Skip to main content
Log in

The role of TET2 in solid tumors and its therapeutic potential: a comprehensive review

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Indeed, tumors are a significant health concern worldwide, and understanding the underlying mechanisms of tumor development is crucial for effective prevention and treatment. Epigenetics, which refers to changes in gene expression that are not caused by alterations in the DNA sequence itself, plays a critical role in the entire process of tumor development. It goes without saying that the effect of methylation on tumors is a significant aspect of epigenetics. Among the methylation modifications, DNA methylation is an important part, which plays a regulatory role in tumor-related genes. Ten-eleven translocation 2 (TET2) is a highly influential protein involved in the modification of DNA methylation. Its primary role is associated with the suppression of tumor development, making it a significant player in cancer research. However, TET2 is frequently mentioned in hematological diseases, its role in solid tumors has received little attention. Studying the changes of TET2 in solid tumors and the regulatory mechanism will facilitate its investigation as a clinical target for targeted therapy and may also provide directions for clinical treatment of malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med. 2018;18:1–14. https://doi.org/10.1007/s10238-017-0467-0.

    Article  CAS  PubMed  Google Scholar 

  2. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer. 2020;19:145. https://doi.org/10.1186/s12943-020-01258-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cao J, Yan Q. Cancer epigenetics, tumor immunity, and immunotherapy. Trends Cancer. 2020;6:580–92. https://doi.org/10.1016/j.trecan.2020.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, et al. DNA methylation, its mediators and genome integrity. Int J Biol Sci. 2015;11:604–17. https://doi.org/10.7150/ijbs.11218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dai X, Ren T, Zhang Y, Nan N. Methylation multiplicity and its clinical values in cancer. Expert Rev Mol Med. 2021;23:e2. https://doi.org/10.1017/erm.2021.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo C, Hajkova P, Ecker JR. Dynamic DNA methylation: in the right place at the right time. Science. 2018;361:1336–40. https://doi.org/10.1126/science.aat6806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Skvortsova K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer. Essays Biochem. 2019;63:797–811. https://doi.org/10.1042/ebc20190037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia. 2003;17:637–41. https://doi.org/10.1038/sj.leu.2402834.

    Article  CAS  PubMed  Google Scholar 

  9. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3. https://doi.org/10.1126/science.1210597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang Y, Chavez L, Chang X, Wang X, Pastor WA, Kang J, et al. Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc Natl Acad Sci USA. 2014;111:1361–6. https://doi.org/10.1073/pnas.1322921111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caldwell BA, Bartolomei MS. DNA methylation reprogramming of genomic imprints in the mammalian germline: a TET-centric view. Andrology. 2023;11:884–90. https://doi.org/10.1111/andr.13303.

    Article  CAS  PubMed  Google Scholar 

  12. Kunimoto H, Nakajima H. TET2: a cornerstone in normal and malignant hematopoiesis. Cancer Sci. 2021;112:31–40. https://doi.org/10.1111/cas.14688.

    Article  CAS  PubMed  Google Scholar 

  13. Belizaire R, Wong WJ, Robinette ML, Ebert BL. Clonal haematopoiesis and dysregulation of the immune system. Nat Rev Immunol. 2023. https://doi.org/10.1038/s41577-023-00843-3.

    Article  PubMed  Google Scholar 

  14. Kon T, Sasaki Y, Abe Y, Onozato Y, Yagi M, Mizumoto N, et al. Modulation of AMPK/ TET2/ 5-hmC axis in response to metabolic alterations as a novel pathway for obesity-related colorectal cancer development. Sci Rep. 2023;13:2858. https://doi.org/10.1038/s41598-023-29958-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu Q, Wang C, Zhou JX, Xu ZM, Gao J, Sui P, et al. Loss of TET reprograms Wnt signaling through impaired demethylation to promote lung cancer development. Proc Natl Acad Sci USA. 2022. https://doi.org/10.1073/pnas.2107599119.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J, et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 2013;32:663–9. https://doi.org/10.1038/onc.2012.67.

