if Step
1 is not satisfied, then f (x) and g(x) will not be QM equivalent, otherwise we will go on
with Step 2 and compare the coefficients of f (x) and b2g(b1xk).

In [2], Bai and Xia characterized the multiplicative equivalence of f (x) when (λ1, λ2) =
(1, 4) and their result can be modified to the more general setting that we consider in this
paper. The proof of the following is very similar to Proposition 1 in [2], therefore it is omitted.

Proposition 3 In characteristic 5, the polynomial f (x) = x4q+1 +λ1x5q +λ2xq+4 ∈ Fq [x]
with q = 5k is multiplicative equivalent to the following permutation trinomials of Fq2 :

• f1(x) = λ1x + x (4·5k−1+1)(q−1)+1 + λ2x (5k−1+1)(q−1)+1,

• f2(x) = x + λ1x
2q+1
3 (q−1)+1 + λ2xq ,

• f3(x) = λ2x + xq + λ1x
q+5
3 (q−1)+1.

Bai and Xia presented a list of known polynomials in Table 3 in [2] to which f (x) is not
multiplicative equivalent. Therefore we omit the polynomials listed in Table 3 in [2] and we
consider the polynomials given in Table 1 below. We applied the method in [36] above using
MAGMA and we have verified that f (x) is not QM equivalent to any of them. To the best
of our knowledge, the list in Table 1 below is complete.

We now consider case (i) in Theorem 2, where λ1 = 0 and we have the binomial f (x) =
x4q+1 + λ2xq+4. Observe that f (x) is QM equivalent to the linearized polynomial g(x) =
xq + bx ∈ Fq2 [x], where f (x) = g(xq+4) mod (xq

2 − x) with b = λ2 ∈ Fq . Since g(x) is
linearized, Theorem7.9 in [28] tells that g(x) = xq+bx permutesFq2 if and only if g(x) only
has the root 0 in Fq2 . This happens if and only if (−b)q+1 �= 1. Indeed, if g(ω) = 0, for some
ω ∈ F

∗
q2
, then −b = ωq−1 and therefore (−b)q+1 = 1. Conversely, if (−b)q+1 = 1, then

−b = γ k(q−1), for some k ∈ Z and some primitive element γ ∈ F
∗
q2
. In that case, g(γ k) = 0.

Hence, g(x) permutes Fq2 if and only if (−b)q+1 �= 1. In our case where b = λ2 ∈ Fq , this
corresponds to (−λ2)

q+1 = (−λ2)
2 = λ22 �= 1 (i.e. λ2 �= ±1).

Remark 2 Note that this QM equivalence holds in any characteristic p since f (x) =
x (p−1)q+1 + λ2xq+p−1 = g(xq+p−1) mod (xq

2 − x) with g(x) = xq + λ2x.
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Table 1 The known permutation trinomials of Fq2

g(x) q Conditions Reference

ax + bxq+2 + x2q+3 any a, b ∈ Fq2 [16]

aq xkq(q−1)+1 + axk(q−1)+1 + cx any gcd(k, q + 1) = 1,

a ∈ F
∗
q2

, c ∈ Fq [27]

ax−(q−1)+1 + bx(q−1)+1 + cx any a, b, c ∈ F
∗
q2

[27]

x + axq(q−1)+1 + bx2(q−1)+1 odd a, b ∈ F
∗
q2

[7, 35]

x − x
q+3
2 (q−1)+1 + xq(q−1)+1 5k k odd [40]

xq − x
q+1
2 (q−1)+1 + x2(q−1)+1 5k k odd [40]

xq − x
q+1
2 (q−1)+1 + x

q−1
2 (q−1)+1 5k k odd [40]

xq − xq(q−1)+1 + x
q+1
2 (q−1)+1 5k k even [40]

x + x
q+3
2 (q−1)+1 − xq(q−1)+1 5k k even [40]

xr + λ1x
s(q−1)+r + λ2x

2s(q−1)+r odd gcd(r , q − 1) = 1

gcd(r − 2s, q + 1) = 1 [10]

x + λ1x
q+3
2 (q−1)+1 + λ2x

q(q−1)+1 5k λ1, λ2 ∈{(-1,-1),
(1, 1), (1, −1)} [10]

x3(q−1)+3 + bx(q−1)+3 + cx3 any gcd(3, q − 1) = 1 [30]

cx − xs + xqs odd s = 3q2+2q−1
4 or

s = (q+1)2
4 [41]

