
https://doi.org/10.1007/s12095-020-00427-1

On the EA-classes of known APN functions in small
dimensions

Marco Calderini1

Received: 4 September 2019 / Accepted: 27 February 2020 /
© The Author(s) 2020

Abstract
Recently Budaghyan et al. (Cryptogr. Commun. 12, 85–100, 2020) introduced a procedure
for investigating if CCZ-equivalence can be more general than EA-equivalence together
with inverse transformation (when applicable). In this paper, we show that it is possible
to use this procedure for classifying, up to EA-equivalence, all known APN functions in
dimension 6. We also give some discussion for dimension 7, 8 and 9. In particular, in these
cases it is possible to give an upper bound on the EA-classes contained in the CCZ-classes
of the known APN functions.
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1 Introduction

Symmetric cryptographic primitives and in particular block ciphers use substitution boxes
(in brief, S-boxes) to bring “confusion” into the systems. Such confusion is necessary to
prevent known attacks.

Given n and m two positive integers, the functions from F2n to F2m are called vectorial
Boolean functions. Such functions are used as S-boxes in the design of block ciphers.

Among the properties that these functions have to satisfy we have a low differential
uniformity (see definitions in Section 2) to allow resistance to the differential attack [2]
and high nonlinearity to resist the linear attack [18]. The lowest differential uniformity for
a vectorial Boolean function is 2. Functions reaching such lower bound are called Almost
Perfect Nonlinear (APN).

The APN property (in general the differential uniformity) is preserved by different
forms of equivalences between (vectorial) Boolean functions, such as EA-equivalence and
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CCZ-equivalence. Since EA-equivalence is a particular case of CCZ-equivalence, it is pos-
sible to partition the space of all functions F2n → F2m into CCZ-equivalence classes and
then partition each CCZ-equivalence class into EA-equivalence classes. For brevity, we
will refer to these as “EA-class” and “CCZ-class”. It was shown by Budaghyan et al. [3]
that for quadratic APN functions CCZ-equivalence is more general than EA-equivalence
together with taking inverses of permutations. In [7] the authors investigate further the rela-
tion between CCZ-equivalence and EA-equivalence with inverse transformation. While,
in [9] the authors give a characterization of CCZ-equivalence in terms of twisting func-
tions. Despite this, CCZ-equivalence is not yet fully well understood and, to the best of our
knowledge, partitioning the CCZ-class of a function into its EA-classes is an hard task.

Classification of APN functions is, as well, a hard open problem. Complete classification
for APN functions over F2n is known only for n ≤ 5 [4], and for n = 6 the CCZ-
classification of APN functions with algebraic degree at most 3 is known [15]. For n ≤ 5, in
[4], the authors give a classification of the APN functions up to EA-equivalence and CCZ-
equivalence. For the case of n = 6, the classification of the known APN functions is given
only up to CCZ-equivalence. The classification up to EA-equivalence is not known.

In this work, we use the procedure introduced in [7] for investigating the EA-classes
contained in a CCZ-class of a given function. In order to do that, in Section 3 we give some
propositions that can be used to improve the the procedure given in [7] and filter some
of the results obtained from this procedure. We also obtain that the number of EA-classes
contained in the CCZ-class of a function F is upper bounded by the number of simplex
codes contained in a linear code associated to F .

In Section 4, we discuss relations between the different equivalence concepts for vec-
torial Boolean functions and code equivalence. We also introduce a new linear code that
can be defined for the case of bijective maps that can be used to verify affine equivalence
between two permutations, see Theorem 6.

For the case n = 6, in Section 5, we are able to give all the EA-classes of the known
APN functions. We also studied further the case of the only APN permutation in even
dimension [6]. For such a function we give the representatives of the EA-classes which con-
tain a permutation and we also give the representatives of the affine classes (containing a
permutation).

In Section 6, we extend our study also to dimension 7, 8 and 9 (for this last case we focus
only on non-Gold APN power functions). In these dimensions checking EA-equivalence,
which is based on some code equivalence, requires an amount of computing which is huge,
but we are able to give an upper bound on the number of EA-classes. Moreover, for the case
of non-Gold APN power functions we can determine the exact number of the EA-classes.

2 Preliminaries

Let n ≥ 2, we denote by F2n the finite field with 2n elements, by F
�
2n its multiplicative

group and by F2n [x] the polynomial ring defined over F2n . Any function F : F2n → F2n

can be represented as a univariate polynomial of degree at most 2n − 1 in F2n [x], that is

F(x) =
2n−1∑
i=0

cix
i, ci ∈ F2n .

For any i, 0 ≤ i ≤ 2n − 1, the 2-weight of i is the (Hamming) weight of its binary rep-
resentation. The algebraic degree of a function F is equal to the maximum 2-weight of the
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exponent i such that ci �= 0. Functions of algebraic degree 1 are called affine and of degree
2 quadratic. Linear functions are affine functions without the constant term and they can be
represented as L(x) = ∑n−1

i=0 cix
2i
. We denote the trace function by

T r(x) = x + x2 + · · · + x2n−1
.

Let λ ∈ F
�
2n and F be a function from F2n to itself, the λ-component of F is the Boolean

function Fλ : F2n → F2 with Fλ(x) = T r(λF (x)).
For any function F : F2n → F2n we denote the Walsh transform in a, b ∈ F2n by

WF (a, b) =
∑

x∈F2n
(−1)T r(ax+bF(x)).