    Article  CAS  PubMed  Google Scholar 

  17. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021;134:783–91. https://doi.org/10.1097/cm9.0000000000001474.

    Article  PubMed  Google Scholar 

  18. Besaratinia A, Caceres A, Tommasi S. DNA hydroxymethylation in smoking-associated cancers. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23052657.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang Z, Du M, Yuan Q, Guo Y, Hutchinson JN, Su L, et al. Epigenomic analysis of 5-hydroxymethylcytosine (5hmC) reveals novel DNA methylation markers for lung cancers. Neoplasia. 2020;22:154–61. https://doi.org/10.1016/j.neo.2020.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alrehaili AA, Gharib AF, Alghamdi SA, Alhazmi A, Al-Shehri SS, Hagag HM, et al. Evaluation of TET family gene expression and 5-hydroxymethylcytosine as potential epigenetic markers in non-small cell lung cancer. In Vivo. 2023;37:445–53. https://doi.org/10.21873/invivo.13098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng G, Wu J, Ji M, Hu W, Wu C, Jiang J. TET2 inhibits the proliferation and metastasis of lung adenocarcinoma cells via activation of the cGAS-STING signalling pathway. BMC Cancer. 2023;23:825. https://doi.org/10.1186/s12885-023-11343-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen YTM, Fujisawa M, Nguyen TB, Suehara Y, Sakamoto T, Matsuoka R, et al. Tet2 deficiency in immune cells exacerbates tumor progression by increasing angiogenesis in a lung cancer model. Cancer Sci. 2021;112:4931–43. https://doi.org/10.1111/cas.15165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan J, Xu G, Chang Z, Zhu L, Yao J. miR-210 transferred by lung cancer cell-derived exosomes may act as proangiogenic factor in cancer-associated fibroblasts by modulating JAK2/STAT3 pathway. Clin Sci (Lond). 2020;134:807–25. https://doi.org/10.1042/cs20200039.

    Article  CAS  PubMed  Google Scholar 

  24. Zeng Z, Li T, Liu X, Ma Y, Luo L, Wang Z, et al. DNA dioxygenases TET2 deficiency promotes cigarette smoke induced chronic obstructive pulmonary disease by inducing ferroptosis of lung epithelial cell. Redox Biol. 2023;67:102916. https://doi.org/10.1016/j.redox.2023.102916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389:1134–50. https://doi.org/10.1016/s0140-6736(16)31891-8.

    Article  PubMed  Google Scholar 

  26. Zhu X, Xiong L, Lyu R, Shen Y, Liu L, Li S, et al. Regulation of TET2 gene expression and 5mC oxidation in breast cancer cells by estrogen signaling. Biochem Biophys Res Commun. 2022;589:240–6. https://doi.org/10.1016/j.bbrc.2021.12.042.

    Article  CAS  PubMed  Google Scholar 

  27. Broome R, Chernukhin I, Jamieson S, Kishore K, Papachristou EK, Mao SQ, et al. TET2 is a component of the estrogen receptor complex and controls 5mC to 5hmC conversion at estrogen receptor cis-regulatory regions. Cell Rep. 2021;34: 108776. https://doi.org/10.1016/j.celrep.2021.108776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu B, Wang H, Tan L. Dysregulated TET family genes and aberrant 5mC oxidation in breast cancer: causes and consequences. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13236039.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang Z, Jin Y, Zhang W, Chu C, Zhang K, Gao X, et al. Values of 5mC, 5hmC, and TET2 for identifying the presence and progression of breast precancerous lesion. J Clin Lab Anal. 2020;34:e23162. https://doi.org/10.1002/jcla.23162.