Appendix A. Factorizations of C(x, y)
Appendix A.1. Overview

We consider all factorizations of C(x, y) given in (26). Out of 108 non-trivial factorizations
of the leading monomial x4y4, it is sufficient to consider the 22 cases that are invariant with
respect to interchanging x and y. We did not impose that symmetry on the factors themselves,
but used different coefficients ci for all factors. For each of the 22 cases listed below, we
consider the coefficients with respect to x and y of the difference of C(x, y) in (26) and
the product of the factors. Those generate an ideal in the polynomial ring with variables
A0, A1, B0, B1 and ci . From the substitutions (27) we obtain additional polynomial relations
between A0, A1, B0, B1 and λ1, λ2. We treat z as a variable, too. In the derivation of the
equations, we made the following assumptions: λ2 �= 1, λ1 + λ2 + 1 �= 0, λ1 + λ2 − 1 �= 0,
and z �= 0. Those can be accounted for by considering the saturation of the ideal by the
corresponding polynomials, i.e., computing ideal quotients.

While computer algebra systems like MAGMA [9] provide implementations of all the
required algorithms, the computations can be simplified a lot in our case. As we are only
interested in the solutions of the system of polynomial equations, we can replace any non-
square-free polynomial by its square-free part. Moreover, if a polynomial in the basis of an
intermediate result splits, we can treat each factor separately. We first use so-called grevlex
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order, and in the final step an elimination order to obtain the conditions on λ1 and λ2. The
whole computation took less than 3 hours, with cases 7 and 19 taking about 45% and 25%
of the total time, respectively. The calculations did no use more than 1 GB of memory.

When the final Gröbner basis contains the constant 1, then we have no solution to the
original equations or those equations imply that some of the expressions that are assumed to
be zero vanish. We summarize those cases by just stating that we obtain a contradiction.

Appendix A.2. The 22 cases

1. (x2 + c10xy4 + c9xy3 + c8xy2 + c7xy + c6x + c5y4 + c4y3 + c3y2 + c2y + c1)(y +
c11)(x + c16y4 + c15y3 + c14y2 + c13y + c12)(y2 + c18y + c17)(xy + c24x + c23y4 +
c22y3 + c21y2 + c20y + c19) In this case, we obtain a contradiction.

2. (y + c1)(x + c6y4 + c5y3 + c4y2 + c3y + c2)(y3 + c9y2 + c8y + c7)(x3 + c24x2y4 +
c23x2y3 + c22x2y2 + c21x2y + c20x2 + c19xy4 + c18xy3 + c17xy2 + c16xy + c15x +
c14y4 + c13y3 + c12y2 + c11y + c10) Here, we again get a contradiction.

3. (y + c1)(x + c6y4 + c5y3 + c4y2 + c3y + c2)(x2y2 + c18x2y + c17x2 + c16xy4 +
c15xy3 + c14xy2 + c13xy + c12x + c11y4 + c10y3 + c9y2 + c8y + c7)(xy + c24x +
c23y4 + c22y3 + c21y2 + c20y + c19) In this case, we obtain two possibilities: either
λ1 = 0 or λ31 − λ21λ2 − λ1λ

2
2 + λ32 − λ2 = 0.

4. (y + c1)(x + c6y4 + c5y3 + c4y2 + c3y + c2)(xy + c12x + c11y4 + c10y3 + c9y2 +
c8y + c7)(xy + c18x + c17y4 + c16y3 + c15y2 + c14y + c13)(xy + c24x + c23y4 +
c22y3 + c21y2 + c20y + c19) Here we get λ1 = 0.

