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Abstract
The Learning with Errors (LWE) problem receives much attention in cryptography, mainly 
due to its fundamental significance in post-quantum cryptography. Among its solving algo-
rithms, the Blum-Kalai-Wasserman (BKW) algorithm, originally proposed for solving the 
Learning Parity with Noise (LPN) problem, performs well, especially for certain parameter 
settings with cryptographic importance. The BKW algorithm consists of two phases, the 
reduction phase and the solving phase. In this work, we study the performance of distin-
guishers used in the solving phase. We show that the Fast Fourier Transform (FFT) distin-
guisher from Eurocrypt’15 has the same sample complexity as the optimal distinguisher, 
when making the same number of hypotheses. We also show via simulation that it per-
forms much better than previous theory predicts and develop a sample complexity model 
that matches the simulations better. We also introduce an improved, pruned version of the 
FFT distinguisher. Finally, we indicate, via extensive experiments, that the sample depend-
ency due to both LF2 and sample amplification is limited.
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Mathematics Subject Classification (2010) 94A60 · 68P30

1 Introduction

Post-quantum cryptography studies replacements of cryptographic primitives based on the 
factoring or discrete-log problem, since both can be efficiently solved by a quantum com-
puter [2]. Lattice-based cryptography is its main area. In the NIST Post-Quantum Cryp-
tography Standardization [3], 5 out of 7 finalists and 2 out of 8 alternates are lattice-based.

The Learning with Errors (LWE) problem, introduced by Regev [4], is the major problem in 
lattice-based cryptography. Its average-case hardness can be based on the worst-case hardness 
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of some standard lattice problems, which is extremely interesting in theoretical crypto. The most 
famous, of its many cryptographic applications, is the design of Fully Homomorphic Encryp-
tion (FHE) schemes. Its binary counterpart, the Learning Parity with Noise problem (LPN), 
also plays an significant role in cryptography (see [5]), especially in light-weight cryptography 
for very constrained environments such as RFID tags and low-power devices.

The algorithms for solving LWE can be divided into lattice-based, algebraic, and com-
binatorial methods. The last class of algorithms all inherit from the famous Blum-Kalai-
Wasserman (BKW) algorithm [6, 7], and are the most relevant to our study. We refer inter-
ested readers to [8] for concrete complexity estimation for solving LWE instances, and to 
[9, 10] for asymptotic complexity estimations.

The BKW-type algorithms include two phases, the reduction phase and the solving phase. 
The prior consists of a series of operations, called BKW steps, iteratively reducing the dimen-
sion of the problem at the cost of increasing its noise level. At the end of the reduction phase, 
the original LWE problem is transformed to a new problem with a much smaller dimension. The 
new problem can be solved efficiently by a procedure called distinguishing in the solving phase.

One of the main challenges in understanding the precise performance of BKW variants on 
solving the LWE problem comes from the lack of extensive experimental studies, especially 
on the various distinguishers proposed for the solving phase. Firstly, we have borrowed many 
heuristics from BKW variants on the LPN problem, but only very roughly or not at all veri-
fied them for the LWE problem. Secondly, the tightness of the nice theoretical bound in [11] 
on the sample complexity of the FFT distinguisher also needs to be experimentally checked. 
Lastly, a performance comparison of the different known distinguishers is still lacking.

1.1  Related work

The BKW algorithm proposed by Blum et al. [6, 7] is the first sub-exponential algorithm 
for solving the LPN problem. Its initial distinguisher, an exhaustive search method in the 
binary field, recovers one bit of the secret by employing majority voting. Later, Levieil 
and Fouque [12] applied the fast Walsh-Hadamard transform (FWHT) technique to accel-
erate the distinguishing process and recovered a number of secret bits in one pass. They 
also proposed some heuristic versions and tested these assumptions by experiments. In [13] 
Kirchner proposed a secret-noise transform technique to change the secret distribution to 
be sparse. This technique is an application of the transform technique proposed in [14] for 
solving LWE. Bernstein and Lange [15] further instantiated an attack on the Ring-LPN 
problem, a variant of LPN with algebraic ring structures. In [16, 17], Guo, Johansson, and 
Löndahl proposed a new distinguishing method called subspace hypothesis testing. Though 
this distinguisher can handle an instance with larger dimension by using covering codes, its 
inherent nature is still an FWHT distinguisher. Improvements of the BKW algorithm were 
further studied by Zhang et al. [18] and Bogos-Vaudenay [19]. An elaborate survey with 
experimental results on the BKW algorithm for solving LPN can be found in [20].

