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Abstract
The boomerang attack, introduced by Wagner in 1999, is a cryptanalysis technique against
block ciphers based on differential cryptanalysis. In particular it takes into consideration
two differentials, one for the upper part of the cipher and one for the lower part, and it
exploits the dependency of these two differentials. At Eurocrypt’18, Cid et al. introduced
a new tool, called the Boomerang Connectivity Table (BCT), that permits to simplify this
analysis. Next, Boura and Canteaut introduced an important parameter for cryptographic S-
boxes called boomerang uniformity, that is the maximum value in the BCT. Very recently,
the boomerang uniformity of some classes of permutations (in particular quadratic func-
tions) have been studied by Li, Qu, Sun and Li, and by Mesnager, Tang and Xiong. In this
paper we further study the boomerang uniformity of some non-quadratic differentially 4-
uniform functions. In particular, we consider the case of the Bracken-Leander cubic function
and three classes of 4-uniform functions constructed by Li, Wang and Yu, obtained from
modifying the inverse functions.

Keywords Vectorial Boolean functions · Boomerang uniformity ·
Boomerang connectivity table · Boomerang attack
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1 Introduction

A vectorial Boolean function, or (n,m)-function, is a function F from the vector space Fn
2

to F
m
2 . When m = 1, F is simply called a Boolean function. Vectorial Boolean functions

and Boolean functions have a crucial role in the design of secure cryptographic primitives,
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such as block ciphers. In this context, a vectorial Boolean function is also called an S-box.
Most modern block ciphers, such as the AES, implement S-boxes which are (n, n)-functions
permuting the space Fn

2. We refer the reader to [10] for an overview on vectorial Boolean
functions.

In the following, we shall identify the vector space F
n
2 to the finite field F2n with 2n

elements. Moreover, F�
2n will denote the multiplicative group of F2n .

Among the most efficient attacks on block ciphers there is the differential attack, intro-
duced by Biham and Shamir [2]. In [19], Nyberg introduced the notion of differential
uniformity which measures the resistance of an S-box to this attack. In particular, a vectorial
Boolean function F is called differentially δ-uniform if the equation F(x) + F(x + a) = b

has at most δ solutions for any non-zero a and for all b. Since if x is a solution, then also
x + a is a solution of the equation, the smallest possible value for δ is 2. Functions achiev-
ing such differential uniformity are called almost perfect nonlinear (APN). APN functions
have optimal resistance to differential attacks.

In 1999, Wagner [22] introduced the boomerang attack, which is an important cryptanal-
ysis technique against block ciphers. This attack can be seen as an extension of classical
differential attacks. In fact, it combines two differentials for the upper part and the lower part
of the cipher. SinceWagner’s seminal paper, many improvements and variants of boomerang
attacks have been proposed (see for instance [1, 3, 14]).

In order to evaluate the feasibility of boomerang-style attacks, in EUROCRYPT 2018,
Cid et al. [11] introduced a new cryptanalysis tool: the Boomerang Connectivity Table
(BCT).

In 2018, Boura and Canteaut [4] introduced a parameter for cryptographic S-
boxes called boomerang uniformity which is defined as the maximum value in the
BCT.

Boura and Canteaut showed that the boomerang uniformity is invariant only with respect
to affine equivalence and inverse transformation. They also gave the classification of all
differentially 4-uniform permutations of 4 bits. Moreover, they obtained the boomerang
uniformities for two classes of differentially 4-uniform functions, the inverse function and
the the Gold functions over F2n for n even.

Recently, Li et al. [16] gave an equivalent definition to compute the BCT (and the
boomerang uniformity) and provided a characterization by means of the Walsh transform of
functions with a fixed boomerang uniformity. Moreover, they gave an upper bound for the
boomerang uniformity of quadratic permutations, and provided also a class of quadratic per-
mutations (related to the Gold functions), defined for n even, with differential 4-uniformity
and boomerang 4-uniformity. Still in [16], the boomerang uniformity of a 4-uniform per-
mutation obtained from the inverse function swapping the image of 0 and 1 (introduced in
[23]) is also obtained.

Another recent paper of Mesnager et al. [18] studies the boomerang uniformity of
quadratic permutations. In particular, from their results it is possible to obtain the
boomerang uniformity of the Gold functions and the class studied in [16], and also the
boomerang uniformity of the binomials studied in [6].

In this paper we further study the boomerang uniformity of certain classes of 4-uniform
functions. In particular, we consider the Bracken-Leander cubic function x22k+2k+1 defined
over F24k ([5]) and we show that the boomerang uniformity is upper bounded by 24. Using
the software MAGMA it is possible to verify that in small dimension this upper bound
can be attained. We also compute the boomerang uniformities for three classes of differen-
tially 4-uniform permutations of maximal algebraic degree n − 1, obtained in [17, 23] from
modifying the inverse function.
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2 Preliminaries

Any function F from F2n to itself can be represented as a univariate polynomial of degree
at most 2n − 1, that is

F(x) =
2n−1∑

i=0

aix
i .

The 2-weight of an integer 0 ≤ i ≤ 2n−1, denoted byw2(i), is the (Hamming) weight of its
binary representation. It is well known that the algebraic degree of a function F is given by

deg(F ) = max{w2(i) | ai �= 0}.
The function F is:

– linear if F(x) = ∑n−1
i=0 cix

2i
;

– affine if it is the sum of a linear function and a constant;
– DO (Dembowski-Ostrom) polynomial if F(x) = ∑

0≤i<j<n aij x
2i+2j

, with aij ∈ F2n ;
– quadratic if it is the sum of a DO polynomial and an affine function.

