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Abstract
The multiplicative complexity of an S-box over a finite field is the minimum number of
multiplications needed to implement the S-box as an arithmetic circuit. In this paper we fully
characterize bijective S-boxes with multiplicative complexity 1 up to affine equivalence over
any finite field. We show that under affine equivalence in odd characteristic there are two
classes of bijective functions and in even characteristic there are three classes of bijective
functions with multiplicative complexity 1. Moreover, in (Jeon et al., Cryptogr. Commun.,
14(4), 849-874 (2022)) A-boxes where introduced to lower bound the differential uniformity
of an S-box over Fn

2 via its multiplicative complexity. We generalize this concept to arbitrary
finite fields. In particular, we show that the differential uniformity of a (n,m)-S-box over Fq

is at least qn−l , where � n−1
2 � + l is the multiplicative complexity of the S-box.

Keywords Arithmetic circuit · Multiplicative complexity · M-box · S-box · Differential
uniformity

Mathematics Subject Classification (2010) 94A60

1 Introduction

Anatural performancemeasure for boolean circuits is the so-calledmultiplicative complexity,
the minimal number of AND gates needed to implement a circuit as AND-XOR-NOT circuit.
Though, for the design of boolean ciphers and hash functions the multiplicative complexity
was only of minor concern in the past, because circuit implementations can be replaced by
look-up tables. A prime example is the AES [1] S-box that operates on the finite field with
28 elements

S : F28 → F28 ,

x �→ x2
8−2,
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which can be implemented via a look-up table of size 28 × 28.
On the other hand, with the advancement of Zero-Knowledge (ZK) and Multi-Party

Computation (MPC) multiplicative complexity became the major performance measure for
cryptographic primitives that implement these protocols. First we note that ZK and MPC
protocols operate on “big” finite fields Fq where typically q ≥ 264 and in principle q can be
a prime number instead of a power of two. If q is a prime, then the analog of the AND gate is
simply the multiplication gate which multiplies two elements, hence the name multiplicative
complexity. Obviously, for fields of this size the memory requirement of look-up tables is too
big, so one has to implement the circuit of a cryptographic primitive. The raison d’être for
multiplicative complexity as performance measure is that for ZK protocols based on “MPC-
in-the-head” the signature size increases proportionally to the number of multiplication gates
in the underlying cryptographic primitive [2]. Also, for MPC protocols based on Yao’s gar-
bled circuit [3, 4] the computational complexity depends on the number of multiplication
gates in the underlying primitive.

Cryptographic primitives for efficient implementation of ZK and MPC are called
Arithmetization-Oriented (AO)primitives. Examples ofAOprimitives areLowMC[5],MiMC
[6], GMiMC [7], Hades [8], Jarvis [9], Poseidon [10], Vision and Rescue [11], Rescue-Prime
[12] and Ciminion [13]. Although a lot of AO designs have already been proposed, their
cryptanalysis is not well-understood yet. First, one has to generalize known cryptanalytic
techniques over F2 or F2n to prime fields Fp . Second, attack vectors that have been a minor
concern in the past may become a viable threat, in particular Gröbner basis attacks [14].
Lastly, although most AO designs are very generic, so they can be instantiated over arbitrary
finite fields, instantiating them over field extensions F2n can reduce the security compared to
an instantiation over a prime field Fp of similar size. As example, let us take a look at MiMC
whose keyed round function is defined as

Ri : Fq × Fq → Fq ,

(x, k) �→ (x + k + ci )
3 ,

where ci ∈ Fq is a round constant. Note that cubing induces a permutation if and only if
gcd (3, q − 1) = 1. If we decide for q = 2n instead of a prime, then suddenly we have two
possible models for MiMC. From the theory of finite fields it is well-known that

Fqn ∼= F
n
q

as Fq -vector spaces. So instead of the natural MiMC model over F2n , we can also model it
over Fn

2, but over F2 one has an unique tool to analyze functions: the so-called algebraic
normal form. Analysis of the degree growth of the algebraic normal form of MiMC yielded
a slower than expected degree growth. Consequently, this property was exploited to mount
a key recovery attack via a generalized higher-order differential attack on MiMC over binary
fields [15].

Finally, for vectorial boolean functions

F : Fn
2 → F

m
2

there already exists an established literature that connects multiplicative complexity with
security parameters [16–19]. Therefore, the aim of this paper is to extend tools to analyze
properties of functions via multiplicative complexity over binary fields to arbitrary finite
fields.
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1.1 Preliminaries & notation

In this paper, with p ∈ Z we always denote a prime number and with q = pe a prime power
where e ≥ 1. With Fq we denote the finite field with q elements, and with F

×
q = Fq \ {0}

we denote the cyclic group of invertible elements. By char
(
Fq
)
we denote the characteristic

of the field Fq , i.e., the number of ones such that

1 + . . . + 1 = 0

in Fq . If Fq is clear from context, then we call a function F : Fn
q → F

m
q a (n,m)-S-box.

MatricesM ∈ F
n×n
q are denotedwith bold capital letters, vectors are with lower capital letters

v ∈ F
n
q , and the matrix-vector product is denoted asMv. We denote the canonical basis of Fn

q
with e1, . . . , en , and the group of invertible n × n matrices over Fq is denoted as GLn(Fq).
Since multiplications play a special role in this paper, we denote with x · y only the product
of field elements x, y ∈ Fq .

1.1.1 Arithmetic circuits

To properly definemultiplicative complexity over arbitrary finite fields we need a proper gen-
eralization of AND-XOR-NOT logic. Any function F : Fn

2 → F2 can be constructed using
only AND-XOR-NOT, on the other hand any function over a finite field can be expressed as
polynomial. Moreover, one can express AND-XOR-NOT with the following polynomials

AND (x, y) = x · y, XOR (x, y) = x + y, NOT (x) = x + 1.

Our route to generalize Boolean logic will be through polynomials. Any function F :
F
n
q → Fq can be represented by a polynomial, moreover if we restrict the degree in each

variable to be less than q , then the polynomial representing the function is unique. Therefore,
we call the Fq -algebra Fq [Xn] = Fq [x1, . . . , xn]/

(
xq1 − x1, . . . , x

q
n − xn

)
the algebra of

polynomial valued functions. Moreover, we will use the terms function and polynomial
synonymously throughout this paper.

Definition 1.1 Let Fq be a finite field. We call a polynomial in two variables f ∈ Fq [x, y]
a binary gate. We call a finite subset of binary gates F ⊂ Fq [x, y] a generating set, if
any polynomial valued function g ∈ Fq [Xn], where n ≥ 1, can be constructed using only
x1, . . . , xn and F .

To construct any polynomial we definitely need a gate that represents multiplication, a gate
that represents addition and a gate that adds a constant term, but if q is a prime power, then
we need to introduce an additional gate, which will be called the cyclic gate, to construct
all polynomials. The following theorem certainly is well-known, though we need it to prop-
erly define multiplicative complexity, and we need the explicit construction in the proof to
generalize [16, Lemma 6].