BKW for solving LWE follows a similar research line. Albrecht et al. initiated the study 
in [21]. In PKC 2014 [22], a new reduction technique called lazy modulus switching was 
proposed. In both works, the solving phase uses an exhaustive search approach. In [11] Duc 
et al. introduced the Fast Fourier Transform (FFT) technique in the distinguishing process 
and bounded the sample complexity theoretically from the Hoeffding inequality. Note that 
the actual performance regarding the bound is not experimentally verified and the informa-
tion loss in the FFT distinguisher is unclear. There are new reduction methods in [23–25], 
and in [23], the authors also proposed a new method with polynomial reconstruction in 
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the solving phase. This method has the same sample complexity as that of the exhaustive 
search approach but requires (q + 1) FFT operations rather than only one FFT in [11]. The 
BKW variants with memory constraints were recently studied in [26–28].

1.2  Contributions

In the paper, we compare the performances of the known distinguishers empirically. We 
investigate the performance of the optimal distinguisher and the FFT distinguisher. We 
also test the sample dependency when using LF2 or sample amplification. We have the 
following contributions.

1. We show that the FFT distinguisher and the optimal distinguisher have the same sample 
complexity, if we make sure that the distinguishers make the same number of hypoth-
eses. Thus, except for very sparse secrets, the FFT distinguisher is always preferable. 
This also makes the polynomial reconstruction method of [23] obsolete.

2. We indicate through simulation that the formula from [11] for the number of samples 
needed for distinguishing is off by roughly an order of magnitude. We develop a new 
sample complexity model, which matches the simulation values well.

3. We introduce a pruned FFT method. By only testing probable hypotheses, we improve 
the performance of the FFT method from [11] with no computational overhead.

4. We indicate that the sample dependency due to using LF2 or sample amplification is 
limited.

1.3  Organization

The rest of the paper is organized as follows. Section 2 introduces some necessary back-
ground. In Section 3 we cover the basic BKW algorithm. Section 4 goes over distinguish-
ers used for hypothesis testing when solving LWE using BKW and introduces the pruned 
FFT method. Next, in Section 5 we show why the FFT distinguisher and the optimal dis-
tinguisher perform identically for our setting, followed by simulation results in Section 6. 
In Section 7 we develop a new model for the sample complexity of the FFT distinguisher. 
Finally, Section 8 concludes the paper.

2  Background

Let us introduce some notation. Bold small letters denote vectors. Let 〈⋅,⋅〉 denote the sca-
lar products of two vectors with the same dimension. By |x| we denote the absolute value of 
x for a real number x ∈ ℝ. We also denote by R(y) the real part and ‖y‖ the absolute value 
of a complex number y ∈ ℂ.

2.1  LWE

Let us define the LWE problem.
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Definition 1 (LWE) Let n be a positive integer, q an odd prime. Let s be a uniformly ran-
dom secret vector in ℤn

q
 . Assume access to m noisy scalar products between s and known 

vectors ai, i.e.

for i = 1,…,m. The error terms ei are drawn from a distribution χ. The (search) LWE prob-
lem is to find s.

