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Abstract
Various systematic modifications of vectorial Boolean functions have been used for finding
new previously unknown classes of S-boxes with good or even optimal differential uni-
formity and nonlinearity. In this paper, a new general modification method is given that
preserves the bijectivity property of the function in case the inverse of the function admits a
linear structure. A previously known construction of such a modification based on bijective
Gold functions in odd dimension is a special case of the new method.
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1 Introduction

Differential uniformity is one of the most extensively studied cryptographic property of vec-
torial Boolean functions. By definition, an APN function is differentially δ-uniform with
δ = 2, which is the lowest attainable value of δ. Differential uniformity is motivated by
differential cryptanalysis: the lower differential uniformity, the smaller probabilities of dif-
ferentials. Another property of a Boolean function of cryptanalytic interest is nonlinearity,
that is, the minimum Hamming distance to all affine Boolean functions. All components
of an APN function have also high nonlinearity, but already a 4-uniform function can have
affine components, in which case the function is said to have null nonlinearity. An early
example of such a phenomenon was achieved by replacing one component of an APN
function by all-zero Boolean function [10].

APN permutations are known to exist in all odd dimensions. Their existence in even
dimension is unknown with the exceptions of dimensions 2 and 4, where no APN permuta-
tions exist, and dimension 6, where only one APN permutation has been found so far. In the
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hunt of new examples, researchers are using various smart heuristics. For example, one can
start from a known highly nonlinear permutation and search over its modifications.

Beierle and Leander suggested that a differentially 4-uniform permutation with a lin-
ear component could be a good starting point when constructing a 4-uniform 2-1 function,
which in turn could be extended to a 4-uniform, or possibly even to an APN permutation [1].
Further, they give a construction of a differentially 4-uniform permutation with null linear-
ity. In odd dimension, their construction is based on Gold functions, while in even dimension
the starting point is the finite field inversion function.

Related work Charpin and Kyureghyan studied permutation polynomials of the shape

F(X) = G(X) + γTr (H(X))

where γ ∈ F2n , and G(X) and H(X) are polynomials over the finite field F2n [3]. They
characterised the polynomials of this shape in the case where G(X) is a permutation poly-
nomial based on the known properties of the support of the Walsh transform of a Boolean
function with a linear structure of type 0. A linear structure of a Boolean function is an ele-
ment which, when added to the input, either keeps the value the same for all inputs, or flips
the value for all inputs. In the former case, the linear structure is said to be of type 0, while
in the latter case, it is said to be of type 1.

In terms of functions over F2n the characterisation by Charpin and Kyureghyan can be
stated as follows: A function of the shape

x �→ G(x) + γTr (H(x))

where γ ∈ F2n , G is a permutation over F2n , and H is a function from F2n to F2n , is a
permutation if and only if there is a function R : F2n → F2n such that H = R ◦ G and
γ is a linear structure of type 0 of the Boolean function x �→ Tr (R(x)). This result was
generalised to the case of odd characteristic by [4] and later applied to monomial functions
with linear structures to obtain infinite families of sparse permutation polynomials [5].

By applying this result to the case where G is the identity function one obtains that for a
given Boolean function g, the mapping

π : x �→ x + γg(x), x ∈ F2n ,

is a permutation if and only if γ is a linear structure of type 0 of g. The fact that π is an
involution was later used in construction of infinite families of involutions [6].

Contribution of this paper The permutation π discussed above is in the core of our
construction. When composed with a function, the permutation π changes half of the com-
ponents of the function by adding the Boolean function g to them, while the second half of
the components remain intact.

In this paper, we study conditions under which the components of a permutation can
be changed in such a way that one component becomes linear. We show that this can be
achieved if the inverse of the permutation has a component that admits a linear structure of
type 1. It is well known that the components of certain Gold functions have linear structures
of type 1. Interestingly, when applied to the inverse of a Gold function in odd dimension,
our construction is identical to the one given by [1].