Theorem 1.2 Let Fq be a finite field, and let α ∈ F
×
q be a generator. Then the gates

MUL (x, y) = x · y,
ADD (x, y) = x + y,

CON (x) = x + 1,

CYC (x) = α · x
form a generating set.
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Proof Let m = β · xm1
1 · · · xmn

n ∈ Fq [Xn] be a monomial. Note that any xk can be iteratively
constructed via xk = MUL

(
xk−1, x

)
, so we can construct the monomials xm1

1 , . . . , xmn
n via

iterated MUL gates and their product again via iteration of MUL gates. For β ∈ F
×
q there

exists an i ≥ 0 such that β = αi . So after constructing xm1
1 · · · xmn

n we apply CYC i-times
to arrive at m. If we have two monomials m, n ∈ Fq [Xn], then we can construct their sum
m + n via ADD. So we can construct any polynomial with constant term 0 using only MUL-
ADD-CYC. Let f , g ∈ Fq [Xn] be such that f (0) = β ∈ F

×
q and g = f − β. If β = 1 then

f = CON (g), so let’s assume β 
= 1. We again can find an i, j ≥ 0 such that αi = β and
α j = (1 − β). Now we apply the gates

ADD
(
CYC( j) (g) ,CYC(i) (CON (g)

)) = (1 − β) · g + β · (g + 1) = g + β,

and the claim follows. ��
Remark 1.3 1. If q is a prime, then the gate CYC is redundant, because for any β ∈

{0, . . . , q−1} and anymonomialm = xm1
1 · · · xmn

n we can construct β ·m by (β−1)-fold
application of ADD, i.e., β · m = ADD

(
(β − 1) · m,m

)
.

2. If q = 2, then the gates MUL, ADD, CON reduce to the Boolean gates AND, XOR,
NOT.

Now we can define multiplicative complexity over any finite field.

Definition 1.4 Let Fq be a finite field, and let F : Fn
q → F

m
q be a function. The multiplica-

tive complexity MC (F) of F is defined as the minimum number of MUL gates needed to
implement F in a ADD-MUL-CON-CYC circuit.

1.1.2 Differential uniformity

Differential cryptanalysis is one of the most important tools of modern cryptography [20]
which studies how a difference in input values can effect the resulting difference in output
values. The key measure to quantify whether a function is weak to differential cryptanalysis
is the so-called differential uniformity.

Definition 1.5 Let Fq be a finite field, and let F : Fn
q → F

m
q be a function.

(1) The differential distribution table of F at a ∈ F
n
q and b ∈ F

m
q is defined as

δF (a,b) =
∣∣∣{x ∈ F

n
q | F(x + a) − F(x) = b}

∣∣∣ .

(2) The differential uniformity of F is defined as

δ(F) = max
a∈Fnq\{0},
b∈Fmq

δF (a,b).

1.1.3 Notions of equivalence

By linear functions we refer to functions that are given via matrix multiplication, and by
affine functions we refer to functions that are given via matrix multiplication and addition
of a non-zero constant. Throughout this paper we will characterize functions between vector
spaces over finite fields with respect to the following equivalence notions.
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Definition 1.6 Let Fq be a finite field, and let F,G : Fn
q → F

m
q be two functions.

(1) F and G are said to be linearly equivalent if there exist two linear permutations A1 :
F
m
q → F

m
q , A2 : Fn

q → F
n
q such that A1 ◦ F = G ◦ A2.

(2) F and G are said to be affine equivalent if there exist two affine permutations A1 : Fm
q →

F
m
q , A2 : Fn

q → F
n
q such that A1 ◦ F = G ◦ A2.

(3) F and G are said to be extended-affine equivalent if there exist two affine permutations
A1 : F

m
q → F

m
q , A2 : F

n
q → F

n
q and an affine function A3 : F

m
q → F

n
q such that

F(x) = (A2 ◦ G ◦ A1)(x) + A3(x).

It is easy to see that these notions indeed define equivalence classes, moreover they preserve
differential uniformity as well as multiplicative complexity.

1.2 Contributions

In the first part of this paper (Section 2) we extend the characterization of bijective functions
with multiplicative complexity 1 up to affine equivalence from [16] to arbitrary finite fields.
We show that in odd characteristic there are two classes of bijective functions and in even
characteristic there are three classes of bijective functions up to affine equivalence.

Theorem 1.7 (Theorems 2.6 and 2.11) Let Fq be a finite field, let n ≥ 3, let F : Fn
q → F

n
q

be a bijective function with multiplicative complexity 1, and let

�n : Fn
q → F

n
q ,

(x1, . . . , xn) �→ (x1 + xn−1 · xn, x2, . . . , xn),

�n : Fn
q → F

n
q ,

(x1, . . . , xn) �→ (x1 + x22 , x2, . . . , xn),

�n : Fn
q → F

n
q ,

(x1, . . . , xn) �→ (x21 , x2, . . . , xn).

Then,

(1) ([16, Theorem 1]) for q = 2, F is affine equivalent to �n.
(2) for q = 2m and m ≥ 2, F is affine equivalent to either �n, �n or �n.
(3) for q odd, F is affine equivalent to either �n or �n.

If q 
= 2, then we obtain the following characterization in dimension 2.

Corollary 1.8 (Corollaries 2.7 and 2.12)LetFq be a finite field, let F : F2
q → F

2
q be a bijective

function with multiplicative complexity 1, and let

�2 : F2
q → F

2
q , �2 : F2

q → F
2
q ,

(x1, x2) �→ (x1 + x22 , x2), and (x1, x2) �→ (x21 , x2).

Then,

(1) for q = 2m and m ≥ 2, F is affine equivalent to either �2 or �2.
(2) for q odd, F is affine equivalent to �2.
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In [19] the differential uniformity of a boolean function was lower bounded via its multi-
plicative complexity. In the secondpart of this paper (Section 3)wegeneralize their techniques
to arbitrary finite fields. In particular, we derive the following lower bound for the differential
uniformity in terms of multiplicative complexity.

Corollary 1.9 (Corollary 3.9) Let Fq be a finite field, and let S be a (n,m)-S-box.

(1) IfMC (S) ≤ ⌊ n−1
2

⌋
, then δ(S) = qn.

(2) IfMC (S) = ⌊ n−1
2

⌋+ l, then δ(S) ≥ qn−l for all l ≥ 0.

Though, we also have to note that the number of multiplications is in general not an indicator
whether also δ(S) < qn . In Example 3.7 we present an S-box over finite fields Fq , where
q > 2, with an arbitrary number of multiplications that always has maximal differential
uniformity.

2 Bijective functions withmultiplicative complexity 1

In this section we characterize bijections F : Fn
q → F

n
q with multiplicative complexity 1 up

to affine equivalence.

2.1 Products of affine permutation polynomials

Wecall a polynomial f ∈ Fq [x1, . . . , xn] such that f (x) =∑n
i=1 ai ·xi+a,whereai , a ∈ Fq ,

an affine polynomial. As preparation, we need to establish that the product of two affine
permutation polynomials is not a permutation polynomial.

Definition 2.1 ([21, 7.34. Definition]) Let Fq be a finite field. A polynomial f ∈
Fq [x1, . . . , xn] is called a permutation polynomial in n indeterminates overFq if the equation
f (x1, . . . , xn) = α has qn−1 solutions in F

n
q for each α ∈ Fq .

Remark 2.2 In the computer science literature for characteristic 2 a function represented by
a permutation polynomial is commonly called a balanced function.

Moreover, with the notion of orthogonal systems, see [21, 7.35. Definition], it is easy to
see that any non-constant affine polynomial is a multivariate permutation polynomial.

That the product of two non-constant affine polynomials is not a permutation polyno-
mial follows as corollary to two theorems of Niederreiter [22]. Two polynomials f , g ∈
Fq [x1, . . . , xn] are said to be equivalent if they can be transformed into each other via an
affine change of variables x = Ay + c, where A ∈ GLn

(
Fq
)
and c ∈ F

n
q .

Lemma 2.3 Let Fq be a finite field, let p = char
(
Fq
)
, and let f , g ∈ Fq [x1, . . . , xn] be

non-constant affine polynomials.

(1) If p = 2 and g 
= α · f , where α ∈ F
×
q , then f · g is not a permutation polynomial.

(2) If p > 2, then f · g is not a permutation polynomial.