5. (y + c1)(x + c6y4 + c5y3 + c4y2 + c3y + c2)(xy2 + c13xy + c12x + c11y4 + c10y3 +
c9y2 + c8y + c7)(x2y + c24x2 + c23xy4 + c22xy3 + c21xy2 + c20xy + c19x + c18y4 +
c17y3 + c16y2 + c15y + c14) We again have λ1 = 0.

5. (x3y3+c18x3y2+c17x3y+c16x3+c15x2y4+c14x2y3+c13x2y2+c12x2y+c11x2+
c10xy4+c9xy3+c8xy2+c7xy+c6x+c5y4+c4y3+c3y2+c2y+c1)(y+c19)(x+c24y4+
c23y3+c22y2 +c21y+c20)We have either λ1 = 0 or λ31−λ21λ2 −λ1λ

2
2 +λ32 −λ2 = 0.

6. (x2 + c10xy4 + c9xy3 + c8xy2 + c7xy + c6x + c5y4 + c4y3 + c3y2 + c2y + c1)(y +
c11)(y + c12)(x + c17y4 + c16y3 + c15y2 + c14y + c13)(x + c22y4 + c21y3 + c20y2 +
c19y + c18)(y2 + c24y + c23) In this case, we get a contradiction.

7. (y + c1)(y + c2)(x + c7y4 + c6y3 + c5y2 + c4y + c3)(x + c12y4 + c11y3 + c10y2 +
c9y + c8)(xy + c18x + c17y4 + c16y3 + c15y2 + c14y + c13)(xy + c24x + c23y4 +
c22y3 + c21y2 + c20y + c19) We have λ1 = 0.

8. (y+c1)(y+c2)(x+c7y4+c6y3+c5y2+c4y+c3)(x+c12y4+c11y3+c10y2+c9y+
c8)(x2y2 + c24x2y + c23x2 + c22xy4 + c21xy3 + c20xy2 + c19xy + c18x + c17y4 +
c16y3 + c15y2 + c14y + c13) Here, λ1 = 0 or λ31 − λ21λ2 − λ1λ

2
2 + λ32 − λ2 = 0.

9. (y + c1)(y + c2)(y + c3)(x + c8y4 + c7y3 + c6y2 + c5y + c4)(x + c13y4 + c12y3 +
c11y2 + c10y + c9)(x + c18y4 + c17y3 + c16y2 + c15y + c14)(xy + c24x + c23y4 +
c22y3 + c21y2 + c20y + c19) Here, we get a contradiction.

10. (y + c1)(y + c2)(y + c3)(y + c4)(x + c9y4 + c8y3 + c7y2 + c6y + c5)(x + c14y4 +
c13y3 + c12y2 + c11y + c10)(x + c19y4 + c18y3 + c17y2 + c16y + c15)(x + c24y4 +
c23y3 + c22y2 + c21y + c20) We again get a contradiction.

11. (x2 + c10xy4 + c9xy3 + c8xy2 + c7xy + c6x + c5y4 + c4y3 + c3y2 + c2y + c1)(y2 +
c12y + c11)(xy + c18x + c17y4 + c16y3 + c15y2 + c14y + c13)(xy + c24x + c23y4 +
c22y3 + c21y2 + c20y + c19) In this case we obtain λ1 = 0.

12. (x2 + c10xy4 + c9xy3 + c8xy2 + c7xy+ c6x + c5y4 + c4y3 + c3y2 + c2y+ c1)(x2y2 +
c22x2y + c21x2 + c20xy4 + c19xy3 + c18xy2 + c17xy + c16x + c15y4 + c14y3 +
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c13y2 + c12y + c11)(y2 + c24y + c23) In this case we obtain that either λ1 = 0 or
λ31 − λ21λ2 − λ1λ

2
2 + λ32 − λ2 = 0.