For any Boolean function f : F2n → F2 the Walsh transform in a ∈ F2n is given by

Wf (a) =
∑

x∈F2n
(−1)T r(ax)+f (x).

The Walsh spectrum of a function F is the set of all possible values of the Walsh trans-
form. TheWalsh spectrum of a (vectorial) Boolean function F is strictly related to the notion
of nonlinearity of F , denoted by N L (F ), indeed we have

N L (F ) = 2n−1 − 1

2
max

a∈F2n ,b∈F�
2n

|WF (a, b)|.

If Wf (0) = 0 then the Boolean function is called balanced. For any function F : F2n →
F2n it is well know that F is a bijection if and only if all its component functions are
balanced.

The concept of differential uniformity of a function F is related to the number of
solutions of the equation F(x + a) + F(x) = b for a ∈ F

�
2n and b ∈ F2n .

Definition 1 For a function F from F2n to itself, and any a ∈ F
�
2n and b ∈ F2n , we denote

by δF (a, b) the number of solutions of the equation F(x + a) + F(x) = b. The maximum
value δ among the δF (a, b)’s is called the differential uniformity of F , and F is said to be
differentially δ-uniform. A function F is called almost perfect nonlinear (APN) if δ = 2.

There are several equivalence relations of functions for which the differential uniformity
(and thus the APN property) is preserved. Two functions F and F ′ from F2n to itself are
called:

– affine equivalent if F ′ = A1 ◦ F ◦ A2 where the mappings A1, A2 : F2n → F2n are
affine permutations;

– extended affine equivalent (EA-equivalent) if F ′ = F ′′ + A, where the mappings A :
F2n → F2n is affine and F ′′ is affine equivalent to F ;

– Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permutation
L of F2n ×F2n the image of the graph of F is the graph of F ′, that is, L (GF ) = GF ′ ,
where GF = {(x, F (x)) : x ∈ F2n} and GF ′ = {(x, F ′(x)) : x ∈ F2n}.

Obviously, the affine equivalence is included in EA-equivalence, and it is also well
known that EA-equivalence is a particular case of CCZ-equivalence and every permutation
is CCZ-equivalent to its inverse [10].
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Recently, Yoshiara [20] and Dempwolff [12] have shown, independently, that two power
APN functions are CCZ-equivalent if and only if they are EA-equivalent or one is EA-
equivalent to the inverse of the second one. Moreover, for the case of quadratic APN
functions, CCZ-equivalence coincides with EA-equivalence [19].

3 Properties and remarks on the CCZ-equivalence

In this section we will recall the procedure given in [7] and give some remarks and prop-
erties regarding CCZ-equivalence that will be useful in the investigation of the EA-classes
contained in a CCZ-class.

Since we are interested in the EA-classes, without loss of generality, we assume that
the affine permutation in the definition of CCZ-equivalence is linear. Indeed, using affine
permutations instead of linear one we simply obtain a shift by a constant in the input and
output of the resulting function (see for instance [7]).

Lemma 1 (Lemma 3.1 in [7]) Let L1, L2 : (F2n)2 → F2n be linear maps and a, b ∈ F2n ,
such that L (x, y) = (L1(x, y) + a, L2(x, y) + b) is a permutation. Let F and F ′ be CCZ-
equivalent functions such that L maps the graph of F to the graph of F ′. Then the linear
part L ′ of L maps the graph of F to the graph of F ′′(x) = F ′(x + a) + b.

A linear map L defined over (F2n)2 can be described as a formal matrix

L =
[

A1 A2
A3 A4

]

where Ai are linear maps over F2n for 1 ≤ i ≤ 4, and

L (x, y) =
[

A1 A2
A3 A4

]
·
[

x

y

]
= (A1(x) + A2(y), A3(x) + A4(y)).

In particular,

F1(x) = L1(x, F (x)) = A1(x) + A2 ◦ F(x) (1)

and

F2(x) = L2(x, F (x)) = A3(x) + A4 ◦ F(x). (2)

From the definition of CCZ-equivalence we have that a linear permutation L is admis-
sible for producing a CCZ-equivalent function from F if and only if F1(x) is a permutation.
In terms of Walsh coefficients we have the following observation.

Observation 1 (Observation 3.2 in [7]) The function F1 in (1) is a permutation if and only
if all its component are balanced, that is

WF1(0, λ) =
∑

x∈F2n
(−1)Tr(λA1(x)+λA2◦F(x)) = 0, for all λ ∈ F

�
2n .

Denoting by L∗ the adjoint operator of a linear map L (i.e. T r(yL(x)) = T r(xL∗(y)) for
all x, y ∈ F2n ), we have

WF1(0, λ) =
∑

x∈F2n
(−1)Tr(A

∗
1(λ)x+A∗

2(λ)F (x)) = WF (A∗
1(λ), A∗

2(λ)) = WFA∗
2(λ)

(A∗
1(λ)) = 0.

(3)
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In [7], the authors introduce a procedure that permits to investigate the relation between
CCZ-equivalence and EA-equivalence together with the inverse transformation (when appli-
cable). Using this procedure it is possible, at least in small dimensions, to investigate the
EA-classes contained in the CCZ-class of a given function.

The procedure given in [7] is useful for constructing linear permutations

L =
[

A1 A2
A3 A4

]
mapping the graph of F onto the graph of another function F ′. In particular, the procedure
constructs the linear functions A1 and A2 defined over F2n so that F1(x) = L1(x, F (x)) =
A1(x) + A2 ◦ F(x) is a permutation. Indeed, if we are able to construct L1 with such a
property, then it is always possible to determine L2 in order to have L a linear permutation.