Proof For (1), by [22, Theorem 3] a polynomial h of degree at most 2 in n variables in
characteristic p = 2 is a permutation polynomial if and only if h is equivalent to a polynomial
of the form ĥ(x1, . . . , xn−1) + xn or ĥ(x1, . . . , xn−1) + x2n . Let us now consider the product

h(x) = f (x) · g(x) =
(

n∑

i=1

ai xi + a

)

·
(

n∑

i=1

bi xi + b

)

. (1)

123



Cryptography and Communications (2024) 16:285–308 291

First we observe that if g = α · f , where α ∈ F
×
q , then h = α · f 2. In characteristic two

squaring induces a permutation, so h is a permutation polynomial. Therefore, we have to
rule this case out. Now we do a case distinction on different values for the constant terms
a, b ∈ Fq .

Suppose a, b = 0, we have to make sure that for all variables xi such that x2i is present in h
at least one mixed term xi · x j , i 
= j , is present, then the decomposition fails. Suppose there
exists a variable for which all mixed terms vanish, say x1, but x21 is present in the product.
Then we must have that

a1 · b2 + a2 · b1 = 0,

...

a1 · bn + an · b1 = 0.

Of course, if b j 
= 0, then also a j 
= 0. Nowwe pick two indices k, l ≥ 2 such that ak, bl 
= 0.
We want to show that ak · bl + al · bl = 0. We consider the equations

a1 · bk + ak · b1 = 0,

a1 · bl + al · b1 = 0,

�⇒
a1 · bk · al + ak · b1 · al = 0,

a1 · bl · ak + al · b1 · ak = 0,

�⇒
a1 · (ak · bl + al · bk) = 0.

Hence, the mixed term xk · xl must also vanish. So, if all mixed terms in h that contain x1
vanish but a1 · b1 
= 0, then all mixed terms in h must vanish. Consequently,

f (x) · g(x) =
(

n∑

i=1

ai · bi · x2i
)

=
(

n∑

i=1

(ai · bi )1/2 xi
)2

,

and therefore g = α · f , where α ∈ F
×
q .

Now suppose a 
= 0 and b = 0, then any linear term of the product polynomial h must
be present in a quadratic or mixed term, so the decomposition fails. By symmetry, we can
conclude the same for a = 0 and b 
= 0.

For the last case a, b 
= 0, we rewrite

h(x) = f̂ (x) · ĝ(x) + b · f̂ (x) + a · ĝ(x) + a · b,
where f̂ = f −a and ĝ = g−b. Nowwe have to do a subcase distinction, if b · f̂ +a · ĝ = 0,
then we can pass to the first case â, b̂ = 0 to conclude that if h is a permutation polynomial,
then ĝ = α · f̂ , where α ∈ F

×
q . Consequently, this implies that α · a + b = 0 and that

g = ĝ + b = α · f̂ + α · a = α · f .

On the other hand, if b · f̂ + a · ĝ 
= 0, then a decomposition of the form

h = ĥ(x1, . . . , xn−1) + λ · xn,

123



292 Cryptography and Communications (2024) 16:285–308

λ ∈ F
×
q , is impossible, because if the linear monomial xn is present in h, then the variable

xn must also be present in at least one quadratic term of h. So, the decomposition must be of
the form

h = ĥ(x1, . . . , xn−1) + λ · x2n ,
λ ∈ F

×
q , then we require that

an · b + bn · an = 0.

Thus, the product f̂ · ĝ may not contain any mixed terms with the variable xn , but again this
already implies that ĝ = α · f̂ and also α · a + b = 0.

Finally, if g = α · f , then this property is invariant under any invertible affine coordinate
change of the product polynomial h = f · g. Further, any affine coordinate change of h will
end up in one of the discussed cases. We have now established that if h = f · g is equivalent
to a permutation polynomial, then g = α · f , where α ∈ Fq . By negation, if g 
= α · f , then
h cannot be equivalent to a permutation polynomial.

For (2), by [22, Theorem 2] a polynomial f of degree at most 2 in n variables in char-
acteristic p > 2 is a permutation polynomial if and only if f is equivalent to a polynomial
of the form g(x1, . . . , xn−1) + xn . Again we do a case distinction. If a, b = 0, then trivially
such a decomposition cannot exist.

Now suppose a 
= 0 and b = 0, then any linear term of the product must be present in a
quadratic or mixed term so the decomposition fails. By symmetry, we can conclude the same
for a = 0 and b 
= 0.

If a, b 
= 0, assume that x1 is present in h. Now let us try to do the composition with x1.
If a1, b1 
= 0, then x21 must also be present in h, so the decomposition is impossible. Hence,
either a1 
= 0 and b1 = 0 or a1 = 0 and b1 
= 0. If one of them is non-zero, then there still
must be a mixed term x1 ·x j , j 
= 1, present in h since f and g are non-constant. (Also, recall
that the mixed terms containing x1 can only be canceled if a1, b1 
= 0.) So the decomposition
fails.

Again, under any invertible affine change of coordinates we end up in one of the three
cases. ��

2.2 Odd characteristic

In [16, Lemma 4] a description of all bijections over Fn
2 with multiplicative complexity 1

and constant term 0 was given. Our first major step is to extend this result, though in odd
characteristic we also need to account for squaring.

Lemma 2.4 Let Fq be a finite field with char
(
Fq
) 
= 2. Any bijective function F : Fn

q → F
n
q

with F(0) = 0, and multiplicative complexity 1, can be written in the form

F(x) = Mx +
( (

aᵀx
) · (bᵀx

) )
d,

where a,b,d ∈ F
n
q \ {0}, M ∈ GLn

(
Fq
)
, and aᵀM−1d = bᵀM−1d = 0.

Proof It is easy to see that any function of this form has multiplicative complexity at most
1, and that the expression covers all functions over Fn

q that can be realized with a single Fq

multiplication. So it is left to show that the conditions are necessary.
For a contradiction suppose that M is singular, and let u ∈ ker (M) be non-zero. For the

pair (x1, x2 = x1 + u) we have thatMx1 = Mx2. On the other hand, if F is a bijection, then
we must have that F(x1) 
= F(x2) or equivalently F(x1) − F(x2) 
= 0. Therefore, we have
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that

F(x1) − F(x2) =
( (

aᵀx1
) · (bᵀx1

)− (aᵀx2
) · (bᵀx2

) )
d 
= 0

⇒ (aᵀx1
) · (bᵀx1

) 
= (aᵀx2
) · (bᵀx2

)
.

(2)

Let g(x) = (aᵀx) · (bᵀx), and suppose that g is not a permutation polynomial. Then there
exists α ∈ Fq such that

∣
∣g−1(α)

∣
∣ > qn−1. For every x ∈ g−1(α) we define the sequence

s( j)x =
{
x, j = 0,

x + β j−1u, 1 ≤ j ≤ q − 1,

where β ∈ F
×
q is a generator. For each x and all j 
= k the elements s( j)x and s(k)x are pairwise

distinct but Ms( j)x = Ms(k)x . So by (2) we have that g(x) 
= g
(
s( j)x

)
for 1 ≤ j ≤ q − 1.

Suppose that for distinct x1, x2 ∈ g−1(α) there exist j 
= k such that s( j)x1 = s(k)x2 , then
x2 = x1 + βlu for some 1 ≤ l ≤ q − 1 or x2 = x1. So either x2 /∈ g−1(α) or x2 = x1, a
contradiction for both cases. Therefore, for distinct x1, x2 the corresponding sequences are
distinct. In particular, we have that

S =
{{

s( j)x

}

1≤ j≤q−1
| x ∈ g−1(α)

}
⊂ g−1(α)�,

|S| = (q − 1) · ∣∣g−1(α)
∣∣ .