    Article  CAS  PubMed  Google Scholar 

  30. Wan F, Chen F, Fan Y, Chen D. Clinical significance of TET2 in female cancers. Front Bioeng Biotechnol. 2022;10: 790605. https://doi.org/10.3389/fbioe.2022.790605.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lyu R, Zhu X, Shen Y, Xiong L, Liu L, Liu H, et al. Tumour suppressor TET2 safeguards enhancers from aberrant DNA methylation and epigenetic reprogramming in ERα-positive breast cancer cells. Epigenetics. 2022;17:1180–94. https://doi.org/10.1080/15592294.2021.1997405.

    Article  PubMed  Google Scholar 

  32. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol. 2004;165:347–56. https://doi.org/10.1083/jcb.200310015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu X, Li S. TET2 inhibits tumorigenesis of breast cancer cells by regulating caspase-4. Sci Rep. 2018;8:16167. https://doi.org/10.1038/s41598-018-34462-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen Y, Liu L, Wang M, Xu B, Lyu R, Shi YG, et al. TET2 inhibits PD-L1 gene expression in breast cancer cells through histone deacetylation. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13092207.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, et al. Hypoxia drives breast tumor malignancy through a TET-TNFα-p38-MAPK signaling axis. Cancer Res. 2015;75:3912–24. https://doi.org/10.1158/0008-5472.Can-14-3208.

    Article  CAS  PubMed  Google Scholar 

  36. Storebjerg TM, Strand SH, Høyer S, Lynnerup AS, Borre M, Ørntoft TF, et al. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Clin Epigenet. 2018;10:105. https://doi.org/10.1186/s13148-018-0540-x.

    Article  CAS  Google Scholar 

  37. Sato H, Suzuki H, Toyota M, Nojima M, Maruyama R, Sasaki S, et al. Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis. 2007;28:2459–66. https://doi.org/10.1093/carcin/bgm178.

    Article  CAS  PubMed  Google Scholar 

  38. El-Harakeh M, Saliba J, Sharaf Aldeen K, Haidar M, El Hajjar L, Awad MK, et al. Expression of the methylcytosine dioxygenase ten-eleven translocation-2 and connexin 43 in inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 2022;28:5845–64. https://doi.org/10.3748/wjg.v28.i40.5845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rawłuszko-Wieczorek AA, Siera A, Horbacka K, Horst N, Krokowicz P, Jagodziński PP. Clinical significance of DNA methylation mRNA levels of TET family members in colorectal cancer. J Cancer Res Clin Oncol. 2015;141:1379–92. https://doi.org/10.1007/s00432-014-1901-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Uribe-Lewis S, Stark R, Carroll T, Dunning MJ, Bachman M, Ito Y, et al. 5-hydroxymethylcytosine marks promoters in colon that resist DNA hypermethylation in cancer. Genome Biol. 2015;16:69. https://doi.org/10.1186/s13059-015-0605-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li C, He J, Meng F, Wang F, Sun H, Zhang H, et al. Nuclear localization of TET2 requires β-catenin activation and correlates with favourable prognosis in colorectal cancer. Cell Death Dis. 2023;14:552. https://doi.org/10.1038/s41419-023-06038-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang Y, Wang G, Liang Z, Yang Y, Cui L, Liu CY. Loss of nuclear localization of TET2 in colorectal cancer. Clin Epigenet. 2016;8:9. https://doi.org/10.1186/s13148-016-0176-7.

    Article  CAS  Google Scholar 

  43. Shang Y, Jiang T, Ran L, Hu W, Wu Y, Ye J, et al. TET2-BCLAF1 transcription repression complex epigenetically regulates the expression of colorectal cancer gene Ascl2 via methylation of its promoter. J Biol Chem. 2022;298:102095. https://doi.org/10.1016/j.jbc.2022.102095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma H, Gao W, Sun X, Wang W. STAT5 and TET2 cooperate to regulate FOXP3-TSDR demethylation in CD4(+) T cells of patients with colorectal cancer. J Immunol Res. 2018;2018:6985031. https://doi.org/10.1155/2018/6985031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kristensen G, Strand SH, Røder MA, Berg KD, Toft BG, Høyer S, et al. 5hmC level predicts biochemical failure following radical prostatectomy in prostate cancer patients with ERG negative tumors. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20051025.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kamdar S, Isserlin R, Van Der Kwast T, Zlotta AR, Bader GD, Fleshner NE, et al. Exploring targets of TET2-mediated methylation reprogramming as potential discriminators of prostate cancer progression. Clin Epigenet. 2019;11:54. https://doi.org/10.1186/s13148-019-0651-z.