Outline We start by introducing the most important notation and definitions in Section 2.
For unexplained terminology we refer to [2]. In Section 3 we recall the properties of the
Walsh transform of a Boolean function admitting a linear structure. A linear structure gives
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rise to a specific involution as will be shown in Section 4. Our general construction of the
bijective modifications of S-Boxes is given in Section 5 followed by an application to Gold
functions in Section 6 and conclusions in Section 7.

2 Linear structures

We consider the vector space F
n
2 of dimension n over F2 where n is a positive integer. A

vector x ∈ F
n
2 can be represented as an n-tuple x = (x1, . . . , xn) of coordinates xi ∈ F2,

i = 1, . . . , n. For two vectors x = (x1, . . . , xn) ∈ F
n
2 and y = (y1, . . . , yn) ∈ F

n
2 we define

an inner product denoted as x · y by setting

x · y = x1y1 ⊕ · · · ⊕ xnyn.

We denote by ‘⊕’ the addition in Fn
2, while we omit a product sign when denoting multipli-

cation by an element in F2. The zero element in Fn
2 is denoted by 0n, where the subscript is

omitted if n = 1.
Let f : Fn

2 → F2 be a Boolean function. Then f is said to have a linear structure if there
is a vector w ∈ F

n
2, w �= 0n, such that

f (x ⊕ w) ⊕ f (x) = δ, for all x ∈ F
n
2,

where δ ∈ F2 is a constant [8]. Then we say that w is a linear structure of type δ of f . Let us
denote by W a complemented subspace of {0, w}. Then F

n
2 = {0, w} ⊕ W and any x ∈ F

n
2

has a unique expression of the form x = u ⊕ v, where u ∈ {0, w} and v ∈ W . Then the
function f can be written as

f (x) = f (u ⊕ v) = λ · u ⊕ g(v), (1)

for a suitable λ ∈ F
n
2 and a Boolean function g : Fn

2 → F2, which is independent of the part
u ∈ {0, w} of the input x ∈ F

n
2, see e.g. [2]. On the other hand, a Boolean function of the

form (1) has a linear structure w, and moreover, f (x) ⊕ f (x ⊕ w) = λ · w, for all x ∈ F
n
2

meaning that the type of the linear structure is determined by λ · w. The vector λ in the
representation is not unique as any λ satisfying λ · w = δ can be used there. In particular,
we can choose λ = 0 for type 0 linear structure. The function g is not unique either and
depends on the choice of the complemented subspace W of {0, w}.

3 Balancedness and linear structures

A Boolean function f : Fn
2 → F2 is said to be balanced if the size of its support is equal to

2n−1. This is equivalent to saying that the Walsh transform of f at 0n is equal to 0. All non-
constant linear functions are balanced, and therefore, any function f of the form (1) with
λ·w = 1 is balanced. The following result is a straightforward consequence of this property.

Proposition 1 Suppose that a Boolean function f : Fn
2 → F2 has a linear structure w. Let

γ ∈ F
n
2 and assume that one of the following two conditions holds:

1. w is of type 0 and γ · w = 1, or
2. w is of type 1 and γ · w = 0.

Then the function x �→ f (x) ⊕ γ · x is balanced.
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Proof Let us express the function f in the form (1). Then

f (x) ⊕ γ · x = (λ ⊕ γ ) · u ⊕ (g(v) ⊕ γ · v) ,

from where we see that x �→ f (x) ⊕ γ · x is balanced if (λ ⊕ γ ) · w = 1. Both conditions
1 or 2 make this happen.

Recalling that the value of the Walsh transform of x �→ f (x) ⊕ γ · x at 0n is equal to
the value of the Walsh transform of f at γ we see that the following result is equivalent to
Proposition 29 of [2].

Corollary 1 Suppose that a Boolean function f : Fn
2 → F2 has a linear structure w. Then

the following statements hold:

1. w is of type 0 if and only if the function x �→ f (x) ⊕ γ · x is balanced for all γ such
that γ · w = 1.

2. w is of type 1 if and only if the function x �→ f (x) ⊕ γ · x is balanced for all γ such
that γ · w = 0.