We are focusing on the EA-classes that are contained in the CCZ-class of some given
function F . In the following, we will show some properties that permit to determine whether
from two admissible permutation L and L ′ we can obtain EA-equivalent functions.

Remark 1 (Remark 2 in [3]) For a function F : F2n → F2n , if L = (L1, L2) and L ′ =
(L1, L

′
2) are permutations such that the function L1(x, F (x)) is a permutation, then the

functions defined by the graphs L (GF ) and L ′(GF ) are EA-equivalent.

This means that for all possible L1, for covering the EA-classes of a given function F ,
we need to construct a single L2.

Remark 1 can be easily extended with the following proposition.

Proposition 1 Let F be a function over F2n and let

L =
[

A1 A2
A3 A4

]
, L ′ =

[
A′
1 A′

2
A′
3 A′

4

]

be two linear permutations over (F2n)2 such that F1(x) = L1(x, F (x)) = A1(x)+A2◦F(x)

and F ′
1(x) = L′

1(x, F (x)) = A′
1(x) + A′

2 ◦ F(x) are permutations. If L′
1(x, y) = L ◦

L1(x, y) for some linear permutation L, then the functions defined by the graphs L (GF )

and L ′(GF ) are EA-equivalent.

Proof Let L2(x, y) = A3(x) + A4(y). Since L′
1(x, y) = L ◦ L1(x, y) then also L ′′ =

(L′
1, L2) is a linear permutation and from Remark 1 we have that the functions defined by

the graphs L ′(GF ) and L ′′(GF ) are EA-equivalent.
Now,

L ′′ =
[

L 0
0 I

]
· L ,

where I is the identity map, which implies that the functions defined by the graphs L (GF )

and L ′′(GF ) are affine equivalent.

We will show, now the procedure introduced in [7]. From now on, we consider a fixed
basis {β1, ..., βn} of F2n as vector space over F2.

For any λ ∈ F2n we define the set

ZW(λ) = {a ∈ F2n : WFλ(a) = 0}.
Then we can define the following set

SF = {λ ∈ F
�
2n : ZW(λ) �= ∅} ∪ {0}. (4)
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Note that if L1(x, y) is such that F1(x) = L1(x, F (x)) = A1(x) + A2 ◦ F(x) is a per-
mutation then Im(A∗

2) ⊆ SF . So, any subspace U in SF could be a possible candidate for
Im(A∗

2).
Along this section we will denote by Span(v1, . . . , vm) the vector (sub)space over F2

generated by the elements v1, . . . , vm ∈ F2n .

Procedure 2 (Procedure 4.4 in [7]) Let U ⊆ SF be a subspace of dimension k. Let
{u1, ..., uk} be a fixed basis of U . Let A2 be such that A∗

2(βi) = ui if 1 ≤ i ≤ k and
A∗
2(βi) = 0 if k + 1 ≤ i ≤ n.
For any u ∈ U \ {0} we consider the set ZW(u), as defined before. To construct A1 we

need to determine the images, with the adjoint operator A∗
1, of the vectors βi’s. In order to

do that, we need to select any possible k-tuple a1 ∈ ZW(u1), ..., ak ∈ ZW(uk) such that

(P1)
∑k

i=1λiai ∈ ZW(
∑k

i=1λiui) for any λ1, ..., λk ∈ F2, not all zero.

These a1, ..., ak will be the images by A∗
1 of β1, ..., βk , respectively.

After that, for any of these k-tuples, we need to determine all possible (n − k)-tuples of
elements ak+1, ..., an satisfying:

(P2) ak+1, ..., an are linearly independent;
(P3) for any a ∈ Span(ak+1, ..., an)\{0}, a + ∑k

i=1 λiai ∈ ZW(
∑k

i=1 λiui), for any
λ1, . . . , λk ∈ F2.

Remark 2 Condition (P3) is equivalent to have

Span(ak+1, ..., an) ⊆
⋂

λi∈F2

k∑
i=1

λiai + ZW
(

k∑
i=1

λiui

)
,

where a + ZW(u) = {a + v : v ∈ ZW(u)}.

In the following we will give some observations in order to see how it is possible from
Procedure 2 to obtain the EA-classes contained in the CCZ-class of a given function.

Observation 3 (Observation 4.2 in [7]) Let {u1, . . . , uk} be any fixed basis of U (where
k is the dimension of U ), we can suppose that A∗

2(βi) = ui for i = 1, ..., k and ker(A∗
2) =

Span(βk+1, ..., βn).
Indeed, suppose A∗

2 is such that A∗
2(wi) = ui for i = 1, ..., k and ker(A∗

2) =
Span(wk+1, ..., wn) for some w1, ..., wn linearly independent. Then, we can consider the
linear permutation L such that L∗(βi) = wi for all i. Now, if F1(x) = A1(x) + A2(F (x))

is a permutation, we can consider F ′
1 = L ◦ F1, which is again a permutation, and

A′
2
∗ = (L ◦ A2)

∗ is s.t. A′
2
∗
(βi) = ui for i = 1, ..., k and ker(A′

2
∗
) = Span(βk+1, ..., βn).