    Article  CAS  Google Scholar 

  47. Takayama K, Misawa A, Suzuki T, Takagi K, Hayashizaki Y, Fujimura T, et al. TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat Commun. 2015;6:8219. https://doi.org/10.1038/ncomms9219.

    Article  CAS  PubMed  Google Scholar 

  48. Nickerson ML, Das S, Im KM, Turan S, Berndt SI, Li H, et al. TET2 binds the androgen receptor and loss is associated with prostate cancer. Oncogene. 2017;36:2172–83. https://doi.org/10.1038/onc.2016.376.

    Article  CAS  PubMed  Google Scholar 

  49. Aasarey R, Yadav K, Kashyap BK, Prabha S, Kumar P, Kumar A, et al. Role of immunological cells in hepatocellular carcinoma disease and associated pathways. ACS Pharmacol Transl Sci. 2023;6:1801–16. https://doi.org/10.1021/acsptsci.3c00216.

    Article  CAS  PubMed  Google Scholar 

  50. Chen ML, Shen F, Huang W, Qi JH, Wang Y, Feng YQ, et al. Quantification of 5-methylcytosine and 5-hydroxymethylcytosine in genomic DNA from hepatocellular carcinoma tissues by capillary hydrophilic-interaction liquid chromatography/quadrupole TOF mass spectrometry. Clin Chem. 2013;59:824–32. https://doi.org/10.1373/clinchem.2012.193938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen Q, Yin D, Zhang Y, Yu L, Li XD, Zhou ZJ, et al. MicroRNA-29a induces loss of 5-hydroxymethylcytosine and promotes metastasis of hepatocellular carcinoma through a TET-SOCS1-MMP9 signaling axis. Cell Death Dis. 2017;8: e2906. https://doi.org/10.1038/cddis.2017.142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun GF, Ding H. NOP2-mediated m5C methylation of XPD is associated with hepatocellular carcinoma progression. Neoplasma. 2023;70:340–9. https://doi.org/10.4149/neo_2023_230110N17.

    Article  CAS  PubMed  Google Scholar 

  53. Matrenec R, Oropeza CE, Dekoven E, Tarnow G, Maienschein-Cline M, Chau CS, et al. Ten-eleven translocation (Tet) methylcytosine dioxygenase-dependent viral DNA demethylation mediates in vivo hepatitis B virus (HBV) biosynthesis. J Virol. 2024;98:e0172123. https://doi.org/10.1128/jvi.01721-23.

    Article  CAS  PubMed  Google Scholar 

  54. Chen D, Yan Y, Wang X, Li S, Liu Y, Yu D, et al. Chronic alcohol exposure promotes HCC stemness and metastasis through β-catenin/miR-22–3p/TET2 axis. Aging (Albany NY). 2021;13:14433–55. https://doi.org/10.18632/aging.203059.

    Article  CAS  PubMed  Google Scholar 

  55. Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing F, et al. TET2-mediated tumor cGAS triggers endothelial STING activation to regulate vasculature remodeling and anti-tumor immunity in liver cancer. Nat Commun. 2024;15:6. https://doi.org/10.1038/s41467-023-43743-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mcguigan A, Kelly P, Turkington RC, Jones C, Coleman HG, Mccain RS. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24:4846–61. https://doi.org/10.3748/wjg.v24.i43.4846.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fujikura K, Alruwaii ZI, Haffner MC, Trujillo MA, Roberts NJ, Hong SM, et al. Downregulation of 5-hydroxymethylcytosine is an early event in pancreatic tumorigenesis. J Pathol. 2021;254:279–88. https://doi.org/10.1002/path.5682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eyres M, Lanfredini S, Xu H, Burns A, Blake A, Willenbrock F, et al. TET2 drives 5hmc marking of GATA6 and epigenetically defines pancreatic ductal adenocarcinoma transcriptional subtypes. Gastroenterology. 2021;161:653-668.e16. https://doi.org/10.1053/j.gastro.2021.04.044.