Thus, when solving LWE you have access to a large set of pairs (ai,bi) and want to find 
the corresponding secret vector s. Some versions restrict the number of available samples. 
If we let b = (b1,b2,…,bm), e = (e1,e2,…,em) and � = [�T

1
, �T

2
⋯ �T

m
] we can write the prob-

lem on matrix form as

2.2  Rounded Gaussian distribution

For the error we use the rounded Gaussian distribution.1 Let f(x|0,σ2) denote the PDF of 
the normal ditribution with mean 0 and standard deviation σ, this distribution in turn being 
denoted as N(0, �2) . The rounded Gaussian distribution samples from N(0, �2) , rounds to 
the nearest integer and wraps to the interval [−(q − 1)/2,(q − 1)/2]. In other words, the 
probability of choosing a certain error e is equal to

for e ∈ [−(q − 1)/2,(q − 1)/2]. We denote this distribution by Ψ̄𝜎,q . We use the well-known 
heuristic approximation that the sum of two independent distributions X1 and X2, drawn 
from Ψ̄𝜎1,q

 and Ψ̄𝜎2,q
 , is drawn from Ψ̄√

𝜎2
1
+𝜎2

2
,q

 . We also use the notation α = σ/q. Finally, 

we let U(a, b) denote the discrete uniform distribution taking values from a up to b.

3  BKW

The BKW algorithm was originally invented to solve LPN. It was first used for LWE in 
[21]. The BKW algorithm consists of two parts, reduction and hypothesis testing.

3.1  Reduction

We divide samples into categories based on b position values in the a vectors. Two samples 
should be in the same category if and only if the b position values get canceled when add-
ing or subtracting the a vectors. Given two samples ([±a0,a1],b1) and ([±a0,a2],b2) within 
the same category. By adding/subtracting the a vectors we get

(1)bi = ⟨a
i
, s⟩ + ei,

(2)� = �� + �.

∞∑

k=−∞
∫

e+1∕2+k⋅q

e−1∕2+k⋅q

f (x|0, �2)dx,

1 Also common is to use the Discrete Gaussian distribution, which is similar.
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The corresponding b value is b1,2 = b1 ± b2. Now we have a new sample (a1,2,b1,2). The 
corresponding noise variable is e1,2 = e1 ± e2, with variance 2σ2, where σ2 is the variance 
of the original noise. By calculating a suitable number of new samples for each category 
we have reduced the dimensionality of the problem by b, but increased the noise variance 
to 2σ2. If we repeat the reduction process t times we end up with a dimensionality of n − tb, 
and a noise variance of  2t ⋅ σ2.

3.1.1  LF1 and LF2

LF1 and LF2 are two implementation tricks originally proposed for solving LPN in [12]. 
Both can naturally be generalized for solving LWE.

In LF1 we choose one representative per category. We form new samples by combining 
the other samples with the representative. This way all samples at the hypothesis testing 
stage are independent of each other. However, the sample size shrinks by (qb − 1)/2 sam-
ples per generation, requiring a large initial sample size.

In LF2 we allow combining any pair of samples within a category, creating much more 
samples. If we form every possible sample, a sample size of 3(qb − 1)/2 is enough to keep 
the sample size constant between steps. The disadvantage of this approach is that the sam-
ples are no longer independent, leading to higher noise levels in the hypothesis stage of 
BKW. It is generally assumed that this effect is quite small. This assumption is well tested 
for solving the LPN problem [12].

3.1.2  Sample amplification

Some versions of LWE limit the number of samples. We can get more samples using sam-
ple amplification. For example, by adding/subtracting triples of samples we can increase 
the initial sample size m up to a maximum of 4 ⋅

(
m

3

)
 . This does increase the noise by a 

factor of 
√
3 . It also leads to an increased dependency between samples in the hypothesis 

testing phase, similar in principle to LF2.

3.1.3  Secret‑noise transformation

There is a transformation of the LWE problem that makes the distribution of the secret vec-
tor follow the distribution of the noise [13, 14].

3.1.4  Improved reduction steps

There are many improvements of the plain BKW steps. Lazy modulus switching (LMS) 
was introduced in [22] and further developed in [24]. In [23] coded-BKW was introduced. 
Coded-BKW with sieving was introduced in [25] and improved in [10, 29].