Thus,

qn = ∣∣g−1(α)
∣∣+
∣∣∣g−1(α)�

∣∣∣ ≥ ∣∣g−1(α)
∣∣+ |S| = q · ∣∣g−1(α)

∣∣ > qn .

A contradiction, so g has to be a permutation polynomial. But this is a contradiction to
Lemma 2.3 (2), so M cannot be singular.

For another contradiction, assume that aᵀM−1d 
= 0 or bᵀM−1d 
= 0. Without loss
of generality we can assume that aᵀM−1d = 1 (and similar for b). By assumption F is
a bijection, if we substitute y = F(x), then it is easy to see that aᵀM−1F(x) is also a
permutation polynomial (cf. [21, 7.39. Corollary]). Expanding the product we see that

aᵀM−1F(x) = aᵀM−1Mx +
( (

aᵀx
) · (bᵀx

) )
aᵀM−1d

= aᵀx + (aᵀx
) · (bᵀx

)

= (aᵀx
) · (1 + bᵀx

)
.

On the other hand, by Lemma 2.3 (2) the product of two affine polynomials cannot be a
permutation polynomial.

It is left to show that every such F is indeed a bijection. Now suppose that F is not a
bijection, but the conditions for a, b, d and M are satisfied. Let

G(x) = M−1x −
( (

aᵀM−1x
) · (bᵀM−1x

) )
d,

then a simple computation, see Appendix A, yields that (F ◦ G)(x) = (G ◦ F)(x) = x. So
F has a right and a left inverse, a contradiction. So F has to be a bijection. ��

The next lemma is trivial, though we state it for completeness.

Lemma 2.5 Let Fq be a finite field, and let F : Fn
q → F

n
q be a bijective function. Then F is

affine equivalent to Fc = F + c with c ∈ F
n
q .
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Now we are ready to prove the generalization of [16, Theorem 1] in odd characteristic.

Theorem 2.6 Let Fq be a finite field with char
(
Fq
) 
= 2, let n ≥ 3, and let F : Fn

q → F
n
q be

a bijective function with multiplicative complexity 1. Then F is affine equivalent to either

�n : Fn
q → F

n
q ,

(x1, . . . , xn) �→ (x1 + xn−1 · xn, x2, . . . , xn),
or

�n : Fn
q → F

n
q ,

(x1, . . . , xn) �→ (x1 + x22 , x2, . . . , xn).

Proof By Lemma 2.5 and transitivity of affine equivalence we can restrict the proof to func-
tions with constant term equal to zero, i.e., F(0) = 0. Let ei ∈ F

n
q have a 1 on the i-th

position and else zeros. With Lemma 2.4 we can express �n as

M = In×n, a = en−1, b = en, d = e1,

and similar for �n

M = In×n, a = b = en−1, d = e1.

For i 
= j one clearly has that eᵀ
i In×ne j = 0. Now we have to show that for any permissible

choice of generators M ∈ GLn
(
Fq
)
, a,b,d ∈ F

n
q \ {0} from Lemma 2.4 we can find two

invertiblematricesA,B ∈ GLn
(
Fq
)
such that either F(x) = B�n(Ax)or F(x) = B�n(Ax).

In particular, if a 
= α · b, where α ∈ F
×
q , then we show equivalence to �n and if a = α · b,

then we show equivalence to �n .
First let’s assume that a 
= α · b. Let A ∈ GLn

(
Fq
)
be arbitrary, we denote the rows of A

by uᵀ
i = eᵀ

i A. Let B = MA−1, then we have

F(x) = B�n(Ax) = BAx +
( (

uᵀ
n−1x
) · (uᵀ

n x
) )

Be1

= Mx +
( (

uᵀ
n−1x
) · (uᵀ

n x
) ) (

MA−1e1
)
.

By comparing these equations with Lemma 2.4 we must require that un−1 = a, un = b, and
MA−1e1 = d. Since a,b 
= 0 and a 
= α · b we can conclude that the last two rows of A are
linearly independent. SinceM is invertible, we also have that A−1e1 = M−1d. Now we see
that

uᵀ
i M

−1d = eᵀ
i AA

−1e1 =
{
1, i = 1,

0, i 
= 1.
(3)

The conditions aᵀM−1d = bᵀM−1d = 0 from Lemma 2.4 guarantee that these conditions
hold for un−1 = a and un = b. We can always choose the remaining n − 3 rows such that
all ui are linearly independent and (3) holds. E.g., we can choose u1 = e1 and the remaining
basis vectors. If we have a conflict u j · M−1d = α 
= 0, then we replace the vector with
α−1u j − u1.

For a = α · b, let us first take a look at

F(x) = Mx + α · (aᵀb
)2 d.

Let N = α−1 · 1n×n , then we pass to NF(x). So without loss of generality we can assume
that a = b, now we can in principle use the same strategy as in the first case to construct the
affine equivalence to �n , though we have one more row of A which can be chosen freely. ��
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Corollary 2.7 Let Fq be a finite field with char
(
Fq
) 
= 2, and let F : F2

q → F
2
q be a bijective

function with multiplicative complexity 1. Then F is affine equivalent to

�2 : F2
q → F

2
q ,

(x1, x2) �→ (x1 + x22 , x2).

Remark 2.8 Let char
(
Fq
)

> 2 and α ∈ F
×
q , and suppose that for a bijective function F :

F
n
q → F

n
q with MC (F) = 1 we have a decomposition as in Lemma 2.4. If a 
= α · b, then

F is affine equivalent to �n , and if a = α · b, then F is affine equivalent to �n .

For completeness, let us discuss that�n and�n are not affine equivalent. Since only three
variables are used in a non-trivial way it suffices to do the argument for n = 3. Assume that
there exist matrices A,B ∈ GLn

(
Fq
)
such that

�3(x) = B�3(Ax). (4)

Denote with ai ∈ F
n
q the row vectors of A, then

�3(Ax) =
⎛

⎝
a1x + (a2x) · (a3x)

a2x
a3x

⎞

⎠ . (5)

In the first component we must have the monomial x22 , but all other quadratic monomials
must vanish since we cannot cancel them via B. Then our only possible choice is

a2 = (0, α, 0) , (6)

a3 = (0, β, 0) , (7)

where α, β ∈ F
×
q , but then A is singular.

2.3 Even characteristic

For binary fields F2n with n ≥ 2 squaring induces a proper permutation, hence for the
characterization of bijections with multiplicative complexity 1 we also have to account for
this case.

As preparation, we need a matrix decomposition from linear algebra. This decomposition
was also used in [19, §2.2], since the authors did not provide a reference for this decomposition
and we could not find it in the standard literature available to us, we provide a proof here.

Lemma 2.9 Let k be a field, and let M,N ∈ kn×m be matrices such that M is the reduced
row echelon form of N. Then there exist matrices A ∈ GLn (k) and B ∈ GLm (k) such that
N = AM and N = MB.

Proof Let rank (M) = r , any of the r row vectors of M can be expressed as linear combi-
nations of row vectors of N. We fill these combinations into the first r rows of A. Note that
these rows have to be linearly independent, if they were not, then we could express at least
one non-zero row ofM as linear combination of the other rows, a contradiction. Letmi and
ni denote the row vectors of M and N respectively, for all s > r we have that n1, . . . ,ns
are linearly dependent. For every r < s ≤ n we use such a linear dependence equation with
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αs 
= 0 and αt = 0, where αs is the coefficient of ns in the combination and s < t ≤ n, and
fill these coefficients intoA. Clearly, we have that rank (A) > r , because at least the (r +1)th

row is independent from the first r rows. Denote with ai = (a1,i , . . . , am,i ) the row vectors
of A and suppose that rank (A) = s < n, then

as+1 =
s∑

i=1

βiai , (8)

for some βi ∈ k. By construction of A we now have that

0 =
m∑

j=1

a j,s+1n j =
m∑

j=1

s∑

i=1

βi a j,in j =
s∑

i=1

βi

m∑

j=1

a j,in j

=
r∑

i=1

βi

m∑

j=1

a j,in j =
r∑

i=1

βimi .