    Article  CAS  PubMed  Google Scholar 

  59. Wang S, Liu X, Khan AA, Li H, Tahir M, Yan X, et al. miR-216a-mediated upregulation of TSPAN1 contributes to pancreatic cancer progression via transcriptional regulation of ITGA2. Am J Cancer Res. 2020;10:1115–29.

    PubMed  PubMed Central  Google Scholar 

  60. Yamashita H, Tourna A, Akita M, Itoh T, Chokshi S, Ajiki T, et al. Epigenetic upregulation of TET2 is an independent poor prognostic factor for intrahepatic cholangiocarcinoma. Virchows Arch. 2022;480:1077–85. https://doi.org/10.1007/s00428-021-03251-x.

    Article  CAS  PubMed  Google Scholar 

  61. Aslanyan MG, Kroeze LI, Langemeijer SM, Koorenhof-Scheele TN, Massop M, Van Hoogen P, et al. Clinical and biological impact of TET2 mutations and expression in younger adult AML patients treated within the EORTC/GIMEMA AML-12 clinical trial. Ann Hematol. 2014;93:1401–12. https://doi.org/10.1007/s00277-014-2055-7.

    Article  CAS  PubMed  Google Scholar 

  62. Pan X, Chang Y, Ruan G, Zhou S, Jiang H, Jiang Q, et al. TET2 mutations contribute to adverse prognosis in acute myeloid leukemia (AML): results from a comprehensive analysis of 502 AML cases and the Beat AML public database. Clin Exp Med. 2024;24:35. https://doi.org/10.1007/s10238-024-01297-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Venton G, Courtier F, Charbonnier A, D’incan E, Saillard C, Mohty B, et al. Impact of gene mutations on treatment response and prognosis of acute myeloid leukemia secondary to myeloproliferative neoplasms. Am J Hematol. 2018;93:330–8. https://doi.org/10.1002/ajh.24973.

    Article  CAS  PubMed  Google Scholar 

  64. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95:97–115. https://doi.org/10.1002/ajh.25684.

    Article  CAS  PubMed  Google Scholar 

  65. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–50. https://doi.org/10.1101/gad.276568.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Köhler F, Rodríguez-Paredes M. DNA methylation in epidermal differentiation, aging, and cancer. J Invest Dermatol. 2020;140:38–47. https://doi.org/10.1016/j.jid.2019.05.011.

    Article  CAS  PubMed  Google Scholar 

  67. Coston T, Pophali P, Vallapureddy R, Lasho TL, Finke CM, Ketterling RP, et al. Suboptimal response rates to hypomethylating agent therapy in chronic myelomonocytic leukemia; a single institutional study of 121 patients. Am J Hematol. 2019;94:767–79. https://doi.org/10.1002/ajh.25488.

    Article  CAS  PubMed  Google Scholar 

  68. Rogers HJ, Wang X, Xie Y, Davis AR, Thakral B, Wang SA, et al. Comparison of therapy-related and de novo core binding factor acute myeloid leukemia: a bone marrow pathology group study. Am J Hematol. 2020;95:799–808. https://doi.org/10.1002/ajh.25814.

    Article  CAS  PubMed  Google Scholar 

  69. O’sullivan JM, Hamblin A, Yap C, Fox S, Boucher R, Panchal A, et al. The poor outcome in high molecular risk, hydroxycarbamide-resistant/intolerant ET is not ameliorated by ruxolitinib. Blood. 2019;134:2107–11. https://doi.org/10.1182/blood.2019001861.