Since only the final noise level, not the type of steps, matters for the distinguishers, we 
only use plain steps in this paper.

�
�,� = [ 0 0 ⋯ 0

⏟⏞⏞⏟⏞⏞⏟
b symbols

∗ ∗ ⋯ ∗ ].
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3.2  Hypothesis testing

Assume that we have reduced all but k positions to 0, leaving k positions for the hypothesis 
testing phase. After the reduction phase we have samples on the form

where e is (approximately) rounded Gaussian distributed with a standard deviation of σf 
=  2t/2 ⋅ σ and mean 0. Now the problem is to distinguish the correct guess s = (s1,s2,…,sk) 
from all the incorrect ones, among all qk guesses.2 For each guess �̂ we calculate the cor-
responding error terms in (3). For the correct guess the observed values of e are rounded 
Gaussian distributed, while for the wrong guess they are uniformly random. How to distin-
guish the right guess from all the wrong ones is explained in Section 4.

4  Distinguishers

For the hypothesis testing we study the optimal distinguisher, which is an exhaustive search 
method; and a faster method based on the Fast Fourier Transform.

4.1  Optimal distinguisher

Let D
�̂
 denote the distribution of the e values for a given guess of the secret vector �̂ . As is 

shown in [30, Prop. 1] to optimally distinguish the hypothesis D
�̂
= U(0, q − 1) against 

D
�̂
= Ψ̄𝜎f ,q

 we calculate the log-likelihood ratio

where N(e) denotes the number of times e occurs for the guess �̂ , σf denotes the standard 
deviation of the samples after the reduction phase and PrD(e) denotes the probability of 
drawing e from the distribution D. We choose the value �̂ that maximizes (4). The time 
complexity of this distinguisher is

if we try all possible hypotheses. After performing the secret-noise transformation of Sec-
tion 3.1.3 we can limit ourselves to assuming that the k values in s have an absolute value 
of at most d, reducing the complexity to

(3)b =

k∑

i=1

ai ⋅ si + e ⇔ b −

k∑

i=1

ai ⋅ si = e,

(4)
q−1∑

e=0

N(e) log
PrΨ̄𝜎f ,q

(e)

PrU(0,q−1)(e)
=

q−1∑

e=0

N(e) log
(
q ⋅ PrΨ̄𝜎f ,q

(e)
)
,

(5)O(m ⋅ qk),

(6)O(m ⋅ (2d + 1)k).

2 After the secret-noise transforming most of these hypotheses are almost guaranteed to be incorrect, sim-
plifying the hypothesis testing a bit.
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By only testing the likely hypotheses we have a lower risk of choosing an incorrect 
one.3 This trick of limiting the number of hypotheses can of course also be applied to the 
FFT method of Section 4.2, which we do in Section 4.4.

4.2  Fast Fourier Transform method

For LWE, the idea of using a transform to speed up the distinguishing was introduced in 
[11]. Consider the function

where � ∈ ℤ
k
q
 ,  is equal to 1 if and only if x = aj and 0 otherwise, and 𝜃q denotes the 

q-th root of unity. The idea of the FFT distinguisher is to calculate the FFT of f, that is

Given enough samples compared to the noise level, the correct guess α = s maximizes 
ℜ(f̂ (�)) in (8).

The time complexity of the FFT distinguisher is

In general this complexity is much lower than the one in (5). However, it does depend 
on the sparsity of the secret s. For a binary s, the exhaustive methods are better.

From [11, Thm. 16] we have the following (upper limit) formula for the sample com-
plexity of the FFT distinguisher

where 𝜖 is the probability of guessing s incorrectly. Notice that the expression is slightly 
modified to fit our notation and that a minor error in the formula is corrected.4

4.3  Polynomial reconstruction method

In [23], a method combining exhaustive search and the FFT was introduced. It achieves 
optimal distinguishing information theoretically, while being more efficient than the opti-
mal distinguisher. However, its complexity is roughly a factor q higher than the complexity 
of the FFT distinguisher.