From the previous observation we have that if L1 is such that Im(A∗
2) = U , then from the

procedure applied to the subspace U , with some fixed basis, we obtain at least one function
L′
1 such that L1 = L ◦ L′

1 for some linear permutation L. Thus, from Proposition 1 we
obtain the same EA-class of L1 from L′

1.
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Observation 4 From the procedure we can see that in (P3) we need to check the sub-

spaces of dimension n − k contained in
⋂

λi∈F2
∑k

i=1λiai + ZW
(∑k

i=1λiui

)
. If we have

W ⊆ ⋂
λi∈F2

∑k
i=1 λiai + ZW

(∑k
i=1 λiui

)
, of dimension n − k, then we can consider

only one basis of W for constructing the elements ak+1, ..., an in Procedure 2. Indeed, let
{ak+1, ..., an} and {a′

k+1, ..., a
′
n} be two basis of W . Let A1 and A′

1 constructed from the pro-
cedure applied to a fixed spaceU (and so alsoA2 is fixed), such thatA∗

1(βi) = A′∗
1 (βi) = ai

for 1 ≤ i ≤ k, and A∗
1(βj ) = aj , A′∗

1 (βj ) = a′
j for k + 1 ≤ j ≤ n.

Let V = Span(βk+1, ..., βn), the restriction of A∗
1 and A′∗

1 over V , A∗
1|V and A′∗

1 |V ,
are bijections from V to W and thus (A∗

1|V )−1, (A′∗
1 |V )−1 are well defined. Let L be a

linear permutation such that L∗(βi) = βi for 1 ≤ i ≤ k and L∗(βj ) = (A∗
1|V )−1(a′

j )

for k + 1 ≤ j ≤ n (note that (A∗
1|V )−1(a′

j ) ∈ V and they form a basis for V , so L is a
permutation). Now it is easy to check that A′

1(x) = L ◦ A1(x) and that A2(y) = L ◦ A2(y)

implying that A′
1(x) + A2(y) = L(A1(x) + A2(y)) and from Proposition 1 we will obtain

the same EA-class from these functions.

From the same function A2 we could obtain several L1’s. We will show how it is possible
to filter some of the L1 obtained from the procedure.

Proposition 2 Let F be a function defined over F2n with no linear monomials. Let L =
(L1, L2) and L ′ = (L′

1, L
′
2) be two linear permutations over (F2n)2 with L1(x, y) =

A1(x)+A2(y) andL′
1(x, y) = A′

1(x)+A2(y). Suppose F1(x) = L1(x, F (x)) and F ′
1(x) =

L′
1(x, F (x)) are permutations and the linear codes CF1 and CF ′

1
are equal, where the code

CF is generated by the matrix having as columns the vectors(
F(x)

)
x∈F2n .

Then, if Span(Im(A2 ◦ F)) = Im(A2) the functions defined by the graphs L (GF ) and
L ′(GF ) are EA-equivalent.

Proof Since CF1 = CF ′
1
then there exists a linear permutations over F2n such that F ′

1(x) =
L ◦ F1(x). In particular, since F has no linear monomials then L ◦ A2 ◦ F = A2 ◦ F and
L ◦ A1 = A′

1. Moreover, we have that Span(Im(A2 ◦ F)) = Im(A2). This means that there
exist x1, ..., xk such that F(x1), ..., F (xk) are linearly independent and A2 ◦ F(x1), ..., A2 ◦
F(xk) form a basis for Im(A2). Then, Span({F(x1), ..., F (xk)}) ⊕ ker(A2) = F2n and thus
L ◦ A2(y) = A2(y) for all y ∈ F2n . From this, we can conclude that L′

1 = L ◦ L1 and from
Proposition 1 it follows that the functions defined by the graphs L (GF ) and L ′(GF ) are
EA-equivalent.

For the case of functions F having nonlinearity different from zero we have that CF1 =
CF ′

1
is sufficient to guarantee EA-equivalence.

Proposition 3 Let F be a function defined over F2n with N L (F ) �= 0 (F(0) = 0).
Let L = (L1, L2) and L ′ = (L′

1, L
′
2) be two linear permutations over (F2n)2 with

L1(x, y) = A1(x)+A2(y) and L′
1(x, y) = A′

1(x)+A2(y). Suppose F1(x) = L1(x, F (x))

and F ′
1(x) = L′

1(x, F (x)) are permutations. If CF1 = CF ′
1
, where the code CF is defined

as in Proposition 2, then the functions defined by the graphs L (GF ) and L ′(GF ) are
EA-equivalent.
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Proof Consider the matrix of size 2n × 2n with columns the vectors

M =
(

x

F(x)

)
x∈F2n

.

Since N L (F ) �= 0 then the rows of this matrix are linear independent. Now, since F1 is a
permutation, the rows of (

F1(x)
)
x∈F2n ,

are linear independent and for any row there exists a unique way of combining the rows of
M to get it. Thus, there exist a unique linear function L1(x, y) such that(

F1(x)
)
x∈F2n = (

L1(x, F (x))
)
x∈F2n .

Since CF1 = CF ′
1
we have that there exists a linear permutation L such that(

L ◦ F1(x)
)
x∈F2n = (

F ′
1(x)

)
x∈F2n ,

and then (
L ◦ L1(x, F (x))

)
x∈F2n = (

L′
1(x, F (x))

)
x∈F2n .

From the unicity of L1 and L′
1 we obtain that L′

1 = L ◦ L1.

Remark 3 For the case of APN functions we have that the N L (F ) �= 0 and so we can use
this last proposition for filtering the functions obtained from Procedure 2.