13. (x2 + c10xy4 + c9xy3 + c8xy2 + c7xy + c6x + c5y4 + c4y3 + c3y2 + c2y + c1)(x2 +
c20xy4 + c19xy3 + c18xy2 + c17xy+ c16x + c15y4 + c14y3 + c13y2 + c12y+ c11)(y2 +
c22y + c21)(y2 + c24y + c23) We obtain a contradiction in this case.

14. (y3+c3y2+c2y+c1)(x3+c18x2y4+c17x2y3+c16x2y2+c15x2y+c14x2+c13xy4+
c12xy3 + c11xy2 + c10xy + c9x4c8y4 + c7y3 + c6y2 + c5y + c4)(xy + c24x + c23y4 +
c22y3 + c21y2 + c20y + c19) We obtain a contradiction.

15. (y4 + c4y3 + c3y2 + c2y+ c1)(x4 + c24x3y4 + c23x3y3 + c22x3y2 + c21x3y+ c20x3 +
c19x2y4+c18x2y3+c17x2y2+c16x2y+c15x2+c14xy4+c13xy3+c12xy2+c11xy+
c10x + c9y4 + c8y3 + c7y2 + c6y + c5) We again get a contradiction.

16. (xy2+c7xy+c6x +c5y4+c4y3+c3y2+c2y+c1)(x2y+c18x2+c17xy4+c16xy3+
c15xy2 + c14xy + c13x + c12y4 + c11y3 + c10y2 + c9y + c8)(xy + c24x + c23y4 +
c22y3 + c21y2 + c20y + c19) In this case we obtain λ1 = 0.

17. (x3y3+c18x3y2+c17x3y+c16x3+c15x2y4+c14x2y3+c13x2y2+c12x2y+c11x2+
c10xy4 + c9xy3 + c8xy2 + c7xy+ c6x + c5y4 + c4y3 + c3y2 + c2y+ c1)(xy+ c24y4 +
c23y4+c22y3+c21y2+c20y+c19)Herewe haveλ1 = 0 orλ31−λ21λ2−λ1λ

2
2+λ32−λ2 =

0.
18. (x2y2 + c12x2y + c11x2 + c10xy4 + c9xy3 + c8xy2 + c7xy + c6x + c5y4 + c4y3 +

c3y2+c2y+c1)(xy+c18x+c17y4+c16y3+c15y2+c14y+c13)(xy+c24x+c23y4+
c22y3 + c21y2 + c20y + c19) We get λ1 = 0 or λ31 − λ21λ2 − λ1λ

2
2 + λ32 − λ2 = 0.

19. (xy + c6x + c5y4 + c4y3 + c3y2 + c2y + c1)(xy + c12x + c11y4 + c10y3 + c9y2 +
c8y + c7)(xy + c18x + c17y4 + c16y3 + c15y2 + c14y + c13)(xy + c24x + c23y4 +
c22y3 + c21y2 + c20y + c19) In this case we obtain λ1 = 0.

20. (xy3+c8xy2+c7xy+c6x+c5y4+c4y3+c3y2+c2y+c1)(x3y+c24x3+c23x2y4+
c22x2y3 + c21x2y2 + c20x2y + c19x2 + c18xy4 + c17xy3 + c16xy2 + c15xy + c14x +
c13y4 + c12y3 + c11y2 + c10y + c9) We again get λ1 = 0.

21. (x2y2 + c12x2y + c11x2 + c10xy4 + c9xy3 + c8xy2 + c7xy + c6x + c5y4 + c4y3 +
c3y2 + c2y + c1)(x2y2 + c24x2y + c23x2 + c22xy4 + c21xy3 + c20xy2 + c19xy +
c18x + c17y4 + c16y3 + c15y2 + c14y + c13) In this case we obtain that either λ1 = 0
or λ31 − λ21λ2 − λ1λ

2
2 + λ32 − λ2 = 0, or λ1 = 1, λ2 = −1. Note that the last one is the

same as the result of Bai and Xia [2].
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