(7)

(8)f̂ (�) =
�

�∈ℤk
q

f (�)𝜃−⟨�,�⟩
q

=

m�

j=1

𝜃
−(⟨�j ,�⟩−bj)
q .

(9)O(m + k ⋅ qk ⋅ log(q)).

(10)8 ⋅ ln

(
qk

�

)(
q

�
sin

(
�

q

)
e−2�

2�2∕q2
)−2t+1

,

3 As long as the correct one is among our hypotheses.
4 Using our notation k should be within the logarithm and not as a factor in front of it like in [11].
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4.4  Pruned FFT distinguisher

Also when using an FFT distinguisher we can limit the number of hypotheses. We only 
need a small subset of the output values of the FFT distinguisher in (8), so we can speed-
up the calculations using a pruned FFT. In general, if we only need K out of all N out-
put values, the time complexity for calculating the FFT improves from O(N log(N)) to 
O(N log(K)) [31]. Limiting the magnitude when guessing the last k positions of s to d, this 
changes the time complexity from (9) to

More importantly this method reduces the sample complexity. In the formula for sample 
complexity (10), the numerator qk corresponds to the number of values that s can take on 
the last k positions. Re-doing the proofs of [11, Thm. 16], limiting the magnitude of the 
guess in each position to d, we get

This reduced sample complexity comes at no extra cost.

5  Equal performance of optimal and FFT distinguishers

When starting to run simulations, we noticed that the FFT distinguisher and the optimal 
distinguisher performed identically, in terms of number of samples to correctly guess the 
secret. We give a brief explanation of this phenomenon.5

Consider a sample on the form (3). By making a guess �̂ we calculate the corresponding 
error term ê . The Fourier transform of the FFT distinguisher in (8) can now be written as

The real part (13) is equal to

The FFT distinguisher picks the guess that maximizes (14). Now, let us rewrite (4) for 
the optimal distinguisher as

It turns out that with increasing noise level, the terms in (15) can be approximated as 
cosine functions with a period of q, as illustrated in Fig.  1. The terms correspond to q 
= 1601, starting with rounded Gaussian noise with α = 0.005, σ = α ⋅ q = 8.005 and taking 

(11)O(m + k ⋅ qk ⋅ log(2d + 1)).

(12)8 ⋅ ln

(
(2d + 1)k

�

)(
q

�
sin

(
�

q

)
e−2�

2�2∕q2
)−2t+1

.

(13)
m∑

j=1

𝜃
êj
q .

(14)
m∑

j=1

cos (2𝜋êj∕q).

(15)
m∑

j=1

log
(
q ⋅ PrΨ̄𝜎f ,q

(êj)
)
.

5 We do, of course, not claim that this is true in general for distinguishing distributions outside of our con-
text of solving LWE using BKW.
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12 or 13 steps of plain BKW respectively. Notice that the approximation gets drastically 
better with increasing noise level.6 The 13 step picture corresponds to the setting used in 
most of the experiments in Section 6. For a large-scale problem, the noise level would of 
course be much larger, resulting in an even better cosine approximation.

Since both distinguishers pick the �̂ that minimizes a sum of cosine functions with the 
same period, they will pick the same �̂ , hence they will perform identically.

There are two immediate effects of this finding.

– The polynomial reconstruction method is obsolete.
– Unless the secret is very sparse, the FFT distinguisher is strictly better than the optimal 

distinguisher, since it is computationally cheaper.

Hence we limit our investigation to the FFT distinguisher from Section 6. We do not 
make any claims about the equivalance between the sample complexity of the two distin-
guishers outside of our context of solving LWE using BKW, when having large rounded 
(or Discrete) Gaussian noise.7

6  Simulations and results

This section covers the simulations we ran, using the FBBL library [32] from [33], and the 
results they yielded. For all figures, each point corresponds to running plain BKW plus dis-
tinguishing at least 30 times. For most points we ran slightly more iterations. See Appendix 
for details on the number of iterations for all the points. We chose our parameters inspired 
by the Darmstadt LWE Challenge [34].