Proof The “only if” parts of the statements are given by Proposition 1. Let us assume now
that the function x �→ f (x) ⊕ γ · x is balanced for all γ such that γ · w = 1. If then w is
of type 1, it follows by Proposition 1 that this function is balanced also for all γ such that
γ ·w = 1, that is, for all γ ∈ F

n
2, which is impossible by Parseval’s theorem. It follows thatw

is of type 0 as claimed. The proof of the “if” part of the second statement is analogical.

4 Permutations related to linear structures

Let F : Fn
2 → F

m
2 be a vectorial Boolean function. Given a vector β ∈ F

m
2 , β �= 0, we

define a component of F as the Boolean function

x �→ β · F(x), x ∈ F
n
2,

and denote this function by β · F .
A vectorial Boolean function from F

n
2 to F

n
2 is a permutation (bijection) if and only if all

its components are balanced. For a proof of this known fact, see e.g. [10], Appendix.
Given a non-zero vector w ∈ F

n
2, the orthogonal complement of {0, w}, denoted as

{0, w}⊥, is a vector subspace of dimension n − 1 of Fn
2 consisting of all x ∈ F

n
2 such that

w · x = 0. Assume that we have a function π : F
n
2 → F

n
2 such that all its components

γ · π are given, where γ ∈ {0, w}⊥. Then it suffices to give one component of π , say α · π ,
where α · w = 1 to determine the entire function π : F

n
2 → F

n
2. We use this approach

for two alternative constructions of a permutation related to a linear structure of a Boolean
function. The results of Theorem 1 and Corollary 2 follow also from Theorem 2 of [3].
The proofs are given here in the linear algebraic setting to illustrate the properties of our
construction.

Theorem 1 Let f : Fn
2 → F2 be a Boolean function with a linear structure w. We define a

function π : Fn
2 → F

n
2 by setting

(γ · π) (x) = γ · x, x ∈ F
n
2,
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for all γ ∈ {0, w}⊥. The remaining components are defined by first fixing an α /∈ {0, w}⊥,
that is, α · w = 1.

1. If w is of type 0, we set

α · π(x) = f (x) ⊕ α · x, x ∈ F
n
2.

2. If w is of type 1, we set

α · π(x) = f (x), x ∈ F
n
2.

Then π is a permutation.

Proof In the second case, as follows from Proposition 1, the Boolean function x �→ f (x)⊕
γ · x is balanced for all γ ∈ {0, w}⊥. Then all components of π are balanced, and hence, π
is a bijection.

In the first case, we observe that w is a linear structure of type 1 of the function x �→
f (x) ⊕ α · x, and then apply the result of the second case to this function.

Corollary 2 In the context of Theorem 1, the permutation π has the following representa-
tions:

1. π(x) = x ⊕ f (x)w, if w is of type 0, or
2. π(x) = x ⊕ (α · x ⊕ f (x))w, if w is of type 1.

The permutation π is not only a permutation but an involution, see also [6]. To prove it,
let us start with the following property.

Lemma 1 Let w be a linear structure of type δ of a Boolean function f , α ∈ F
n
2 satisfying

α · w = 1, and π the permutation constructed as in Theorem 1. Then

f (π(x)) =
{

f (x), if δ = 0,
α · x, if δ = 1.

Proof If δ = 0, then

f (π(x)) = f (x ⊕ f (x)w) =
{

f (x), if f (x) = 0,
f (x ⊕ w) = f (x), if f (x) = 1.

If δ = 1, then

f (π(x)) = f (x ⊕ (α · x ⊕ f (x))w)

{
f (x), if α · x ⊕ f (x) = 0,
f (x ⊕ w) = f (x) ⊕ 1, if α · x ⊕ f (x) = 1,

from where we see that the equality f (π(x)) = α · x holds for all x.

Corollary 3 In the context of Theorem 1, the permutation π is an involution.