For any m ≥ 1 such that m|n we can define the (linear) trace function from F2n to F2m by

Trnm(x) =
n/m−1∑

i=0

x2im

.

When m = 1 we will denote Trn1(x) by Tr(x).
For any function F : F2n → F2n we denote the Walsh transform in a, b ∈ F2n by

WF (a, b) =
∑

x∈F2n
(−1)Tr(ax+bF(x)).

With Walsh spectrum we refer to the set of all possible values of the Walsh transform.
The Walsh spectrum of a vectorial Boolean function F is strictly related to the notion of
nonlinearity of F , denoted by N L (F ), indeed we have

N L (F ) = 2n−1 − 1

2
max

a∈F2n ,b∈F�
2n

|WF (a, b)|.

The derivative of F in the direction of a ∈ F2n is defined as DaF(x) = F(x+a)+F(x).
Let

δF = max
a∈F�

2n ,b∈F2n
|{x : DaF(x) = b}|,

the map F is called differentially δF -uniform.
When F is used as an S-box inside a block cipher, the differential uniformity measures its

contribution to the resistance to the differential attack [2]. The smaller δF is the better is the
resistance of F to this attack. In even characteristic, the best resistance belongs to functions
that are differentially 2-uniform, these functions are called almost perfect nonlinear or APN.

In [11], Cid et al. introduced the concept of Boomerang Connectivity Table for a
permutation F over F2n . Next, in [4] the authors introduced the notion of boomerang
uniformity.

Definition 1 Let F be a permutation over F2n , and a, b in F2n .
The Boomerang Connectivity Table (BCT) of F is given by a 2n × 2n table T , in which

the entry for the position (a, b) is given by

T (a, b) = |{x ∈ F2n : F−1(F (x) + a) + F−1(F (x + b) + a) = b}|.
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Moreover, for any a, b ∈ F
�
2n , the value

βF = max
a,b∈F�

2n

|{x ∈ F2n : F−1(F (x) + a) + F−1(F (x + b) + a) = b}|

is called the boomerang uniformity of F , or we call F a boomerang βF -uniform
function.

We recall that two functions F and F ′ from F2n to itself are called:

– affine equivalent if F ′ = A1 ◦ F ◦ A2 where the mappings A1, A2 : F2n → F2n are
affine permutations;

– extended affine equivalent (EA-equivalent) if F ′ = F ′′ + A, where the mappings A :
F2n → F2n is affine and F ′′ is affine equivalent to F ;

– Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permutation
L of F2n ×F2n the image of the graph of F is the graph of F ′, that is, L (GF ) = GF ′ ,
where GF = {(x, F (x)) : x ∈ F2n} and GF ′ = {(x, F ′(x)) : x ∈ F2n}.

The nonlinearity and the differential uniformity are invariant for all these equivalence
relations, while the boomerang uniformity is invariant for affine equivalence but not for EA-
and CCZ-equivalence (see [4]).

It has been proved in [11] that δF ≤ βF for any function F . Moreover, δF = 2 if and
only if βF = 2. So, APN permutations offer an optimal resistance to both differential and
boomerang attacks.

For odd values of n there are known families of APN permutations. While, for n even,
no APN permutation exists for n = 4 and, up to CCZ-equivalence, there exists only one
example of APN permutation over F26 ([7]), and with respect to the affine equivalence
(for which the boomerang uniformity is invariant) these known APN permutations can be
divided in 4 affine equivalence classes [8]. The existence of more APN permutations on an
even number of bits remains an open problem.

So, it is interesting to study the boomerang uniformity of non-APN permutations, and in
particular of the differentially 4-uniform functions. As is well-known, for an even integer
n there are five classes of primarily constructed differentially 4-uniform permutations over
F2n , which are listed in Table 1.

The boomerang uniformity of Gold and Inverse functions have been determined in
[4]. For the Bracken-Tan-Tan the boomerang uniformity was obtained from the results
in [18].

Table 1 Primarily-constructed differentially 4-uniform permutations over F2n (n even)

Name F(x) deg Conditions In

Gold x2i+1 2 n = 2k, k odd gcd(i, n) = 2 [12]

Kasami x22i−2i+1 i+1 n = 2k, k odd gcd(i, n) = 2 [13]

Inverse x2n−2 n − 1 n = 2k, k ≥ 1 [19]

Bracken-Leander x22k+2k+1 3 n = 4k, k odd [5]

n = 3m, m even, m/2 odd,

Bracken-Tan-Tan ζx2i+1 + ζ 2m
x2−m+2m+i

2 gcd(n, i) = 2, 3|m + i [6]

and ζ is a primitive element of F2n
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As it was noted in [16], the entry T (a, b) of the BCT can be given by the number of
solutions of the system

{
F−1(x + a) + F−1(y + a) = b

F−1(x) + F−1(y) = b.

Since the BCT of F , T , and the BCT of F−1, T ′, are such that T (a, b) = T ′(b, a), the
boomerang uniformity of F is given by the maximum number of solutions of the system

{
F(x + a) + F(y + a) = b

F(x) + F(y) = b,
or equivalently

{
F(x + a) + F(y + a) = F(x) + F(y)

F (x) + F(y) = b.

Letting y = x + α, it is equivalent to

{
DaDαF(x) = 0
DαF(x) = b.

(1)

Thus, the boomerang uniformity of F is given by

βF = max
a,b∈F�

2n

|{(x, α) ∈ F
2
2n : (x, α) is a solution of (1)}|.

Note that, using this equivalent definition for the boomerang uniformity, it is possible to
consider also maps which are not permutations. We will denote by Sa,b the number of
solutions of System (1) for any a, b ∈ F2n .

For power functions we have the following.