The challenges are a set of (search) LWE instances used to compare LWE solving meth-
ods. Each instance consists of the dimension n, the modulus q ≈ n2, the relative error size 

Fig. 1  Approximating the terms in (15) as cosine functions. (a) Taking 12 plain BKW steps (b) Taking 13 
plain BKW steps

6 Also notice that the approximation is not necessarily the best cosine approximation. It is simple the 
approximation that matches the largest and the smallest value of the curve.
7 Although it could be interesting to investigate.
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α and m ≈ n2 equations of the form (1). Our simulations mostly use parameters inspired by 
the LWE challenges. We mostly let q = 1601 (corresponding to n = 40) and vary α to get 
problem instances that require a suitable number of samples for simulating hypothesis test-
ing. The records for the LWE challenges are set using lattice sieving [35].

6.1  Varying noise level

In the upper part of Fig. 2 we compare the theoretical sample complexity from (10) with 
simulation results from an implementation of the FFT distinguisher of [11] and our pruned 
FFT distinguisher. The latter distinguisher guesses values of absolute value up to 3σ, 
rounded upwards. The simulated points are the median values of our simulations and the 
theoretical values correspond to setting 𝜖 = 0.5 in (10). We use q = 1601, n = 28, we take 
t = 13 steps of plain BKW, reducing 2 positions per step. Finally we guess the last 2 posi-
tions and measure the minimum number of samples to correctly guess the secret. We vary 
α between 0.005 and 0.006. We use LF1 to guarantee that the samples are independent.

We notice that there is a gap of roughly a factor 10 between theory and simulation. 
More exactly, the gap is a factor [10.8277, 8.6816, 10.1037, 8.6776, 10.5218, 10.1564] for 
the six points, counting in increasing order of noise level.

We also see a gap between the FFT distinguisher and pruned FFT distinguisher. We can 
estimate the gap by comparing (12) and (10). Counting in increasing level of noise by the-
ory we expect the gap to be [1.8056, 1.8056, 1.7895, 1.7743, 1.7598, 1.7461] for the 6 data 
points. The numbers from the simulation were [2.0244, 1.8610, 1.8433, 2.1905, 2.0665, 
2.2060], matching theory well.

6.2  Varying q

In the lower part of Fig. 2 we show how the number of samples needed for distinguishing 
varies with q. For q we use the values [101, 201, 401, 801, 1601, 3201], for α we use the 
values [0.0896, 0.0448, 0.0224, 0.0112, 0.0056, 0.0028] and the number of steps were [5, 
7, 9, 11, 13, 15]. Thereby the final noise level and the original s vectors have almost the 
same distribution, making the q values the only varying factor. We use LF1 to guarantee 
that the samples are independent.

Fig. 2  Theoretical values vs. simulated values
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Notice that the number of samples needed to guess the secret is roughly an order of 
magnitude lower than theory predicts, counting in increasing order of q, the gain is a factor 
[11.4537, 10.6112, 9.2315, 10.4473, 9.5561, 9.7822] for the six points.

Also notice that the pruned version is an improvement, that increases with q. This is 
because the total number of hypotheses divided by the number of hypotheses we make 
increases with q. By comparing (12) and (10), we expect the improvement to be a factor 
[1.1303, 1.2871, 1.4563, 1.6152, 1.7743, 1.9334]. This is pretty close to the factors 1.1435, 
1.4551, 1.6215, 1.8507, 2.0121, 2.3045] from simulation.

6.3  LF1 vs LF2

We investigate the increased number of samples needed due to dependencies, when using 
LF2. For LF2, depending on the number of samples needed for guessing, we used either 
the minimum number of samples to produce a new generation of the same size or a sam-
ple size roughly equal to the size needed for guessing at the end. To test the limit of LF2 
we made sure to produce every possible sample from each category. See the upper part of 
Fig. 3 for details. The setting is the same as in Section 6.1. We only use the pruned FFT 
distinguisher. Notice that the performance is almost exactly the same in both the LF1 and 
the LF2 cases, as is generally assumed [12].