Recalling that a simplex code (defined over F2) is a linear code of length 2n−1 dimension
n and all non zero codewords of hamming weight 2n−1, we have the following upper bound
on the number of EA-classes contained in the CCZ-class of a function F .

Corollary 1 Let F be a function defined over F2n with N L (F ) �= 0 (F(0) = 0). Let
C (F ) be the code generated by (

x

F(x)

)
x∈F�

2n

.

Then, the number of EA-classes contained in the CCZ-class of F is upper bounded by the
number of the simplex codes contained in C (F ).

4 Equivalence relations and linear codes

The main cryptographic properties (e.g. the APN property, the nonlinearity, etc.) can be
interpreted as conditions on some binary linear codes, as first shown in [10].

Let F be a vectorial Boolean function then we can define the following codes related to
F .

– The code C1(F ) which is generated by

C1(F ) :=
⎛
⎝ 1

x

F(x)

⎞
⎠

x∈F2n
,

the size of the matrix is (2n + 1) × 2n.
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– The code C2(F ) which is generated by

C2(F ) :=
⎛
⎝ 1 0

x 0
F(x) y

⎞
⎠

x∈F2n ,y∈F�
2n

the size of the matrix is (2n + 1) × (2n+1 − 1).
– The code C3(F ) which is generated by

C3(F ) :=
⎛
⎝ 1 0 0

x 0 z

F (x) y 0

⎞
⎠

x∈F2n , y,z∈F�
2n

the size of the matrix is (2n + 1) × (2n+1 + 2n − 2).

The equivalence between two functions F and G can be expressed in terms of linear
codes. In particular, the code C1 was introduced in [5] for determining the CCZ-equivalence
between two functions. The codesC2 and C3 were introduced in [13] for the case of the EA-
and affine-equivalence. We summarize the results of [5] and [13] in the following theorem.

Theorem 5 Let F and G be two vectorial Boolean functions. Then we have:

– F is CCZ-equivalent to G iff C1(F ) and C1(G) are equivalent ([5, Theorem 6.2]).
– F is EA-equivalent to G iff C2(F ) and C2(G) are equivalent ([13, Theorem 10]).
– If F is not a permutation, F is affine-equivalent to G iff the codes C3(F ) and C3(G)

are equivalent. If F is a permutation, F is affine-equivalent to G or G−1 iff the codes
C3(F ) and C3(G) are equivalent ([13, Theorem 11]).

From the previous theorem when F and G are permutations we cannot distinguish if they
are affine equivalent to each other or one is equivalent to the inverse of the other.

A necessary and sufficient condition for affine equivalence between permutations is the
following.

Theorem 6 Let F and G be two permutations over F2n , with n ≥ 3. F is affine-equivalent
to G if and only if the codes C4(F ) and C4(G + b) are equivalent for some b ∈ F2n , where
C4(F ) is generated by

C4(F ) :=
⎛
⎝ 1 0 1

x 0 z

F (x) y 0

⎞
⎠

x,z∈F2n , y∈F�
2n

of size (2n + 1) × (2n+1 + 2n − 1).

Proof Suppose that F is affine equivalent to G. Then, B(F(Ax +a))+b = G(x) for some
A, B linear permutations and a, b ∈ F2n . Suppose that b = 0, otherwise we can consider
the function G′ = G + b.

Considering L1 = A−1, L2 = B linear permutations and a′ = A−1a we have

M · C4(F ) =
⎛
⎝ 1 0 0

a′ L1 0
0 0 L2

⎞
⎠ ×

⎛
⎝ 1 0 1

x 0 z

F (x) y 0

⎞
⎠ =

⎛
⎝ 1 0 1

L1(x) + a′ 0 L1(z) + a′
L2(F (x)) L2(y) 0

⎞
⎠ ,
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applying a permutation on the columns, the last matrix is C4(G).
Vice versa, suppose that the code C4(F ) is equivalent to C4(G

′), for some G′ = G + b.
We can suppose that G′ = G otherwise we will obtain the affine equivalence to G′ which
is equivalent to G.

Then, there exists a matrix

M =
⎛
⎝ c d e

a L1 L2
b L3 L4

⎞
⎠

and a permutation matrix P such that M ·C4(F ) = C4(G) ·P . Thus, permuting the columns
of M · C4(F ) we would be able to obtain the matrix C4(G). Now,

In the following we will refer to the different nine parts of the matrix as the left upper
(LU) part, left center (LC) part, left bottom (LB) part, middle upper (MU) part, middle
center (MC) part, middle bottom (MB) part, right upper (RU) part, right center (RC) part
and right bottom (RB) part.

Now, we want to understand how we can permute the columns of the matrix above so that
we can obtain C4(G). From that, we will be able to determine the structure of the matrix M .

First of all, note that the first row of the matrix must have the same weight as the first
row of C4(G), that is 2n+1. Suppose d, e �= 0. Then c + d · z and e · y have weight 2n−1, so
c + d · x + e · F(x) needs to be of weight 2n. Let S = {y : e · y = 0}, which is a subspace
of dimension n − 1. A column relative to any y ∈ S needs to have L2(y) = 0, because for
obtaining C4(G) we cannot move this column in the left or right part. Thus, rank(L2) ≤ 2.

Moreover, all the columns of the y’s not in S need to be moved in the left or right part
since the first row in the middle part has to be equal to zero. For any column relative to some
y /∈ S, we have that L2(y) = r for some fixed r . But, in the LC and RC part we should
obtain two times all the nonzero elements of F2n , which would be not possible.