Proposition 1 ([16]) Let F(x) = xd be defined over F2n . Then the boomerang uniformity
of F is given by maxb∈F�

2n
S1,b.

Thus, the boomerang uniformity for a power function can be checked fixing a = 1.

3 On the Bracken-Leander map

In this section, we will give an upper bound on the boomerang uniformity of the Bracken-
Leander permutation. Using the software MAGMA we are able also to show that this upper
bound can be attained.

For an odd integer k, let q = 2k and consider the finite field with 24k elements F24k =
Fq4 . Over this field consider the differentially 4-uniform permutation

F(x) = x22k+2k+1 = xq2+q+1.

In the following we will show that

Theorem 1 Let k > 1 odd. The Bracken-Leander permutation F(x) = x22k+2k+1 defined
over F24k is such that βF ≤ 24.

Before proving Theorem 1 we will prove two lemmata.
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Lemma 1 Let k > 1 be odd and q = 2k . The Bracken-Leander permutation F(x) =
x22k+2k+1 defined over Fq4 is such that

S1,b ≤

⎧
⎪⎨

⎪⎩

4 if b ∈ F
�
q2

and Tr2k1 (b) = 0

6 if b ∈ F
�
q2

and Tr2k1 (b) = 1

4m + 4 if b /∈ Fq2 ,

where m is the number of the solutions α ∈ Fq2 \ Fq of

bq2 + b = αq+1 (α2q + α)(α + 1)

(αq + α)2
.

Proof We want to study the number of solutions, for b ∈ F
�
q4
, of

{
D1DαF(x) = 0
DαF(x) = b.

In particular, we have the following

DαF(x) = (x + α)q
2+q+1 + xq2+q+1

= xq2+qα + xq2+1αq + xq+1αq2 + xq2αq+1 + xqαq2+1 + xαq2+q + αq2+q+1.

And therefore

D1DαF(x) = (xq2 + xq + 1)α + (xq2 + x + 1)αq + (xq + x + 1)αq2 + αq+1

+αq2+1 + αq2+q

= yq(α + αq) + y(αq + αq2) + α + αq + αq2 + αq+1 + αq2+1 + αq2+q,

where y = xq + x. Hence, we have that yq + y = xq2 + x is an element of Fq2 , so

yq3 = yq2 + yq + y. For simplicity, let us denote R = D1DαF(x) = 0. Thus

Rq = yq2(αq + αq2) + yq(αq2 + αq3) + αq + αq2 + αq3 + αq2+q + αq3+q + αq3+q2 ,

and using the fact that yq3 = yq2 + yq + y

Rq2 = yq2(αq2+α)+yq(αq2+αq3)+y(αq2+αq3)+αq2+αq3+α+αq3+q2+αq2+1+αq3+1.

Then

0 = Rq + Rq2

= yq2(αq + α) + y(αq + α)q
2 + αq + α + αq2+q + αq3+q + αq2+1 + αq3+1

= yq2(αq + α) + y(αq + α)q
2 + αq + α + (αq + α)q

2+1.

Since yq2(αq +α)+ y(αq +α)q
2 ∈ Fq2 and (αq +α)q

2+1 ∈ Fq2 then also (αq +α) ∈ Fq2 .
Then, we can rewrite the equation as

0 = yq2(αq + α) + y(αq + α) + αq + α + (αq + α)2=(αq + α)(yq2 + y + αq + α + 1)

= (αq + α)(xq3 + xq2 + xq + x + αq + α + 1).

Therefore one of the following conditions is satisfied:

1. αq + α = 0, that is, α ∈ Fq ;

2. Tr4kk (x) = xq3 + xq2 + xq + x = αq + α + 1.
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Case 1: α ∈ Fq .
We have R = α+α2 = 0, hence α ∈ F2. We do not consider the case α = 0, therefore

for α = 1 we know that the equation DαF(x) = b admits at most 4 solutions. So, for
any b the number of solutions of type (x, α) with α ∈ Fq is at most 4.

Case 2: Tr4kk (x) = xq3 + xq2 + xq + x = αq + α + 1.
In this case, we need to compute the number of solutions (x, α) with α /∈ Fq . Since

Tr4kk (x) ∈ Fq , we have that αq+α ∈ F
�
q . Therefore, α

q2+α = 0, so we have α ∈ Fq2\Fq .

Then, we have R = (αq + α)(yq + y) + αq + α2 = (αq + α)(xq2 + x) + αq + α2, and
the system that we have to analyse is the following

⎧
⎪⎪⎨

⎪⎪⎩

α ∈ Fq2 \ Fq

Tr4kk (x) = αq + α + 1

(αq + α)(xq2 + x) = αq + α2

DαF(x) = b.

(2)

It is clear that, for a fixed α, if x̄ is a solution of the first three equations in (2), then all the
other solutions (for these equations) are x̄+w for anyw ∈ Fq2 . Moreover, since αq +α �= 0,

denoting by γ = αq+α2

αq+α
, we have xq2 = x + γ .

The last equation is

b = DαF(x) = xq2+qα + xq2+1αq + xq+1α + xq2αq+1 + xqα2 + xαq+1 + αq+2

= (x + γ )xqα + (x + γ )xαq + xq+1α + (x + γ )αq+1 + xqα2

+xαq+1 + αq+2

= xqα(γ + α) + x2αq + xαqγ + αq+1(γ + α).