6.4  Sample amplification

The lower part of Fig.  3 shows the increased number of samples needed, due to sample 
amplification. We use q = 1601 and 1600 initial samples. We form new samples by combin-
ing triples of samples to get a large enough sample size. We vary the noise level between 
� = 0.005∕

√
3 and � = 0.006∕

√
3 . We take 13 steps of plain BKW, reducing 2 positions 

per step. Finally we guess the last 2 positions and measure the minimum number of sam-
ples needed to guess correctly. We use LF1 and we compare the results against starting with 
as many samples as we want and noise levels between α = 0.005 and α = 0.006, both tricks 
to isolate the dependency due to sample amplification. We only use the pruned FFT distin-
guisher. The difference between the points is small, implying that the dependency due to sam-
ple amplification is limited.

Fig. 3  Testing the effect of sample dependence
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7  Modeling the sample complexity

In this section we will develop a new model of the sample complexity of the FFT distinguisher.
Consider the real part of (13), for an incorrect guess. The sum is sampled from

where Uj ∼ U(0, q − 1) . The expected value of (16) is 0. Let us denote the variance of each 
term of (16) by �2

U
 . For the correct guess the real part of (13) is equal to

where Ej is the sum of  2t independent terms ej ∼ Ψ̄𝜎,q . Numerically we can calculate the 
mean and variance of each term of (17) with arbitrary precision. Denote these by μE and �2

E

.
We can approximate the sum (16) as Xi ∼ N(0,m ⋅ �2

U
) and (17) as Y ∼ N(m ⋅ �E,m ⋅ �2

E
) . 

If we make a total of h hypotheses we choose the correct hypothesis if

For a fixed value of y we have

Thus the probability of choosing the correct hypothesis is equal to

(16)
m∑

j=1

cos (2�Uj∕q),

(17)
m∑

j=1

cos (2�Ej∕q),

(18)Y > max(X1,… ,Xh).

P(max(X1,… ,Xh) < y) =

P(X1 < y,… ,Xh < y) =

Πh
i=1

P(Xi < y) =

𝜙
�

y√
m⋅𝜎U

�h

.

(19)∫ ∞

−∞
P(max(X1,… ,Xh) < y)fY (y)dy =

Fig. 4  New theoretical values vs. simulated values
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If we fix the failure probability to 𝜖 > 0, then we can numerically find the value m 
that makes (20) equal to 1 − 𝜖. Fixing 𝜖 = 0.5, we can calculate the new theoretical 
sample complexities of the settings for Fig. 2 and compare these against the simulated 
ones, see Fig. 4 for details. Notice how the theoretical model matches the simulations 
very well in both settings.

(20)∫ ∞

−∞
�
�

y√
m⋅�U

�h
1

�E

√
2�m

e
−

1

2

�
y−m⋅�E√

m�E

�2

dy.

Fig. 5  New theoretical values vs. old theoretical values

Fig. 6  New vs. old theoretical values when varying 𝜖 
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7.1  Comparing the new model to previous theory

Here we discuss what predictions the new model makes, compared to the old model, 
for parameter settings beyond what we can simulate. First we use the same setting as in 
Fig. 2, but let α increase a bit further. See Fig. 5. We see that the predictions differ by a 
factor roughly 10 when testing all hypotheses and roughly 11 when limiting the number 
of hypotheses, almost independently of α. This is the behavior we observed in simula-
tion too.

Fig. 7  New theoretical values vs. old theoretical values

Fig. 8  New theoretical values vs. old theoretical values
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Next, let us look at what happens when we vary 𝜖. Fix q = 1601, α = 0.01 and vary 𝜖 
between 0.05 and 0.95. See Fig. 6. Notice for both settings that the gap between the old and 
the new theory increases with 𝜖. The ”constant” gap of a factor around 10 that we observed 
in simulations is what happens to be the gap for 𝜖 = 0.5.