Suppose d = 0, e �= 0. As before, let S = {y : e · y = 0}. Thus L2(y) = 0 if y ∈ S

and L2(y) = r for some fixed r if y /∈ S. Again, the columns of the y’s not in S need
to be moved in the left or right part, and we cannot obtain all the nonzero elements of F2n

repeated two times in the center part.
Suppose that d �= 0, e = 0 then we obtain only 2n 1’s on the first row, which is not

possible.
Then, c = 1 and d = e = 0 and

M · C4(F ) =
⎛
⎝ 1 0 1

L1(x) + L2(F (x)) + a L2(y) L1(z) + a

L3(x) + L4(F (x)) + b L4(y) L3(z) + b

⎞
⎠ .

Now, we have that for obtaining C4(G) we cannot permute the columns related to the
middle part, involving the variable y, with the columns of the other parts. Thus L2 ≡ 0 and

M · C4(F ) =
⎛
⎝ 1 0 1

L1(x) + a 0 L1(z) + a

L3(x) + L4(F (x)) + b L4(y) L3(z) + b

⎞
⎠ .
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Moreover, since in the MB part we should have all the nonzero elements of F2n , and in the
LC and RC part all the elements of F2n , we have that L1 and L4 need to be permutations.

We need now to prove thatL3(z)+b is constantly equal to 0. First, note that ifL3(z)+b =
b �= 0 for all z, then in the RB part of M · C4(F ) we would have all columns equals to b.
Since we want to permute the columns of M ·C4(F ) in order to obtain C4(G) (which has all
zero columns on the RB part) this means that all the columns of the left part of M · C4(F )

should be permuted with the columns of the right part, implying L3(x)+L4(F (x))+b ≡ 0,
which is not possible. Similarly if L3(z) + b is a permutation.

Suppose, then, that L3(z)+b is not null (and not constantly equal to b) or a permutation,
which implies ker(L3) �= {0},F2n . Then, in order to obtain C4(G) we should permute
at least all the columns of the right part that are nonzero in the RB part (that involving
L3(z)+b) with some columns of the left part of the matrix for which L3(x)+L4(F (x))+b

is zero.
Now, let S = {z : L3(z) + b �= 0} = F2n \ {z : L3(z) + b = 0}. Denoting by

A(x) = L3(x) + b, since ker(L3) �= {0},F2n we have that for a given non zero element c

in Im(A) there exist at least two elements z1, z2 ∈ S such that A(z1) = A(z2) = c. Since
for obtaining C4(G) we should permute (with the left part) all the columns of the right part
related to the elements of S, we would obtain in the LB part two columns with the same
value. But since both F and G are permutations then we cannot have repeated column here.
Then, L3(x) + b needs to be constantly equal to 0.

So,

M · C4(F ) =
⎛
⎝ 1 0 1

L1(x) + a 0 L1(z) + a

L4(F (x)) L4(y) 0

⎞
⎠ ,

and thus ⎛
⎝ 1

L1(x) + a

L4(F (x))

⎞
⎠ =

⎛
⎝ 1

x

G(x)

⎞
⎠ · P,

for some permutation matrix P , that is, L4(F (L−1
1 (x) + L−1

1 (a)) = G(x).

These theorems on the relation between the equivalences defined for Boolean functions
and the related codes are quite useful. For instance, the computer algebra package MAGMA
implements a function for checking code equivalence, hence for small values of n can be
possible to distinguish the different types of equivalence. Note that for the case of the affine-
equivalence in [1] it is given an algorithm for checking it. We do not compare the complexity
of checking the affine equivalence with codes and the algorithm given in [1]. However, the
implementation with the code equivalence is very easy in MAGMA.

5 EA-classes in dimension 6

In this section we give the analysis carried out for the known APN functions in dimension
6. We used Procedure 2 for obtaining the admissible linear functions L1. Then, comparing
the codes relative to L1(x, F (x)) we used Proposition 3 for filtering the maps L1. After that
EA-equivalence was tested using the linear code C2(F ).

In dimension 6 there are 14 known APN functions (13 are quadratics) up to CCZ-
equivalence and they are listed in Table 1. In Table 1 we give also the number of EA-classes
contained in the CCZ-class of each function, together with the degrees of the functions in
the EA-classes. All the representatives of the EA-classes can be found in Appendix 1 of [8].
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5.1 Classification results for Dillon’s APN permutation

Further analysis was done for the case of the Kim function x3 + ζx24 + x10. Indeed, this
function is equivalent to a permutation [6]. This is the only known example of APN function
equivalent to a permutation in even dimension.

In this case we studied also the affine equivalence classes. The reason why we are inter-
ested in this classification is that some characteristics of the vectorial Boolean functions,
interesting for designing block ciphers, such as to be a permutation, the boomerang uni-
formity [11], the threshold implementation [17], etc., are invariants with respect the affine
equivalence but not with respect to EA- and CCZ-equivalence.

Thus, classification of (bijective) vectorial Boolean functions up to affine equivalence is
an important task.

Using the code equivalence we can see that in the CCZ-class of the Dillon’s APN permu-
tation we have 13 EA-classes with two of them containing a permutation, while the number
of affine classes containing a permutation is 4.