For w ∈ Fq2 , there exist unique r, s ∈ Fq such that w = rα + s. Hence, we have

DαF(x + w) = (xq + rαq + s)α(γ + α) + (x2 + r2α2 + s2)αq + (x + rα + s)αqγ

+αq+1(γ + α)

= DαF(x) + γ (rαq+1 + sα + rαq+1 + sαq) + rαq+2 + sα2

+r2αq+2 + s2αq

= DαF(x) + γ s(α + αq) + αq+2(r + r2) + s(α2 + sαq)

= DαF(x) + (αq + α2)s + αq+2(r + r2) + s(α2 + sαq)

= DαF(x) + αq(s + s2) + αq+2(r + r2).

Then, DαF(x + w) = DαF(x) = b if and only if αq(s + s2) + αq+2(r + r2) = 0. Since
α �= 0, we have that (s + s2)+α2(r + r2) = 0 if and only if both s + s2 and r + r2 are zero
(r, s ∈ Fq and α �∈ Fq ). Hence, fixed α ∈ Fq2 \ Fq , if x̄ is a solution of DαF(x) = b, then
we can have only three more solutions, which are x̄ + α, x̄ + 1, x̄ + α + 1.

Consider now the following

bq2 + b = xq3α(γ + α) + x2q2αq + xq2αqγ + αq+1(γ + α) + xqα(γ + α)

+x2αq + xαqγ + αq+1(γ + α)

= (x + γ )qα(γ + α) + (x + γ )2αq + (x + γ )αqγ + αq+1(γ + α)

+xqα(γ + α) + x2αq + xαqγ + αq+1(γ + α)

= γ qα(γ + α) = α + α2q

αq + α
α

αq(α + 1)

αq + α
= αq+1 (α2q + α)(α + 1)

(αq + α)2
.
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Now, if b ∈ Fq2 we have either γ = 0 or γ = α.

– If γ = 0, then from (2) we obtain αq = α2, x ∈ Fq2 and αq +α + 1 = 0, implying that
α ∈ F4 \ F2.

– If γ = α then αq+α2

αq+α
+ α = αq(α+1)

αq+α
= 0. This leads to α = 1 (already studied).

Thus, for the case b ∈ Fq2 , we need to count the number of solutions x of the following
systems:

(I )

{
D1D1F(x) = 0
D1F(x) = b,

(II )

⎧
⎨

⎩

xq2 + x = 0
D1DωF(x) = 0
DωF(x) = b,

(III )

⎧
⎨

⎩

xq2 + x = 0
D1Dω2F(x) = 0
Dω2F(x) = b,

where ω is a primitive element of F4.
Since we have the restriction xq2 + x = 0, solving System (II) and (III) is equivalent to

solve the systems

(II ′)
{

D1DωG(x) = 0
DωG(x) = b,

(III ′)
{

D1Dω2G(x) = 0
Dω2G(x) = b,

defined over Fq2 , where G(x) = F|F
q2

(x) = xq+2.

Note that, for all these systems the equations involving the second derivative are satisfied
for any x ∈ Fq2 . Moreover, the function G : Fq2 → Fq2 is a Gold function with boomerang
uniformity 4 (see [4]) and we can have that at most one system between (II ′) and (III ′)
admits 4 solutions.

Suppose now that b ∈ Fq2 and one between System (II ) or (III ) admits 4 solutions.
We need to determine the number of solutions of System (I ), that is, we need to study the
number of solutions of D1F(x) = b. Let us consider, therefore, the proof of Theorem 1 in
[5], in which the authors study the differential uniformity of F . According to their notation,
we have c = b + 1 ∈ Fq2 and t = Tr(x) = Tr(c) = 0. If we consider now Equation (5) in
[5] we have the following condition:

0 = (x + xq2)2 + (t + 1)(x + xq2) + cq + cq3 = (x + xq2)2 + (x + xq2).

Hence x + xq2 = 0, 1. The only possibility is xq2 = x + 1, otherwise we would obtain
a solution x ∈ Fq2 of D1G(x) = b in contradiction with the boomerang uniformity of G.
This restriction leads us to

D1F(x) = xq2+q + xq2+1 + xq+1 + xq2 + xq + x + 1

= (x + 1)xq + (x + 1)x + xq+1 + x + 1 + xq + x + 1 = x2 + x

0 = x2 + x + b.

This last equation implies that we have, for α = 1, at most 2 solutions. Moreover, since
from x2 = x +b we obtain that xq2 = x +Tr2k1 (b), we can have these two more solutions if
and only if Tr2k1 (b) = 1. Hence, in total we can have at most 6 solutions when Tr2k1 (b) = 1.

On the other hand, if b ∈ Fq2 and Tr2k1 (b) = 0 we can have only solutions x ∈ Fq2 for
all the three systems. Therefore, since G(x) = F|F

q2
(x) we can have at most only one of

the systems admitting 4 solutions.

For b �∈ Fq2 , let m be the number of roots of the equation bq2 + b = αq+1 (α2q+α)(α+1)
(αq+α)2

such that α ∈ Fq2 \ Fq . Then, for any of these roots we can have 4 possible x plus the 4
possible solutions when α = 1. Hence, we have S1,b ≤ 4 · (m + 1).
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Remark 1 For the case b ∈ Fq2 it is possible to show that six solutions are possible. Con-
sider b = ω, where ω is a primitive element of F4. First of all, it is easy to check that any
x ∈ F4 is a solution of System (II ) in the proof of Lemma 1. Moreover, we have that
Tr2k1 (b) = 1, so there exist two solutions in Fq4 \ Fq2 of System (I ) in Lemma 1. So, we
have that S1,ω = 6.

Lemma 2 Let k > 1 odd and q = 2k . For any b ∈ Fq4 \ Fq2 the equation

bq2 + b = αq+1 (α2q + α)(α + 1)

(αq + α)2

admits at most 5 solutions α ∈ Fq2 \ Fq .