The second equality follows from (8), the third follows because we can always interchange
finite sums, the fourth follows because for i > s the n j ’s sum up to 0, and the last equality
follows from the construction of the first r rows of A. The mi ’s are a basis of the row space
of N, therefore βi = 0 for all i . Consequently,

as+1 =
s∑

i=r+1

βiai ,

but this is impossible because as+1 has a non-zero component which is zero for all ai in the
sum. A contradiction, so A has to be of full rank.

For the second decomposition, the reduced row echelon formN is an upper trianglematrix,
therefore Nᵀ is a lower triangle matrix which obviously has a lower triangle reduced row
echelon form. Our proof of the decomposition N = AM works equally well for a matrix
N′ in lower triangle reduced row echelon form. So let N′ be the lower triangle reduced row
echelon form of Mᵀ, then

N = (N′)ᵀ = (BᵀMᵀ)ᵀ = MB.

��
Now we can prove the analog of Lemma 2.4 in even characteristic.

Lemma 2.10 Let Fq be a finite field with char
(
Fq
) = 2 and q ≥ 4, and let α ∈ F

×
q . Any

bijective function F : Fn
q → F

n
q with F(0) = 0, and multiplicative complexity 1, can be

written in the form

F(x) = Mx +
( (

aᵀx
) · (bᵀx

) )
d,

where

(1) a,b,d ∈ F
n
q \ {0}, a 
= α · b,M ∈ GLn

(
Fq
)
, and aᵀM−1d = bᵀM−1d = 0, or

(2) a,d ∈ F
n
q \ {0}, a = α · b, M ∈ GLn

(
Fq
)
, and aᵀM−1d = 0, or

(3) a,d ∈ F
n
q \ {0}, a = α · b,M ∈ F

n×n
q has rank n − 1, the matrix

(
M
aᵀ

)
has rank n, and

if A ∈ GLn
(
Fq
)
is the invertible matrix such that N = AM is the reduced row echelon

form ofM, then Ad has a non-zero entry on the zero row of N.
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Proof As in odd characteristic, it is easy to see that any function of these forms has multi-
plicative complexity at most 1, and that the expressions cover all functions over Fn

q that can
be realized with a singleFq multiplication. The arguments for necessity whenM ∈ GLn

(
Fq
)

are identical to Lemma 2.4, though this time we apply Lemma 2.3 (1).
So let M /∈ GLn

(
Fq
)
and assume that we are given an equation

F(x) = Mx + α · (aᵀx
)2 d = c, (9)

with c = (c1, . . . , cn) ∈ F
n
q . By Lemma 2.9 there exists a matrix A ∈ GLn

(
Fq
)
such that

N = AM is in reduced row echelon form. Thus, we can rewrite the previous equation system
as

Nx + (aᵀx
)2 Ad = Ac. (10)

For the system to admit a unique solution we need n equations, so if j is the index of a zero
row of N, then we must have that (Ad) j 
= 0. Suppose that rank (M) ≤ n − 2, then N has at
least two zero rows, then (10) has two linearly dependent quadratic equations, i.e., the system
does not admit a unique solution. Therefore, we must have that rank (M) = n − 1. Now let
us explicitly write out the system of equations

n∑

k=1
i 
= j

Ni,k · xk + d̂i · (aᵀx
)2 = ĉi , 1 ≤ i < n

d̂n · (aᵀx
)2 = ĉn,

where d̂ = Ad and ĉ = Ac. We can use the last equation to transform the system into n − 1
linear equations and one quadratic equation. Moreover, in characteristic 2 squaring induces a
permutation, i.e., by raising the last equation to the power q/2 we can find a unique c̃ j ∈ Fq

such that
aᵀx = c̃ j .

So we can transform the system of equations into a linear one which admits a solution if and

only if the matrix

(
AM

(Ad)naᵀ

)
has rank n. Obviously, this is also equivalent to the matrix

(
M
aᵀ

)
having full rank.

Now suppose that the conditions for one of the three cases are satisfied, but F is not a
bijection. For each case we already derived a unique procedure to find a unique solution to
(9). (For the first two cases again see Appendix A.) A contradiction, so F has to be a bijection.
��

Now we can generalize [16, Theorem 1] to field extensions of F2.

Theorem 2.11 Let Fq be a finite field with char
(
Fq
) = 2 and q ≥ 4, let n ≥ 3, and let

F : F
n
q → F

n
q be a bijective function with multiplicative complexity 1. Then F is affine
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equivalent to either

�n : Fn
q → F

n
q ,

(x1, . . . , xn) �→ (x1 + xn−1 · xn, x2, . . . , xn),
or

�n : Fn
q → F

n
q ,

(x1, . . . , xn) �→ (x1 + x22 , x2, . . . , xn),

or

�n : Fn
q → F

n
q ,

(x1, . . . , xn) �→ (x21 , x2, . . . , xn).

Proof In the situations (1) and (2) of Lemma 2.10 we can use the same strategy as in Theorem
2.6 to establish affine equivalence with �n and �n respectively. So we only have to prove
case (3). Let a,b ∈ F

n
q \ {0} be such that a = α · b, where α ∈ F

×
q . Then

F(x) = Mx + α · (bᵀx
)2 d.

Let N = α−1 · 1n×n , then
NF(x) = α−1 · Mx + (bᵀx

)2 d.

So without loss of generality we can assume that a = b.
Let us now construct the affine equivalence. �n can be written as

�n(x) =

⎛

⎜⎜⎜
⎝

0 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞

⎟⎟⎟
⎠
x + (eᵀ

1 x
)2 e1

We want to find A,B ∈ GLn
(
Fq
)
such that F(x) = B�n(Ax). We require that eᵀ

1A = aᵀ

and Be1 = d. Without loss of generality we can assume that

M =
⎛

⎝
M1

0ᵀ

M2

⎞

⎠ .

IfM is not of this form, then we apply Lemma 2.9 to find C ∈ GLn
(
Fq
)
such that N = CM

is in row echelon form of rank n − 1, so it has a zero row. Since we try to find equivalence
up to affine transformations we can replace F(x) by CF(x) and permute the components of
the resulting mapping. Moreover, we must have that

M =
⎛

⎝
M1

0ᵀ

M2

⎞

⎠ = (d b2 . . . bn
)

︸ ︷︷ ︸
=B

⎛

⎜⎜⎜
⎝

0 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

aᵀ

aᵀ
2
...

aᵀ
n

⎞

⎟⎟⎟
⎠

︸ ︷︷ ︸
=A

= (0 b2 . . . bn
)

⎛

⎜⎜⎜
⎝

aᵀ

aᵀ
2
...

aᵀ
n

⎞

⎟⎟⎟
⎠

.
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Let j be the index of the zero row of M, for the bi ’s we pick all canonical unit vectors ei
except for e j . Note that d j 
= 0, else we would not have a permutation in Lemma 2.10, and
henceforth B has full rank. Now the last equation becomes

⎛

⎝
M1

0ᵀ

M2

⎞

⎠ = (0 e1 . . . e j−1 e j+1 . . . en
)

⎛

⎜
⎜
⎜
⎝

aᵀ

aᵀ
2
...

aᵀ
n

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

aᵀ
2
...

aᵀ
j

0ᵀ

aᵀ
j+1
...

aᵀ
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By the conditions from Lemma 2.10 the matrix on the left-hand side has rank n − 1, so we
have a unique solution for the ai ’s. Finally, by construction

A = D

⎛

⎝
M1

aᵀ

M2

⎞

⎠ ,

where D ∈ GLn
(
Fq
)
is a suitable reordering of the rows, has full rank. ��

Corollary 2.12 Let Fq be a finite field with char
(
Fq
) = 2 and q ≥ 4, and let F : F2

q → F
2
q

be a bijective function with multiplicative complexity 1. Then F is affine equivalent to either

�2 : F2
q → F

2
q ,

(x1, x2) �→ (x1 + x22 , x2),
or

�2 : F2
q → F

2
q ,

(x1, x2) �→ (x21 , x2).