Let

F1(x) = ζ 57x60 + ζ 56x58 + ζ 43x57 + ζ 31x56 + ζ 29x53 + ζ 27x52 + ζ 28x51 + ζ 35x50 + ζ 54x49 +
ζ 51x48 + ζx46 + ζ 54x44 + ζ 50x43 + ζ 50x42 + ζ 32x41 + ζ 49x40 + ζ 36x39 + ζ 14x38 + ζ 16x37 +
ζ 15x35 + ζ 43x34 + ζ 23x33 + ζ 7x32 + ζ 7x30 + ζ 57x29 + ζ 11x26 + ζ 49x25 + ζ 36x24 + ζ 42x23 +
ζ 40x22 + ζ 34x21 + ζ 9x20 + ζ 28x19 + ζ 4x18 + ζ 50x17 + ζ 58x16 + ζx15 + ζ 48x14 + ζ 33x13 +
ζ 31x12 + ζ 43x11 + ζ 14x10 + ζ 5x9 + ζ 45x8 + ζ 60x7 + ζ 31x6 + ζ 42x5 + ζ 10x4 + ζ 10x3 + ζ 48x,

F2(x) = ζ 3x60 + ζ 33x58 + ζ 18x57 + ζ 8x56 + ζ 38x53 + ζ 28x52 + ζ 5x51 + ζ 37x50 + ζ 9x49 + ζ 45x48 +
ζ 10x46 + ζ 54x44 + ζ 25x43 + ζ 50x42 + ζ 55x41 + ζ 30x40 + ζ 45x39 + ζ 41x38 + ζ 14x37 + ζ 49x36 +
ζ 31x35 + x34 + ζ 46x33 + ζ 20x32 + ζ 47x30 + ζ 32x29 + ζ 57x28 + ζ 47x26 + ζ 44x25 + ζ 17x24 +
ζ 19x23 + ζ 61x22 + ζ 31x21 + ζ 31x20 + ζ 48x19 + ζ 58x18 + ζ 21x17 + x16 + ζ 39x15 + ζ 44x14 +
ζ 35x13 + ζ 21x12 + ζ 15x11 + ζ 54x10 + ζ 62x9 + ζ 42x8 + ζ 62x7 + ζ 14x6 + ζ 3x5 + ζ 29x4 +
ζ 34x3 + ζ 5x2 + ζ 46x,

and

F3(x) = ζ 61x60 + ζ 60x58 + ζ 49x57 + ζ 24x56 + ζ 21x54 + ζ 16x53 + ζ 36x52 + ζ 35x51 + ζ 17x50 +
ζ 28x49 + ζ 14x48 + ζ 62x46 + ζ 9x45 + ζ 21x44 + ζ 29x43 + ζ 22x42 + ζ 35x41 + ζ 41x40 +
ζ 51x39 + ζ 46x38 + ζ 37x37 + ζ 7x36 + ζ 32x35 + ζ 45x34 + ζ 16x33 + ζ 55x32 + ζ 11x30 +
ζ 8x29 + ζ 29x28 + ζ 6x27 + ζ 58x26 + ζ 28x24 + ζ 15x23 + ζ 44x22 + ζ 35x21 + ζ 32x20 +
ζ 53x19 + ζ 42x18 + ζ 50x17 + x16 + ζ 12x15 + ζ 27x14 + ζ 30x13 + ζ 7x12 + ζ 52x11 +
ζ 43x10 + ζ 7x9 + ζ 17x8 + ζ 5x7 + ζ 17x6 + ζ 43x5 + ζ 13x4 + ζ 57x3 + ζ 35x2 + ζ 49x.

Then, the CCZ-class can be represented by F1, the EA-classes containing a permutation
can be given by F1 and F−1

1 , and the affine-classes (always with a permutation) are repre-
sented by F1, F

−1
1 , F2 and F3. Note that with the code equivalence of the code C3(F ) we

would obtain only 3 functions since F1 is not affine equivalent to its inverse, while using
C4(F ) we can distinguish the two functions.
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Remark 4 F2 and F3 are affine-equivalent to their inverses.

For all the APN permutations we have that the degree of their components are

{* 3ˆˆ7, 4ˆˆ56 *}

and the Walsh spectrum of the single components is given by the multi-set

{*
{* -16, -8ˆˆ22, 0ˆˆ12, 8ˆˆ26, 16ˆˆ3 *}ˆˆ21,
{* -16ˆˆ2, -8ˆˆ20, 0ˆˆ12, 8ˆˆ28, 16ˆˆ2 *}ˆˆ21,
{* -16ˆˆ3, -8ˆˆ18, 0ˆˆ12, 8ˆˆ30, 16 *}ˆˆ7,
{* -16ˆˆ6, 0ˆˆ48, 16ˆˆ10 *}ˆˆ7,
{* -8ˆˆ24, 0ˆˆ12, 8ˆˆ24, 16ˆˆ4 *}ˆˆ7

*}

6 On the EA-classes of functions in dimension 7,8 and 9

For dimension 7 and 8 it is still possible to implement Procedure 2. Thus we can obtain at
least one representative of each EA-class. However, checking EA-equivalence with the code
equivalence require a huge amount of computations. Corollary 1 gives us an upper bound
on the number of EA-classes based on the simplex codes contained in

(
x

F(x)

)
x∈F2n

.

Using MAGMA we are able to provide the upper bound for all the known functions in
n = 7, 8. Note that in dimension 7 and 8 we have a huge list of APN functions from [21].
For space reason here we give the upper bound only for the functions listed in [14].

6.1 n=7

In dimension 7, in [14] the authors listed 19 APN functions in Table 2, in [21] the authors
found 471 new functions more. For the computer results on all these APN functions see
Appendix 2 in [8].