Proof Consider the equation

bq2 + b = αq+1 (α2q + α)(α + 1)

(αq + α)2
. (3)

Then, we have also the relation

Tr4kk (b) = αq+1 (αq+1 + 1)

αq + α
. (4)

Let d = bq2 + b and e = Tr4kk (b) = dq + d ∈ Fq .
If d ∈ Fq , then e = 0 and therefore αq+1 = 1 and αq = α−1. This leads to

d = 1 · ( 1
α2 + α)(α + 1)

1
α2 + α2

= 1 + α3

α2
(α + 1)

α2

(1 + α)4
= 1 + α3

(1 + α)3
= α2 + α + 1

1 + α2
.

Hence α2(d + 1) + α + 1 + d = 0, that has at most 2 solutions in Fq2 \ Fq if and only if

Trk1(d) = 0. Indeed, if Trk1(d) = 1 we would have Trk1(d
2 + 1) = 0 and thus the equation

admits 2 solutions in Fq .

Now, consider the case d �∈ Fq and thus e �= 0. Denoting by γ = αq+α2

αq+α
, we have

d = γ qα(γ + α) and

e = dq + d = γ q+1(αq + α) + γα2q + γ qα2.

Since d ∈ Fq2 \ Fq we can write α as α = rd + s, with r, s ∈ Fq, r �= 0. Therefore, we
have αq + α = r(dq + d) = re. From d(αq + α)2 = αq+1(α2q + α)(α + 1) (3) we get

s5 = s4rdq + s3(r2e2 + 1) + s2(r3dqe2 + r2e2 + rdq) (5)

+s(r4d2q+2 + r3e3 + r2d2) + r5d3q+2 + r4dq+1e2 + r3dq+2 + r2de2.

From e(αq + α) = αq+1(αq+1 + 1) (4) we get

s4 = s2(r2e2 + 1) + sre + re2 + r4d2q+2 + r2dq+1. (6)

To simplify the equation, let us introduce the variable A = re + 1. Then we can rewrite (5)
as

s5 = s4rdq + s3A2 + s2(rdqA2 + A2 + 1) + s(r4d2q+2 + r3e3 + r2d2)

+r5d3q+2 + r4dq+1e2 + r3dq+2 + r2de2,

and (6) as

s4 = s2A2 + sre + re2 + r4d2q+2 + r2dq+1.
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Substituting the second one in the first one we obtain

0 = s(s2A2 + sre + re2 + r4d2q+2 + r2dq+1) + (s2A2 + sre + re2 + r4d2q+2

+r2dq+1)rdq + s3A2 + s2(rdqA2 + A2 + 1) + s(r4d2q+2 + r3e3 + r2d2)

+r5d3q+2 + r4dq+1e2 + r3dq+2 + r2de2

= s3A2 + s2re + s(re2 + r4d2q+2 + r2dq+1) + s2A2rdq + sr2dqe + r2dqe2

+r5d3q+2 + r3d2q+1 + s3A2 + s2(rdqA2 + A2 + 1) + s(r4d2q+2 + r3e3 + r2d2)

+r5d3q+2 + r4dq+1e2 + r3dq+2 + r2de2

= s2(A2 + A) + s(re2 + r3e3 + r2e2) + r2e3 + r4dq+1e2 + r3dq+1e

= s2reA + sre2(1 + rA) + r2e(e2 + rdq+1A)

= re[s2A + se(1 + rA) + r(e2 + rdq+1A)].
Since r, e �= 0, denoting by B = e(1 + rA) and by C = r(e2 + rdq+1A) we have

0 = s2A + sB + C. (7)

Replacing (7), hence s2A = sB + C, into (6) (s4 = s2A2 + sre + K , with K = re2 +
r4d2q+2 + r2dq+1) we have

s4 = A(sB + C) + sre + K = s(AB + re) + AC + K .

Thus raising (7) to the power of two and substituing s4 we obtain

s2B2 = s(A3B + A2re) + A3C + A2K + C2.

Using (7) (multiplied by B2) we obtain

As2B2 = sB3 + B2C = s(A4B + A3re) + A4C + A3K + AC2,

which implies

0 = s(B3 + A4B + A3re) + B2C + A4C + A3K + AC2 = sD̄ + Ē.

Therefore

D̄ = B3 + A4B + A3re = (e + reA)3 + A4(e + reA) + A3re

= e[e2 + Are2 + A2],
Ē = B2C + A4C + A3K + AC2

= (e2 + A2r2e2)(re2 + Ar2dq+1) + A4(re2 + Ar2dq+1)

+A3(re2 + r4d2q+2 + r2dq+1) + A(r2e4 + A2r4d2q+2)

= e[A2r2e2 + Ar2dq+1e + Ar2e3 + re3].
Let D = D̄e−1 and E = Ēe−1, then Ds = E with

D = e2 + Are2 + A2 and E = A2r2e2 + Ar2dq+1e + Ar2e3 + re3.

Using this last relation inside (7) we have

0 = D2(s2A + sB + C)

= D2s2A + D2sB + D2C

= E2A + DEB + D2C.
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Now, since

AE2 = A5r4e4 + A3r4d2q+2e2 + A3r4e6 + Ar2e6,

BDE = A5(r3e3 + r3e4 + r2e4 + dq+1r2e2) + A4(r3dq+1e2 + r2e3),

+A3(r2e4 + r2e5) + A2re4 + A(r2e6 + r2dq+1e4) + re6,

CD2 = A5r2dq+1 + A4re2 + A3r4dq+1e4 + A2r3e6 + Ar2dq+1e4 + re6,

we obtain

0 = A5(r4e4 + r3e4 + r3e3 + r2dq+1e2 + r2dq+1 + re2)

+A4(r3dq+1e2 + re4) + A3(r4d2q+2e2 + r4dq+1e4 + r2e5)

= A3rP (r), (8)

with

P(r) = A2(r3e4 + r2e4 + r2e3 + rdq+1e2 + rdq+1 + e2)

+A(r2dq+1e2 + e4) + r3d2q+2e2 + r3dq+1e4 + re5

= r5e6 + r4(e5 + e6) + r3(e4 + dq+1(e2 + e3) + d2q+2e2)

+r2(e3 + dq+1e2) + rdq+1(e2 + 1) + e4 + e2.