Remark 2.13 Let char
(
Fq
) = 2, q ≥ 4 and α ∈ F

×
q , and suppose that for a bijective function

F : Fn
q → F

n
q with MC (F) = 1 we have a decomposition as in Lemma 2.10. If a 
= α · b,

then F is affine equivalent to �n , if a = α ·b andM ∈ GLn
(
Fq
)
, then F is affine equivalent

to �n , and if a = α · b and M /∈ GLn
(
Fq
)
, then F is affine equivalent to �n .

For completeness, let us again discuss that �n , �n and �n are not affine equivalent. For
�n and �n the argument is identical to the one in odd characteristic, see the end of Section
2.2. For �n and �n it suffices to reduce to n = 2, note that for all a, b ∈ F

×
q one has

(a · x1 + b · x2)2 = a2 · x21 + b2 · x22 . (11)

Thus, any affine change of coordinates for �2 is unable to produce the required polynomial
x1 + x22 . For �n and �n is suffices to reduce to n = 3. Let A ∈ GLn

(
Fq
)
and denote with

ai ∈ F
n
q its rows. Note that

(
3∑

i=1

aixi

)2

cannot contain any monomial xi · x j , where i 
= j . So one can never produce the required
polynomial x1 + x2 · x3.
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3 M-Boxes and differential uniformity

In [19] a new tool was introduced to describe properties of a (n,m)-S-box S over F2: the
associated A-box SA. Conceptually, the A-box SA collects all AND-gates of a AND-XOR-
NOT circuit that implements S in a vector. Then one can construct S from SA by applying an
affine function. Since we want to generalize this tool to arbitrary finite fields we will define
the so-called M-box which contains all multiplications of an arithmetic circuit for an S-box.

3.1 Expansion–compression lemma

In [16, Lemma 6] a process was given to construct any function F : Fn
2 → F

n
2 with mul-

tiplicative complexity MC (F) ≤ c and F(0) = 0 by extending iteratively with single
multiplications to F

n+c
q and then contracting back to F

n
2 via a linear map. The proof of [16,

Lemma 6] can be applied over any finite field, for completeness we summarize the main idea
of the proof. Let F : Fn

q → F
n
q be any function with multiplicative complexity MC (F) ≤ c,

by Theorem 1.2 we have a circuit for F using at most c many MUL gates. Iteratively, we
compute eachMUL gate and append its output to x, thiswaywe end upwith a vector z ∈ F

n+c
q

which contains all monomials that are present in the polynomial vector representation of F .
Now one can apply a linear function to construct F . Moreover, with this lemma we have
a well-defined procedure to extract all multiplications in an S-box into a new associated
function.

Lemma 3.1 (Expansion–Compression Lemma [16, Lemma 6]) Let Fq be a finite field, let

En : Fn
q → F

n+1
q ,

x �→ (x, (aᵀx) · (bᵀx)
)
,

with a,b ∈ F
n
q \ {0}, and let Cm,n : Fm

q → F
n
q be a linear map. Any function F : Fn

q → F
n
q

with F(0) = 0, and multiplicative complexityMC (F) ≤ c can be written as composition

F = Cn+c,n ◦ En+c−1 ◦ · · · ◦ En .

We will refer to the Ei ’s as expansion functions. Moreover, we denote the vectors that define
the i th expansion function by bi and bi+1 and refer to them as i th partner vectors. The tuple
(b1, . . . ,b2k+1) will be called the partner tuple.

3.2 Definition of the M-box

With Lemma 3.1 we can decompose any (n,m)-S-box S with MC (S) ≤ k into an expansion
part and a compression part. (We now allow affine transformations in the compression to
adjust for the constant term.) The output of the expansion part consists of two parts, n
elements for the input x ∈ F

n
q , we call this part the identity part, and k elements that are the

output of MUL gates, we call this part the multiplication part or simply MUL-part. We can
interpret the MUL-part as a (n, k)-S-box, which we therefore define as anM-box. We denote
the M-box associated to an S-box S by SM , obviously we have also that MC (SM ) ≤ k. Let’s
formalize the concept of M-boxes in mathematical terms.

Definition 3.2 (M-box, cf. [19, Definition 1]) Let Fq be a finite field, and Let x ∈ F
n
q and

y ∈ F
k
q be the input and output, respectively, of a (n, k)-S-box SM. For 2k vectors b1,b2 ∈

F
n
q , . . . ,b2k,b2k+1 ∈ F

n+k
q that satisfy the following inductive properties, SM is called a

(n, k)-M-box.
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(i) y1 = (bᵀ
1 x
) · (bᵀ

2 x
)
.

(ii) For 2 ≤ i ≤ k, yi = (bᵀ
i (x, y1, . . . , yi−1)

) · (bᵀ
i+1 (x, y1, . . . , yi−1)

)
.

For a (n, k)-M-box SM, b2i−1 and b2i are called the i th partner vectors for all i , and
(b1, . . . ,b2k) is called the partner tuple of SM.

Provided a circuit CS for the (n,m)-S-box S such that MC (S) ≤ k is given, then it is
straight-forward to extract a circuit CSM for a corresponding (n, k)-M-box SM . We build CSM
inductively in k layers. First we collect all the multiplication gates in CS , then we pick one
multiplication gate which can be built only with linear combinations of the input x ∈ F

n
q . In

the first layer of CSM we now construct the multiplication gate and denote its output by y1.
Next we pick a multiplication gate that only requires x and y1 as input, then we construct this
gate in the second layer of CSM and denote its output by y2. Inductively, we now run-through
all remaining multiplication gates until we have constructed all multiplication gates of CS .
This yields a circuit for CSM . Of course from the construction of CSM we can also extract a
set of suitable partner vectors b1,b2, . . . ,b2k−1,b2k .

3.3 Equivalence classes of M-boxes

For this section we fix some notation, with TA : Fn
q → F

m
q we will always denote a linear

function TA(x) = Ax, where A ∈ F
n×m
q .

Using Lemma 3.1 and Definition 3.2 we can decompose a (n,m)-S-box S as

S(x) = T
((
x, SM (x)

))+ c, (12)

for a (n, k)-M-box SM , a linear function T : Fm+k
q → F

n
q , and c ∈ F

n
q . The linear function T

can be further decomposed into aM-box part and an identity part, i.e., there are TN : Fn
q → F

m
q

and TN ′ : Fk
q → F

m
q such that

T
((
x, SM (x)

)) = TN(x) + TN ′
(
SM (x)

)
. (13)

(Note that in the last equation we considered the natural extension of TN and TN ′ to Fn+k
q →

F
m
q .) With Lemma 2.9 we can further rewrite (13) as

T
((
x, SM (x)

)) = TN(x) + (TD ◦ TM ◦ SM )(x), (14)

whereM ∈ F
m×k
q is a matrix in reduced row echelon form and D ∈ GLm

(
Fq
)
. I.e., we have

established extended-affine equivalence between S and TM ◦ SM . We technically summarize
this construction in the following theorem which generalizes [19, Theorem 1].