Next we look at what happens when we vary both q and 𝜖. We vary 𝜖 between 0.05 
and 0.95 and vary q between 401 and 6401.

We plot the estimated sample complexity of the old model divided by the esti-
mated sample complexity of the new model in Figs. 7, 8, 9, and 10. In Figs. 7 and 8 we 

Fig. 9  New theoretical values vs. old theoretical values

Fig. 10  New theoretical values vs. old theoretical values
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estimate the sample complexity when testing all hypotheses, while in Figs. 9 and 10 we 
limit the number of hypotheses. In Figs. 7 and 9 we start at a high noise level using α 
= 0.01, while in Figs. 8 and 10 we start at a low noise level using α = 0.005. In all set-
tings we see that the gap increases with 𝜖. We also see for large values of 𝜖 that the gap 
is larger for the smaller values of q, especially when using a limited number of samples.

7.2  Probability of the correct guess being top r

We get a slightly different model if we only require that the correct hypothesis is any of the 
r top candidates. Sort and re-label the incorrect guesses in increasing order;

With this notation the k th smallest value has the CDF

 see [36] for details. The r th largest values has the CDF

When calculating this sum, it is useful to know that it is the complement probability of 
the CDF of a Bin(h,FX(x)) distribution, evaluated at h − r.

Next, the probability of Y being larger than the r th largest value, in other words P(Y > 
X(r)), is equal to

In Fig. 11 we estimate the sample complexity in the same setting as Fig. 5, for various 
values of r, testing all and limited number of hypotheses in the upper and the lower half of 
the figure respectively.

X(1) < X(2) < ⋯ < X(h).

FX(k)
(x) =

h∑

j=k

(
h

j

)
FX(x)

j(1 − FX(x))
h−j,

FX(h−r+1)
(x) =

h∑

j=h−r+1

(
h

j

)
FX(x)

j(1 − FX(x))
h−j.

(21)∫
∞

−∞

FX(h−r+1)
(y)fY (y)dy.

Fig. 11  Sample complexity using various values of r 
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In both settings we can clearly reduce the sample complexity. It comes at a cost though. 
For each of the r hypotheses we need to backtrack one step and check whether the hypoth-
esis is correct or not. When doing the backtracking for each of the r hypotheses, since the 
noise level after the previous reduction step is so low, the cost of testing the hypothesis gets 
reduced. We leave studying the details of this approach to future research.

8  Conclusions

We have shown that the FFT distinguisher and the optimal distinguisher have the same 
sample complexity for solving LWE using BKW. We have also showed that it performs 
roughly an order of magnitude better than the upper limit formula from [11, Thm. 16]. 
We have developed a new sample complexity model, which matches our simulatated com-
plexities well. It also helps explain the gap between our simulated sample complexity 
originally reported in [1] and previous theory from [11]. Our pruned version of the FFT 
method improves the sample complexity of the FFT solver, at no cost. Finally, we have 
indicated that the sample dependency due to both LF2 and sample amplification is limited.

Appendix: : number of iterations in the simulations

The following is a collection of lists of the number of iterations used for each point to get 
the estimations of the median values in Figs. 3. For each figure and curve we list the number 
iterations from left to right in, in other words in increasing level of noise level α or modulus q.

Figure 2 ‑ varying α

Simulated FFT 31 51 52 59 50 52
Simulated Pruned FFT 33 41 56 35 30 49

Figure 2 ‑ varying q

Simulated FFT 100 100 95 80 67 82
Simulated Pruned FFT 100 100 95 80 67 82

Figure 3 ‑ LF1 vs. LF2

LF1 33 41 56 35 30 49
LF2 43 46 69 37 69 50
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Figure 3 ‑ unlimited vs. sample amplification

Unlimited Samples 33 41 56 35 30 49
Sample Amplification 37 59 38 45 47 40
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