We need to find solutions of (8) related to some α ∈ Fq2 \ Fq that satisfies (3). Equation
(8) is satisfied if either one of the following conditions is true

1. A = 0,
2. r = 0, not acceptable since α �∈ Fq ,
3. P(r) = 0.

Assume that A = 0 is a possible solution, therefore r = 1
e
(it is related to an α for which

(3) holds). From (7) we obtain that se + re2 = 0, therefore s = 1. From (6) we have

s4 = s2A2 + sre + re2 + r4d2q+2 + r2dq+1

1 = 0 + 1 + e + d2q+2

e4
+ dq+1

e2

d2q+2 = e2dq+1 + e5.

Hence, we obtain that

r4d2q+2e2 + r4dq+1e4 + r2e5 = r4dq+1e4 + r4e7 + r4dq+1e4 + r2e5

= r2e5(r2e2 + 1) = r2e5A2

and using this equality we have that (8) becomes

0 = E2A + DEB + D2C = A5(r4e4 + r3e4 + r3e3 + r2dq+1e2 + r2dq+1 + re2)

+A4(r3dq+1e2 + re4) + A3(r4d2q+2e2 + r4dq+1e4 + r2e5)

= A5(r4e4 + r3e4 + r3e3 + r2dq+1e2 + r2dq+1 + re2)

+A4(r3dq+1e2 + re4) + A5r2e5

= A4r[A(r3e4 + r2e4 + r2e3 + rdq+1e2 + rdq+1 + e2 + re5)

+r2dq+1e2 + e4]
= A4rQ(r),
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where Q(r) is a polynomial of degree at most 4. Therefore, if b is such that among the
solution of (3) there is one for which A = 0, then at most we have 5 possible solutions r

of (8).
Otherwise, if A = 0 is not a possible solution, then P(r) can have at most 5 different

roots. Hence, in total we have at most 5 different possible r .
We need to check, how many s there exist for any of these r . From the equation Ds = E

we know that, given a fixed r , unless D = 0, there exists only one possible s. We need to
study the case D = A2 + Are2 + e2 = 0. From (7), that is, As2 + Bs + C = 0 we obtain
that we can have at most two s for any r (in the case D = 0).

If A = 0, then (7) admits at most one solution since B = Are + e = e �= 0. Also if
A �= 0 and B = 0, then the equation admits only one solution. In particular, (7) admits

two solutions if and only if B �= 0 and Tr
(

AC

B2

)
= 0. Hence, we need to study the

system

⎧
⎪⎪⎨

⎪⎪⎩

0 �= A

0 �= B = Are + e

0 = D = A2 + Are2 + e2 = A2 + eB

0 = E = A2r2e2 + Ar2dq+1e + Ar2e3 + re3 = re2B + eC + B2 + e2A.

Then, we have A2 = Are2 + e2 and (substituting A) r2(e2 + e3) = re2 + e2 + 1, that leads
to the restriction e �= 1. Using these relations inside E we obtain

0 = A2r2e2 + Ar2dq+1e + Ar2e3 + re3

= (Are2 + e2)r2e2 + Ar2dq+1e + Ar2e3 + re3

= Ar3e4 + r2e4 + Ar2dq+1e + Ar2e3 + re3 (9)

= r4e5 + r3e4 + r2e4 + r3dq+1e2 + r2dq+1e + r3e4 + r2e3 + re3

= re(r3e4 + re3 + r2dq+1e + rdq+1 + re2 + e2),

which implies r3e4 + re3 + r2dq+1e + rdq+1 + re2 + e2 = 0 and thus

0 = (r3e4 + re3 + r2dq+1e + rdq+1 + re2 + e2)(e2 + e)

= re3r2(e2 + e3) + r(e5 + e4) + dq+1r2(e3 + e2)

+rdq+1(e2 + e) + r(e4 + e3) + e3 + e4

= re3(re2 + e2 + 1) + r(e5 + e4) + dq+1(re2 + e2 + 1)

+rdq+1(e2 + e) + r(e4 + e3) + e3 + e4

= r2e5 + dq+1(e2 + 1) + rdq+1e + e3(e + 1)

0 = (r2e5 + dq+1(e2 + 1) + rdq+1e + e3(e + 1))(e + 1).