Proof If the linear structure is of type 0, then by Lemma 1 and Corollary 2 we get

π (π(x)) = π(x) ⊕ f (π(x))w = x ⊕ f (x)w ⊕ f (x)w = x.
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If the linear structure is of type 1, we get similarly as above and recalling α · π = f that

π (π(x)) = π(x) ⊕ (α · π(x) ⊕ f (π(x)))

= x ⊕ (α · x ⊕ f (x))w ⊕ (α · π(x) ⊕ α · x)w = x.

5 Modifications of S-Boxes

Let F : F
n
2 → F

n
2 be a bijective S-box. Let us assume that one of its components, say

β ·F , has a linear structure of type 1 and let us construct the permutation π for this Boolean
function. Then one component of π equals β · F meaning that one component of π ◦ F−1

is linear. By the construction of π we also see that 2n−1 other components of π ◦ F−1

are just components of F−1. In this way, we obtain a bijective modification of F−1 where
one component has been replaced by a linear function. For a linear structure of type 0
the corresponding replacement does not give a linear function. We state the result as the
following theorem.

Theorem 2 Let F : Fn
2 → F

n
2 be a bijective vectorial Boolean function and assume that

one of its components, say β ·F has a linear structure w. Let α ∈ F
n
2 be such that α ·w = 1.

Then F−1 can be modified in such a way that the new function is also a permutation,
all components γ · F−1 with γ ∈ {0, w}⊥ remain intact, and the component α · F−1 is
replaced

1. by the function x �→ α · F−1(x) ⊕ β · x, if the linear structure w is of type 0, or
2. by the linear function x �→ β · x, if the linear structure w is of type 1.

Proof Let us recall the constructions of a bijective function π given in Theorem 1 and apply
them to the Boolean function f = β · F and the given α. Since in both cases π is bijective,
also π ◦F−1 is bijective. We also observe that γ · (π ◦ F−1

) = γ ·F−1 for all γ ∈ {0, w}⊥.
So those components of F−1 remain unchanged. Let us now consider the component
α · F−1.

1. If the linear structure w of β · F is of type 0, then

α ·
(
π ◦ F−1

)
(x) = β · F

(
F−1(x)

)
⊕ α · F−1(x)

= β · x ⊕ α · F−1(x),

for all x ∈ F
n
2.

2. If the linear structure w of β · F is of type 1, then

α ·
(
π ◦ F−1

)
(x) = β · F

(
F−1(x)

)
= β · x,

for all x ∈ F
n
2.

Hence in both cases, the composition π ◦ F−1 gives the claimed bijective modification of
F−1.

Recalling that π is an involution we get the following corollary.
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Corollary 4 In the context of Theorem 2 we have
(
π ◦ F−1

)−1 = F ◦ π .

This gives a modification of the original permutation F . By Lemma 1, the component
β · (F ◦ π) of this modification is equal to β · F if the linear structure is of type 0, that is,
this component remains unchanged, while in the case of type 1 we have

β · (F ◦ π) (x) = α · x,

for all x ∈ F
n
2, that is, this component of F , which has a linear structure, is changed to a

linear function.

6 Application to APN gold functions

Let F2n be an extension field of F2 of dimension n. The absolute trace function Tr : F2n →
F2 is then defined as

Tr(x) = x + x2 + x22 + · · · + x2n−1
, x ∈ F2n .

The trace function is a linear function, and any linear function L : F2n → F2 can be given
in a form

L(x) = Tr(ωx), where ω ∈ F2n .

The identification
(
F

n
2,⊕

) = (F2n ,+) induces a linear space structure to F2n . Using a
suitable linear isomorphism the identification of vectors in Fn

2 and field elements in F2n can
be done in such a way that

x · y = Tr(xy), x, y ∈ F2n = F
n
2,

where we omit a product sign for field multiplication.
The power monomials x �→ x2i+1, x ∈ F2n , where i is a positive integer, are known

as Gold functions. Gold functions are differentially 2s-uniform, where s = gcd(i, n), and
permutations if and only if n/s is odd [7, 9]. The nonlinearity of a Gold function is equal to

2n−1 − 2
n+s
2 −1,

and its algebraic degree is equal to 2.
Let us denote by F the Gold function x �→ x2i+1 with n/s odd. Then the inverse F−1 is

also a power permutation with the exponent d = (2i + 1)−1. The inverse F−1 has the same
differential uniformity and nonlinearity as F . Its algebraic degree is equal to the Hamming
weight of the binary representation of d which in general is higher than 2.