    Article  PubMed  Google Scholar 

  70. Bensberg M, Rundquist O, Selimović A, Lagerwall C, Benson M, Gustafsson M, et al. TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2021. https://doi.org/10.1073/pnas.2110758118.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sajadian SO, Ehnert S, Vakilian H, Koutsouraki E, Damm G, Seehofer D, et al. Induction of active demethylation and 5hmC formation by 5-azacytidine is TET2 dependent and suggests new treatment strategies against hepatocellular carcinoma. Clin Epigenet. 2015;7:98. https://doi.org/10.1186/s13148-015-0133-x.

    Article  CAS  Google Scholar 

  72. Jiang S. Tet2 at the interface between cancer and immunity. Commun Biol. 2020;3:667. https://doi.org/10.1038/s42003-020-01391-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 2013;500:222–6. https://doi.org/10.1038/nature12362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guan Y, Greenberg EF, Hasipek M, Chen S, Liu X, Kerr CM, et al. Context dependent effects of ascorbic acid treatment in TET2 mutant myeloid neoplasia. Commun Biol. 2020;3:493. https://doi.org/10.1038/s42003-020-01220-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gerecke C, Schumacher F, Berndzen A, Homann T, Kleuser B. Vitamin C in combination with inhibition of mutant IDH1 synergistically activates TET enzymes and epigenetically modulates gene silencing in colon cancer cells. Epigenetics. 2020;15:307–22. https://doi.org/10.1080/15592294.2019.1666652.

    Article  PubMed  Google Scholar 

  76. Peng D, He A, He S, Ge G, Wang S, Ci W, et al. Ascorbic acid induced TET2 enzyme activation enhances cancer immunotherapy efficacy in renal cell carcinoma. Int J Biol Sci. 2022;18:995–1007. https://doi.org/10.7150/ijbs.67329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guan Y, Hasipek M, Tiwari AD, Maciejewski JP, Jha BK. TET-dioxygenase deficiency in oncogenesis and its targeting for tumor-selective therapeutics. Semin Hematol. 2021;58:27–34. https://doi.org/10.1053/j.seminhematol.2020.12.002.

    Article  PubMed  Google Scholar 

  78. Huang F, Sun J, Chen W, He X, Zhu Y, Dong H, et al. HDAC4 inhibition disrupts TET2 function in high-risk MDS and AML. Aging (Albany NY). 2020;12:16759–74. https://doi.org/10.18632/aging.103605.

    Article  CAS  PubMed  Google Scholar 

  79. Zebley CC, Abdelsamed HA, Ghoneim HE, Alli S, Brown C, Haydar D, et al. Proinflammatory cytokines promote TET2-mediated DNA demethylation during CD8 T cell effector differentiation. Cell Rep. 2021;37: 109796. https://doi.org/10.1016/j.celrep.2021.109796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun B, Feng D, Wang G, Yu X, Dong Z, Gao L. DL-propargylglycine administration inhibits TET2 and FOXP3 expression and alleviates symptoms of neonatal Cows’ milk allergy in mouse model. Autoimmunity. 2020;53:467–75. https://doi.org/10.1080/08916934.2020.1836490.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by National Natural Science Foundation of China (32270964). Jiangsu Social Development Project (BE2022779).

Author information

Authors and Affiliations

Authors

Contributions

Wenxin Da and Jie Ma drafted and revised the manuscript. Shengjun Wang and Huaxi Xu were responsible for the topics, final editing, and preparation of the manuscript for submission. Ziyu Song, Xiaodong Liu, Yahui Wang critically revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jie Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

This review did not involve research with human participants or animals.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, W., Song, Z., Liu, X. et al. The role of TET2 in solid tumors and its therapeutic potential: a comprehensive review. Clin Transl Oncol (2024). https://doi.org/10.1007/s12094-024-03478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12094-024-03478-5

Keywords

Navigation