Using the substitution r2(e2 + e3) = re2 + e2 + 1 we have

0 = e3(re2 + e2 + 1) + dq+1(e + 1)3 + rdq+1(e2 + e) + e3(e + 1)2

= r(e5 + dq+1(e2 + e)) + dq+1(e + 1)3.
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Hence, we have only one possible r that satisfies the system. Now, from r2(e2+e3)+re2+
e2 + 1 = 0 we have also

0 = (r2(e2 + e3) + re2 + e2 + 1)(e4 + dq+1(e + 1))

= redq+1(e + 1)3 + re2dq+1(e + 1)3 + edq+1(e + 1)3 + e4(e + 1)2 + dq+1(e + 1)3

= (e + 1)2(rdq+1e(e + 1)2 + dq+1(e + 1)2 + e4)

= (e + 1)2[(e + 1)(re5 + dq+1(e + 1)3) + dq+1(e + 1)2 + e4]
= (e + 1)2[re5(e + 1) + dq+1(e + 1)4 + dq+1(e + 1)2 + e4]
= (e + 1)2e2[re3(e + 1) + dq+1(e + 1)2 + e2]

and thus re3(e+1) = dq+1(e+1)2+e2. Moreover, from re3(e+1)+dq+1(e+1)2+e2 = 0,
we can obtain

0 = [re3(e + 1) + dq+1(e + 1)2 + e2](e4 + dq+1(e + 1))

= e2dq+1(e + 1)4 + dq+1e4(e + 1)2 + e6 + d2q+2(e + 1)3

+dq+1e2(e + 1)

= e3dq+1(e + 1) + e6 + d2q+2(e + 1)3

d2q+2(e + 1)3 = e3dq+1(e + 1) + e6.

From the two equations above we have also re3(1+e) = dq+1(1+e)2+e2 and d2q+2(1+
e)3 = dq+1e3(1 + e) + e6. We know that e �= 0, 1 therefore

r = dq+1(e + 1)

e3
+ 1

e(e + 1)
.

Hence,

A = re + 1

= dq+1(e + 1)

e2
+ e

(e + 1)

A2 = d2q+2(e + 1)2

e4
+ e2

(e + 1)2
= dq+1

e
+ e3

(e + 1)2

0 = D = A2 + Are + e2

= dq+1

e
+ e3

(e + 1)2
+

(
dq+1(e + 1)

e2
+ e

(e + 1)

)(
dq+1(e + 1)

e2
+ 1

(e + 1)

)
+ e2

= dq+1

e
+ e3

(e + 1)2
+ d2q+2(e + 1)2

e4
+ dq+1(e + 1)

e2
+ e

(e + 1)2
+ e2

= dq+1

e
+ e3

(e + 1)2
+ dq+1

e
+ e2

(e + 1)
+ dq+1(e + 1)

e2
+ e

(e + 1)2
+ e2

= dq+1(
e + 1

e2
) + e + e2 + e2

e + 1
= dq+1 · e + 1

e2
+ e(e2 + e + 1)

e + 1

dq+1 = e3(e2 + e + 1)

(e + 1)2
.

Therefore

r = e2 + e + 1

e + 1
+ 1

e(e + 1)
= (e + 1)2

e
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and A = re + 1 = e2. Then

0 = E = A2r2e2 + Ar2dq+1e + Ar2e3 + re3 = (e + 1)3 · e2.

This last result is not possible since e �= 0, 1. So, the system admits no solutions.
Therefore we have that when α ∈ Fq2 \ Fq , (3) admits at most 5 distinct values.

Proof of Theorem 1 Since F is a power function, from Proposition 1 we can consider a =1,
and thusβF =maxb∈F�

q4
S1,b. FromLemmas 1 and 2wehave immediately thatβFF ≤24.

From the proof of Lemmas 1 and 2 we can distinguish five cases for the upper bound on
the values S1,b. In particular, we obtain the following.

Proposition 2 Let k > 1 be odd and q = 2k . The Bracken-Leander permutation F(x) =
x22k+2k+1 defined over Fq4 is such that

S1,b ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4 if b ∈ F
�
q2

and Tr2k1 (b) = 0

6 if b ∈ F
�
q2

and Tr2k1 (b) = 1

4 if b /∈ Fq2 , Tr
4k
2k(b) ∈ Fq and Trk1(Tr

4k
2k(b)) = 1

12 if b /∈ Fq2 , Tr
4k
2k(b) ∈ Fq and Trk1(Tr

4k
2k(b)) = 0

24 otherwise.

Using Lemma 1 we evaluated (with the help of MAGMA) the boomerang uniformity for
the Bracken-Leander permutation up to dimension n = 60. From Table 2 we can see that
for the values 7 ≤ k ≤ 15 the upper bound for the boomerang uniformity is attained.

4 On the inverse functionmodified

In the past years, several constructions of differentially 4-uniform bijective functions,
based on modifying the inverse function, have been proposed (see for instance [17, 20, 21,
23, 24]). In particular, in [17, 23], the authors modified the inverse functions composing it
with some cycle, and studied when it could be possible to obtain a differentially 4-uniform
permutation. In the following we will study the boomerang uniformity of some of the
functions studied in [17] and in [23].

Given m + 1 pairwise different elements of F2n , αi for 0 ≤ i ≤ m, consider the cycle
π = (α0, α1, ..., αm) over F2n defined as

π(x) =
{

αi+1 x = αi

x x �∈ {αi |0 ≤ i ≤ m},
where αm+1 = α0.

Table 2 Boomerang uniformity
of the function x22k+2k+1 over
F24k

k : 3 5 7 9 11 13 15

βF : 14 16 24 24 24 24 24
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In [23] the authors study the case of cycle of length two (that is π a transposition), while
in [17] they consider the more general case of functions of type

π(x)−1 =
{

α−1
i+1 x = αi

x−1 x �∈ {αi |0 ≤ i ≤ m}.
From [23] we have that:

Lemma 3 Let n = 2k be an even integer. Then the following statements hold.

1. Suppose π = (0, 1) is a transposition over F2n . Then the differential uniformity of
π(x)−1 equals 4 if and only if k is odd.

2. Suppose π = (1, c) is a transposition over F2n . Then the differential uniformity of
π(x)−1 equals 4 if and only if Tr(c) = Tr( 1

c
) = 1.

In [17] it has been proved the following:

Lemma 4 Suppose π = (α0, . . . , αm) is a cycle over F2n . Then the following statements
hold.