Theorem 3.3 Let Fq be a finite field. For any (n,m)-S-box S with MC (S) ≤ k, there exists
a matrixM ∈ F

m×k
q in reduced row echelon form and a (n, k)-M-box SM such that TM ◦ SM

is extended-affine equivalent to S. If MC (S) = k, then SM is called suitable for S.

Now let’s characterize equivalence for M-boxes. For two linear permutations TA : Fn
q →

F
n
q , TB : F

m
q → F

m
q a (n,m)-M-box SM is clearly linearly equivalent to TB ◦ SM ◦ TA.

Substituting this equivalence into (14) we obtain that

TD ◦ TM ◦ SM = TD ◦ TM ◦ TB ◦ SM ◦ TA = TD′ ◦ TM′ ◦ SM ◦ TA (15)

for an invertible matrix D′ ∈ F
m×m
q , and a matrix M′ ∈ F

m×k
q in reduced row echelon form.

Therefore, we can reduce our search for equivalent M-boxes to SM ◦ TA which leads to the
generalization of [19, Theorem 2].
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Theorem 3.4 Let Fq be a finite field. For a (n, k)-M-box SM and a linear permutation TL :
F
n
q → F

n
q , let S

′
M = SM ◦ TL, which is a M-box linearly equivalent to SM. If (b1, . . . ,b2k) is

a partner tuple of SM, then the following (b′
1, . . . ,b

′
2k+1) is a partner tuple of S

′
M such that

b′
2i−1 = TLᵀ

i
(b2i−1),

b′
2i = TLᵀ

i
(b2i ),

where Li =
(

L 0n×(i−1)
0(i−1)×n I(i−1)×(i−1)

)
for 1 ≤ i ≤ k.

Proof The proof of [19, Theorem 2] does not depend on F2, therefore we can apply it for any
finite field. For a thorough presentation we repeat the arguments. We denote with SM (x) = y
and SM ◦ TL(x)(x) = (z1, . . . , zk). Now we expand the inductive definition of the M-box to
obtain

z1 = (bᵀ
1 TL(x)

) · (bᵀ
2 TL(x)

)

= (TLᵀ(b1)ᵀx
) · (TLᵀ(b2)ᵀx

)
.

So TLᵀ(b1) and TLᵀ(b2) become new partner vectors and we denote

b′
1 = TLᵀ(b1), b′

2 = TLᵀ(b2).

Continuing,

z2 =
(
bᵀ
3

(
TL(x), z1

)) ·
(
bᵀ
4

(
TL(x), z1

))

= (bᵀ
3 TL1(x, z1)

) · (bᵀ
4 TL1(x, z1

)

=
(
TLᵀ

1
(b3)ᵀ(x, z1)

)
·
(
TLᵀ

1
(b4)ᵀ(x, z1)

)
,

where

L2 =
(

L 0n×1

01×n 11×1

)
.

Again, we denote
b′
3 = TLᵀ

2
(b3), b′

4 = TLᵀ
2
(b4).

Inductively repeating this process we obtain that

Li =
(

L 0n×(i−1)
0(i−1)×n I(i−1)×(i−1)

)
,

b′
2i−1 = TLᵀ

i
(b2i−1)

b′
2i = TLᵀ

i
(b2i )

zi = (b′
2i−1

ᵀ
(x, z1, . . . , zi−1)

) · (b′
2i

ᵀ
(x, z1, . . . , zi−1)

)
.

This yields a (n, k)-M-box S′
M = SM ◦ TL. ��

3.4 Lower bounds of differential uniformity via multiplicative complexity

Since differential uniformity is invariant under extended-affine equivalence it suffices to
consider a (n,m)-S-box S = TM ◦ SM with a suitable M-box SM and a matrixM in reduced
row echelon form. Moreover, differential uniformity is preserved under affine equivalence,
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therefore without loss of generality we can assume that the affine permutations from the
extended-affine equivalence are the identity permutations and that S is constant free. I.e.,

S = TM ◦ SM + TC, (16)

where TC is a linear function. So, for any x, a ∈ F
n
q we have that

S(x + a) − S(x) = TM ◦ (SM (x + a) − SM (x)
)+ TC(a). (17)

Consequently, for any b ∈ F
m
q and b̂ = TM(b) + TC(a) we have the following inclusion of

sets
{
x ∈ F

n
q | SM (x + a) − SM (x) = b

}

⊆
{
x ∈ F

n
q | TM ◦ (SM (x + a) − SM (x)

) = TM(b)
}

=
{
x ∈ F

n
q | TM ◦ (SM (x + a) − SM (x)

) = b̂ − TC(a)
}

=
{
x ∈ F

n
q | S(x + a) − S(x) = b̂

}
.

Moreover, this inclusion of sets implies that

δ(S) = δ(TM ◦ Sm + TC) ≥ δS
(
a, b̂
)

≥ δSM
(
a, TM(b)

) ≥ δSM (a,b),

which also implies that
δ(S) ≥ δ(SM ). (18)

Hence, to prove lower bounds on S-boxes it suffices to prove lower bounds for (suitable)
M-boxes. Note that technically we never used the assumption that SM is suitable to derive
Inequality (18). Though, we will see in Theorem 3.8 that with suitable M-boxes we derive
the highest upper bounds.

For partner vectors bi of a M-box we denote with bi |n the restriction to the first n entries
of bi . The input difference vectors a such that (bi |n)ᵀ a = 0 form a vector space which will
be called complementable space. In the following lemma, which generalizes [19, Lemma 1],
we collect the key properties of complementable spaces.

Lemma 3.5 Let Fq be a finite field, and let SM be a (n, k)-M-box. Define the set CSM ⊂ F
n
q of

all a ∈ F
n
q satisfying (bi |n)ᵀ a = 0 for all partner vectors bi to be a complementable space

of SM. The complementable space CSM has the following properties.

(1) For a ∈ CSM , SM (a) = 0.
(2) For a ∈ CSM and x ∈ F

n
q , SM (x) = SM (x + a).

(3) If there is a non-zero vector in CSM , then δ(SM ) = qn.

Proof The proof of [19, Lemma 1] does not depend on F2 therefore we can apply it for any
finite field. For a thorough presentation we repeat the arguments. For (1), let a ∈ CSM and
SM = ( f1, . . . , fk). By assumption

f1(a) = (bᵀ
1 a
) · (bᵀ

2 a
) = 0,

inductively we now continue

fi (a) = (bᵀ
2i−1(a, 0i−1)

) · (bᵀ
2i (a, 0i−1)

) = 0.

Therefore, SM (a) = 0.
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For (2), let SM (x) = (y1, . . . , yk) and SM (x+ a) = (y′
1, . . . , y

′
k). We show per induction

that yi = y′
i . For i = 1,

y′
1 = (bᵀ

1 (x + a)
) · (bᵀ

2 (x + a)
)

= (bᵀ
1 x + bᵀ

1 a
) · (bᵀ

2 x + bᵀ
2 a
)

= (bᵀ
1 x
) · (bᵀ

2 x
) = y1.

Suppose now that the claim is true for 2 ≤ i ≤ k − 1, then

y′
i =
(
bᵀ
2i−1

(
x + a, y′

1, . . . , y
′
i−1

) ) ·
(
bᵀ
2i

(
x + a, y′

1, . . . , y
′
i−1

) )

= (bᵀ
2i−1 (x + a, y1, . . . , yi−1)

) · (bᵀ
2i (x + a, y1, . . . , yi−1)

)

=
(
bᵀ
2i−1 (x, y1, . . . , yi−1) + (b2i−1|n

)ᵀ a
)

·
(
bᵀ
2i (x, y1, . . . , yi−1) + (b2i |n

)ᵀ a
)

= yi .