Beierle and Leander studied Gold functions with s = 1 and n odd. They showed that the
inverse of such a Gold function, which is APN and has high nonlinearity, can be modified by
replacing one component by a linear function in such a way that the resulting modification
is also a permutation [1]. In such a modification, in general, the differential unifomity is at
most doubled, see e.g. [10], and in the APN case, strictly doubled to become 4. Since the
algebraic degree of all components is the same, lowering the degree of one component does
not change the algebraic degree. As a result, they obtained an example of a permutation
with differential uniformity 4, high algebraic degree, and null nonlinearity.
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Using the notation of [1] this construction is given as

Gα,d : x �→ xd + Tr
(
αxd + x

)
,

where α ∈ F2n is any element with Tr(α) = 1. To prove that Gα,d is a bijection, they
express Gα,d(x) as G′

α,d(xd) where

G′
α,d(x) = x + Tr

(
αx + x2i+1

)
,

and show that G′
α,d is an involution and hence a permutation.

Next we show that this result, with an identical construction of the modification, can be
obtained by application of Theorem 2.

It is easy to see that the component x �→ Tr(F (x)) has a linear structure w = 1 of type
1. Indeed,

(x + 1)2
i+1 + x2i+1 = x2i + x + 1,

which has the absolute trace Tr(1) = 1 for all x ∈ F2n and odd n. We fix an α ∈ F2n

with Tr(α) = 1. It follows that Tr(αw) = Tr(α) = 1. Then the permutation π given in
Theorem 1 for f (x) = Tr(F (x)) can be expressed as follows

π(x) = x ⊕ (α · x ⊕ f (x))w = x + (Tr(αx) + Tr(F (x)) = x + Tr (αx + F(x))

using the representation of π given in Corollary 2. We observe that π = G′
α,d and conclude

that Gα,d = π ◦ F−1. Let us also note that the inverse of Gα,d given as

F ◦ π(x) = x2i+1 + (x2i + x + 1)Tr
(
αx + x2i+1

)

gives another example of a differentially 4-uniform permutation with a linear component
Tr (F ◦ π(x)) = αx .

The proof of the bijectivity of the function G′
α,d by [1] depends heavily on the form of

the Gold function and many arithmetical properties of the field F
n
2. Our approach to this

modification is more general and works for any permutation from the linear space Fn
2 to F

n
2

that has a component with a linear structure. The modification F ◦ π , which can be applied
even if F is not a permutation, remains to be studied.

7 Conclusions

In this paper, we presented a new general method of how, given a permutation that has a
component with a linear structure of type 1, one can construct a permutation from F

n
2 to F

n
2

with null nonlinearity.
We also showed that the bijective transform, with the help of which the modification

of the permutation is done, is the same as the one appeared already in [1] in the context
of APN Gold functions in odd dimension. Against this background our main contribution
is the discovery of the connection between the existence of linear structures of type 1 and
this modification method. This connection also allowed us to generalise the method and
extend its applicability beyond bijective APN Gold functions in odd dimension. Note that
the modification is independent of the APN property, and when applying it, the differential
uniformity is at most doubled. For APN functions, it is strictly doubled, but in general it may
remain less. Potential applications to be studied are bijective Gold functions in even dimen-
sion, which in the best case are differentially 4-uniform, and more generally, permutations
with partially bent components.
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Finally, let us note that the existence of a linear structure of type 1 of the inverse permu-
tation is also a necessary condition for the modification made with the help of the involution
π as described in Theorem 2 and its second point. For the details including discussion about
the example of [1] in even dimension we refer to [11].
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