1. If 0 ∈ π , then π(x)−1 is affine equivalent to π1(x)−1, where π1 is a cycle over F2n of
the type (0, 1, β1, . . . , βm−1).

2. If 0 �∈ π , then π(x)−1 is affine equivalent to π1(x)−1, where π1 is a cycle over F2n of
the type (1, β1, . . . , βm).

Recalling that the boomerang uniformity is invariant for affine equivalence, when m = 1
we need to consider, up to affine equivalence, only two types of permutations π(x)−1:

– π = (0, 1),
– π = (1, c), with c �= 0, 1.

In [16] Li et al. studied the boomerang uniformity of π(x)−1 with π = (0, 1). They
obtained the following result.

Theorem 2 Let F(x) = π(x)−1, for π = (0, 1), and n ≥ 3. Then the boomerang

uniformity of F is βF =
⎧
⎨

⎩

10, if n ≡ 0 (mod 6),
8, if n ≡ 3 (mod 6),
6, if n �≡ 0 (mod 3).

Considering the case π = (1, c) we obtain the following.

Theorem 3 Let n be even and F(x) = π(x)−1 with π = (1, c) be a differentially 4-uniform
function over F2n . Then,

(i) if c /∈ F4

βF =
{
10 if n ≡ 0 mod 4
8 if n ≡ 2 mod 4.

(ii) if c ∈ F4 \ F2 (thus n ≡ 2 mod 4) βF = 6.

The proof of Theorem 3 relies just on the study of all the possible cases that we can obtain
in System (1) and on the, well-known, characterization of the solutions of the equation
x−1 + (x + a)−1 = b (see for instance [19]). For such a reason the proof is omitted, but we
redirect the interested reader to [9].
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From Theorems 2 and 3 we obtain the following corollary.

Corollary 1 Let n = 2k and π = (α1, α2). Consider the function F(x) = π(x)−1 defined
over F2n and suppose that F is differentially 4-uniform. Then,

(i) if 0 ∈ π , then k is odd and

βF =
{
10, if n ≡ 0 (mod 6),
6, otherwise.

(ii) if 0 /∈ π , then

(a) if α2
α1

/∈ F
�
4, then

βF =
{
10 if n ≡ 0 mod 4,
8 if n ≡ 2 mod 4.

(b) if α2
α1

∈ F
�
4, then k is odd and βF = 6.

Proof If 0 ∈ π then from Lemma 4 we have that F(x) = π(x)−1 is affine equivalent to
π0(x)−1 where π0(x) = (0, 1). So from Theorem 2 and since in the case n ≡ 3 mod 6 F

cannot be differentially 4-uniform we have our claim.
Suppose now that α1, α2 �= 0. From Lemma 4 we have that α−1

1 π(α1x) = π1(x) where
π1(x) = (1, β1) with βF1 = α2

α1
, and thus F(x) = π(x)−1 is affine equivalent to π1(x)−1 =

α1π(α1x)−1. From Theorem 3 we obtain the claim.

In [17], the authors extend the results obtained in [23] by composing the inverse function
with cycles of order greater than two. In particular from their results we have the following
differentially 4-uniform functions.

Lemma 5 Let n = 2k with k > 1. Let c ∈ F4 \ F2, then the functions F(x) = π(x)−1 with
π = (0, 1, c) and G(x) = π(x)−1 with π = (1, c, c2) are differentially 4-uniform if and
only if k is odd.

Using a similar analysis as in Theorem 3 we can get the following results.

Theorem 4 Let n = 2k with k > 1 odd. Let F(x) = π(x)−1 with π = (0, 1, c) and
c ∈ F4 \ F2, be a differentially 4-uniform function over F2n . Then,

βF =
{
8 if n ≡ 0 mod 6,
6 otherwise.

Theorem 5 Let n = 2k with k > 1 odd. Let F(x) = π(x)−1 with π = (1, c, c2) and
c ∈ F4 \ F2, be a differentially 4-uniform function over F2n . Then,

βF =
{
8 if n ≡ 0 mod 6,
6 otherwise.

As for Theorem 3, we redirect the interested reader to [9] for the proofs of Theorems 4
and 5.

Using the same arguments as in the proof of Corollary 1, we have the following.
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Corollary 2 Let n = 2k with k odd and π = (α1, α2, α3) with α1, α2, α3 ∈ γF4 for some
γ ∈ F

�
2n . Consider the function F(x) = π(x)−1 defined over F2n and suppose that F is

differentially 4-uniform. Then,

βF =
{
8 if n ≡ 0 mod 6,
6 otherwise.

5 Conclusions

In this paper we studied the boomerang uniformity of some classes of differentially 4-
uniform permutations defined over F2n with n even. In particular, we obtained an upper
bound for the boomerang uniformity of the cubic functions introduced by Bracken and
Leander [5] and the boomerang uniformity for some of the functions studied in [17, 23].

From the results in [16, 18] we have that from quadratic permutations it is possible to
obtain functions with optimal BCT, that is function with δF = βF . However, for cryp-
tographic applications, quadratic functions could be weak with respect to higher order
differential attacks [15]. So it would be interesting to construct optimal functions with
degree greater than two and which are, in particular, 4-uniform.

In [4], it has been proved that if n ≡ 2 mod 4, then the inverse function is optimal
(δF = βF = 4). However, for the case n ≡ 0 mod 4, which is widely used in cryptographic
algorithm, from the results obtained in this paper and in the previous ones [4, 16, 18] we
can not find any permutations over F2n with boomerang uniformity 4. So, an interesting
open problem is to investigate the existence of a permutation having boomerang uniformity
4 over F2n with n ≡ 0 mod 4.
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