Lastly, (3) follows from (2) because SM (x + a) = SM (a) for all x ∈ F
n
q , so δ(SM ) =

δSM (a, 0) = qn . ��
So, for k large enough can one ensure that CSM = {0}? We already mentioned that CSM is

a linear space. We define the matrix of transposed truncated partner vectors as

A = (b1|n . . . b2k+1|n
)ᵀ

, (19)

then by definition we can view CSM as the following kernel

CSM = ker (A) =
{
x ∈ F

n
q | Ax = 0

}
. (20)

If k is increased by one, then two more rows are appended to A. For the complementable
space to be trivial we need that rank (A) = n. Therefore, we have the necessary condition
that

k >

⌊
n − 1

2

⌋
. (21)

This leads to the generalization of [19, Theorem 3].

Theorem 3.6 Let Fq be a finite field, and let SM be a (n, k)-M-box. If k ≤ ⌊ n−1
2

⌋
, then

δ(SM ) = qn.

In [19, §3.1] it was established that this condition is sufficient over F2. Essentially, this is
due to x2 = x in F2. Unfortunately, this condition cannot be sufficient over other finite fields
as one can see from the following counterexample.

Example 3.7 Let Fq be a finite field. We consider the map

⎛

⎝
x1
x2
x3

⎞

⎠ �→

⎛

⎜⎜⎜⎜
⎝

(x1 + x2) · x3(
(x1 + x2) · x3

)2

...
(
(x1 + x2) · x3

)2k

⎞

⎟⎟⎟⎟
⎠

,

for some k ≥ 1. For any finite field with q > 2 this defines an (3, k + 1)-M-box. Obviously,
for k ≥ 1 we have more than

⌊ 3−1
2

⌋ = 1 multiplications. On the other hand, for any k ≥ 1
the matrix of the restricted partner vectors has only two non-zero vectors.
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We conclude that over finite fields different from F2 having many multiplications does not
suffice, we need sufficiently many elementary multiplications for the complementable space
to be trivial. We will shortly revisit this notion in Section 3.5 and prove an efficient criterion
for an S-box not having sufficiently many elementary multiplications.

On the other hand, the lower bound from [19, Theorem4] can be generalized independently
from this observation.

Theorem 3.8 Let Fq be a finite field, and let SM be a (n, k)-M-box. If k = ⌊ n−1
2

⌋+ l, then
δ(SM ) ≥ qn−l for all l ≥ 0.

Proof We can generalize the proof of [19, Theorem 3], though we have to account for more
than two field elements. We do induction on l, for l = 0 we can apply Theorem 3.6. Now
suppose that the theorem holds for l > 0, we consider a (n, k + 1)-M-box SM , where
k = ⌊ n−1

2

⌋ + l. If we consider SM |k , i.e., SM without the last MUL gate, then by our
induction hypothesis δ(SM |k) ≥ qn−l . On the other hand, we have the following equality of
sets

{
x ∈ F

n
q | SM |k(x + a) − SM |k(x) = b

}

=
⋃

α∈Fq

{
x ∈ F

n
q | SM (x + a) − SM (x) = (b, α)

}
.

We can now conclude from the pigeonhole principle that at least for one α ∈ Fq we have
that δSM

(
a, (b, α)

) ≥ qn−l−1. Therefore, we have that δ(SM ) ≥ qn−l−1. ��
One should keep in mind that only if the M-box has sufficiently many elementary multiplica-
tions, then the inequality could become non-trivial, else the differential uniformity is always
maximal.

Combining Theorems 3.3, 3.6, 3.8 we now obtain the generalization of [19, Corollary 1].

Corollary 3.9 Let Fq be a finite field, and let S be a (n,m)-S-box.

(1) IfMC (S) ≤ ⌊ n−1
2

⌋
, then δ(S) = qn.

(2) IfMC (S) = ⌊ n−1
2

⌋+ l, then δ(S) ≥ qn−l for all l ≥ 0.

3.5 An efficient criterion for not sufficiently many elementary multiplications

In the previous section we observed in Example 3.7 that onlymultiplications with linear com-
binations of x1, . . . , xn have the potential to lower the differential uniformity. For practical
considerations one would like to have criteria to efficiently determine whether an S-box has
sufficiently many elementary multiplications or not. In the following proposition we show
that at least for the latter case it can be sufficient to simply look at the monomials in the
components of the S-box.

Proposition 3.10 Let Fq be a finite field, and let S be a (n,m)-S-box, and let M ∈
Fq [x1, . . . , xn] be the set of all non-linear monomials that are present in the components
of S. If there exists an xi which is not present in any monomial of M, then S has maximal
differential uniformity δ(S) = qn.

Proof We implement S with theM-box SM which constructs every monomial independently.
(I.e., the product (x1 + x2) · x3 is implemented via (x1 · x3, x2 · x3).). Since x j is not present
in any component of SM it is obvious that all partner vectors of SM are zero on the i th

component. So by Lemma 3.5 SM has maximal differential uniformity. ��
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We note that this criterion has a rather trivial proof too, since any such (n,m)-S-box can
also be considered as (n − 1,m)-S-box via extended-affine equivalence and being constant
in one component implies maximal differential uniformity. Though, to showcase the theory
developed in this paper we proved it via the M-box.

We provide evidence that a converse positive criterion like “every variable xi divides at
least one monomial in M, then the differential uniformity is less than qn” won’t be true in
general as it is quite simple to find a counterexample.

Example 3.11 (cf. [23, §4.3]) Let Fq be finite field, and let f ∈ Fq [x] be a polynomial with
deg( f ) ≥ 2. We consider the Lai–Massey permutation

FLM :
(
x1
x2

)
�→
(
x1 + f (x1 − x2)
x2 + f (x1 − x2)

)
.

Clearly, we can find for both variables monomials that are divisible by them. On the other
hand, the Lai–Massey permutation is affine equivalent to the Feistel permutation

A =
(
1 −1
0 1

)
, B =

(
1 1
0 1

)
, F(x1, x2) =

(
x1

x2 + f (x1)

)
,

then FLM = TB ◦ F ◦ TA.

4 Conclusions

In this paper, we fully characterized bijective functions with multiplicative complexity 1 over
finite fields. We also extended the techniques of [19] to study differential uniformity in terms
of the associated M-box. We want to mention that in [19, §4] an algorithm was described to
find S-boxes over Fn

2 which satisfy the lower bound on differential uniformity in Corollary
3.9. In principle, one could come up with a similar algorithm for arbitrary finite fields Fq ,
though for large n or q this method becomes computationally infeasible.
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Appendix A

A simple calculation

Let a,b,d ∈ F
n
q \ {0}, M ∈ GLn

(
Fq
)
, aᵀM−1d = bᵀM−1d = 0, and let

F(x) = Mx +
( (

aᵀx
) · (bᵀx

) )
d,

G(x) = M−1x −
( (

aᵀM−1x
) · (bᵀM−1x

) )
M−1d.

We first observe that

aᵀG(x) = aᵀM−1x, aᵀM−1F(x) = aᵀx,

bᵀG(x) = bᵀM−1x, bᵀM−1F(x) = bᵀx.

Then

(F ◦ G) (x) =
= M
(
M−1x − ((aᵀM−1x

) · (bᵀM−1x
))
M−1d

)

+ ((aᵀG(x)
) · (bᵀg(x)

))
d

= x − ((aᵀM−1x
) · (bᵀM−1x

))
d + ((aᵀM−1x

) · (bᵀM−1x
))
d

= x,

and similar

(G ◦ F)(x) =
= M−1 (Mx + ((aᵀx

) · (bᵀx
))
d
)

− ((aᵀM−1F(x)
) · (bᵀM−1F(x)

))
M−1d

= x + ((aᵀx
) · (bᵀx

))
M−1d − ((aᵀx

) · (bᵀx
))
M−1d

= x.
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