Remark 5 For the x13, x57 and x63 we can derive the exact number of EA-classes. Indeed,
the two simplex subcodes individuated for each ones are those generated by

(
F(x)

)
x∈F2n or

(
x

)
x∈F2n .

The representatives of the EA-classes that are related to these codes are F and F−1. For
x57 and x63 we have that they are cyclotomic equivalent (and thus affine equivalent) to their
inverse, implying that the CCZ-class and and the EA-class coincide. For the case of x13,
its inverse is given by x88. Since the cyclotomic classes of these two functions are distinct
we can conclude that they are not EA-equivalent. Thus for x13 we have 2 EA-classes in the
CCZ-class.
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Table 2 CCZ-inequivalent APN functions over F27 given in [14]

N. function # EA-classes ≤

1 x3 256

2 x5 256

3 x9 256

4 x13 2

5 x57 2

6 x63(inverse) 2

7 x3 + Tr(x9) 184

8 x34 + x18 + x5 184

9 x20 + x6 + x3 324

10 x66 + x34 + x20 + x17 + x3 184

11 x34 + x33 + x17 + x3 184

12 x34 + x33 + x10 + x5 + x3 296

13 x66 + x18 + x9 + x3 212

14 x33 + x17 + x12 + x3 240

15 x66 + x34 + x20 + x3 184

16 x72 + x40 + x12 + x3 184

17 x72 + x40 + x34 + x6 + x3 184

18 x34 + x33 + x12 + x6 + x5 + x3 240

19 x72 + x40 + x34 + x6 + x3 + ζ 27(Tr(ζ 20x3 + ζ 94x5 + ζ 66x9)) 216

6.2 n=8

In dimension 8 we have 23 functions in the table given in [14], see Table 3 (in [21] the
authors found 8157 new functions more). We extend the computation also to the case of the
inverse function that is 4-differentially uniform in this case.

Remark 6 For x57 we have only one simplex code, which implies that there is only one EA-
class. As in dimension 7 for the inverse function x127 we have two simplex codes and these
are generated by

(
F(x)

)
x∈F2n or

(
x

)
x∈F2n .

These codes are relative to the class of F and of F−1, thus we can conclude as before that
the CCZ-class contains only one EA-class.

6.3 n=9

For this dimension we consider only the non-Gold APN power functions. We give the upper
bound on the number of EA-classes in Table 4.

Remark 7 As before for x13, x19 and x241 we have two simplex codes and two EA-classes
for each function. For the inverse function x255 we have two simplex codes but only one
EA-class.
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Table 4 CCZ-inequivalent APN
functions over F29 given in [14]
and the inverse function

N. function # EA-classes ≤

1 x13 2

2 x19 2

3 x241 2

4 x255(inverse) 2

In [16] the authors investigate EA-equivalence of the inverse function to a permutation.
They concluded that for n ≥ 5 the inverse function is EA-equivalent to a permutation if and
only if it is affine equivalent to it. As the authors state at the end of their paper, an interesting
problem is whether or not there exists a permutation that is CCZ-equivalent to x−1 but not
affine equivalent. From our computational results we can conclude the following.

Theorem 7 Let 5 ≤ n ≤ 9. A permutation polynomial F defined over F2n is CCZ-
equivalent to x−1 if and only if F is affine-equivalent to x−1.

Proof For 5 ≤ n ≤ 9 we obtain only the two simplex codes generated by(
F(x)

)
x∈F2n or

(
x

)
x∈F2n .

This implies that we have only the EA-class of x−1 since it is an involution. Now, the
permutations in the EA-class of x−1 can be obtained only with the affine equivalence [16].

From this result we give the following conjecture.

Conjecture 1 For n ≥ 5, a permutation polynomial F defined over F2n is CCZ-equivalent
to x−1 if and only if F is affine-equivalent to x−1.

Moreover, in [7] the authors conjectured that the CCZ-class of non-Gold APN power
functions can be obtained using iteratively EA-equivalence together with the inverse trans-
formation. In particular, using Procedure 2 they proved that for n ≤ 8 the conjecture is true.
From the results obtained here we were able to verify that this is true up to dimension 9 and
in particular we have at most two EA-classes whose representatives are F and F−1.

Theorem 8 Let n ≤ 9 and F(x) = xd be a non-Gold APN function defined over F2n . Then
the CCZ-class of F is partitioned in at most two EA-classes represented by F and F−1

(when it exists).

7 Conclusion

We gave the full classification, up to EA-equivalence, of the known APN functions in
dimension 6 (see Table 1). Moreover, for the case of the unique APN permutation in even
dimension, we gave also the classification of the affine classes (containing a permutation).
For this purpose, in Theorem 6 we introduced a new code linked to a vectorial Boolean
function that permits to investigate the affine equivalence in the context of bijective maps.
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For dimension 7, 8 and 9, since checking EA-equivalence using the codes equivalence
requires a huge amount of computing, we gave an upper bound on the number of the EA-
classes of the known APN functions (in dimension 9 we consider only non-Gold APN power
functions), see Tables 2, 3 and 4. For the case of APN power mapping we observed that
at most we have two EA-classes in the CCZ-class, Theorem 8. Moreover, for the inverse
function for 5 ≤ n ≤ 9 we obtained that the EA-class coincides with the CCZ-class, imply-
ing that for these dimensions the inverse function is CCZ-equivalent to a permutation if and
only if they are affine equivalent, Theorem 7.
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