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Abstract
A biomarker is a measured indicator of a variety of processes, and is often used as a clinical tool for the diagnosis of dis-
eases. While the developmental process of biomarkers from lab to clinic is complex, initial exploratory stages often focus 
on characterizing the potential of biomarkers through utilizing various statistical methods that can be used to assess their 
discriminatory performance, establish an appropriate cut-off that transforms continuous data to apt binary responses of 
confirming or excluding a diagnosis, or establish a robust association when tested against confounders. This review aims to 
provide a gentle introduction to the most common tools found in diagnostic biomarker studies used to assess the performance 
of biomarkers with an emphasis on logistic regression.

Keywords Biomarker · Statistics · Diagnostic · Logistic regression · Receiving operatic characteristic · ROC · Cutoff

Abbreviations
NIH  National Institute of Health
EDRN  Early Detection Research Network
AUC   Area under the curve
ROC   Receiver operating characteristics curve
TPF  True positive fraction
TNF  True negative fraction
PPV  Positive predictive value
NPV  Negative predictive value
DOR  Diagnostic odds ratio
LR  Likelihood ratio
CI  Confidence interval
PTB  Pulmonary tuberculosis

Background

According to the Biomarkers consortium National Institute 
of Health (NIH), biomarkers are parameters that are objec-
tively measured and evaluated as indicators of normal bio-
logical processes, pathogenic processes, or pharmacologic 

responses to therapeutic intervention. Biomarkers may be 
generally classified according to their use as indicated in 
Table 1 [1].

Different types of biomarkers require different 
characterizations

The process of biomarker development comprises five 
phases based on the Early Detection Research Network, 
with each phase building upon the results of the previous 
one [2]. These phases are arranged according to the strength 
of evidence, progressing from weaker to stronger. Statistical 
tests are conducted in each phase to determine significance. 
However, the discussed tests are most critical in the initial 
phases. Figure 1 highlights an example for using different 
statistical tools in biomarker research from plasma.

These phases begin with discovery and progress through 
analytical validation, clinical validation or biological valida-
tion, clinical utility, and eventually, the final stage of associ-
ated implementation factors such as legal, ethical, and social 
ramifications as well as cost effectiveness.

A biomarker needs to meet a few fundamental require-
ments before it can move on to the discovery phase/first 
phase. It must be readily available, simple to prepare and 
store, and available in sufficient quantities to meet its meas-
urement requirements.

Analytical validation (the second phase) involves assess-
ing the reproducibility of the biomarker measurements. 

 * Dina Mohamed Ahmed Samir Elkahwagy 
 dina.ahmed-samir@guc.edu.eg; 

dinam.elkahwagy@yahoo.com

1 Pharmaceutical Biology Department, Faculty of Pharmacy 
and Biotechnology, German University in Cairo, 
Cairo 11835, Egypt

http://crossmark.crossref.org/dialog/?doi=10.1007/s12094-024-03413-8&domain=pdf
http://orcid.org/0009-0005-8169-9961


 Clinical and Translational Oncology

Variables such as cut-off values, limits of detection, linear-
ity, accuracy and precision, sensitivity and specificity, inter- 
and intra-assay coefficients of variation, and other factors are 
assessed at this stage.

The focus of the third stage, clinical validation, is the 
evaluation of qualities built on the thresholds established 
from the previous two phases. These performance indicators 
include likelihood and hazard ratios, area under the curve 
(AUC) or receiver operating characteristic curve (ROC), 
sensitivity and specificity, and positive and negative predic-
tive values.

Any biomarker’s ultimate objective is to make it through 
the fourth most difficult stage of clinical utility. The perfor-
mance of a marker is finally decided at this stage because it 
will be the basis for further clinical decisions. Because of 
this, not all markers deemed trustworthy or accurate may 
be ultimately accepted [3]. Assessing what qualifies a bio-
marker as clinically helpful is crucial and starts with quan-
tifying the diagnostic properties; therefore, the main factors 
and specifications that must be met for diagnostic tests to be 
considered of clinical interest are covered in the next section.

Biomarker discovery and development occurs over vari-
ous steps of qualification and validation that is supported by 

Table 1  Types of biomarkers

Type Definition

Diagnostic Used to determine or verify if a disease or other condition is present or not
Prognostic To determine the likelihood of disease recurrence or outcome in relation to the levels of the biomarker
Predictive To determine the association of an effect in relation to the levels of the biomarker when exposed to a 

therapeutic agent or environmental factor
Monitoring Measured periodically to determine the severity of an illness or medical condition, as well as to deter-

mine if a therapeutic agent or environmental factor has had any impact
Risk To determine the likelihood of an effect or disease in relation to the levels of the biomarker
Response To determine whether a therapeutic agent or environmental factor has had any biological effect

Fig. 1  Key statistical tools for plasma biomarkers as an example. This 
figure sheds the light on an example for the main statistical tools used 
in plasma biomarker research. The results obtained from the qPCR 
are analyzed using statistical tools as ROC. ROC is a plot between the 
true positive rate and false positive rate. AUC is calculated with its 
corresponding p value. Thus, it can determine the marker’s ability to 

discriminate between patients and controls. Sensitivity and specificity 
are calculated as well. A prediction model is conducted also to pre-
dict a variable by one or more other variables and measure the influ-
ence of one or more variable on another variable. PPV, NPV, sensitiv-
ity and specificity were also calculated from the regression model
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various statistical elements that ensure reproducibility and 
utility of the biomarker within its context of use [4, 5]. Initial 
stages of establishing a link between the biomarker and the 
disease’s outcome are supplemented by statistical tools that 
quantify the relationship to not only provide further degrees 
of evidence of its performance, but also enable tailoring of 
the biomarker for its intended use [6]. For example, dis-
eases with low prevalence rates would benefit more from 
biomarkers having higher specificity rather than sensitivity 
[7]. Establishing preliminary characteristics of performance 
in initial stages additionally helps guide future directions 
within the study [8].

Criteria for a useful diagnostic test

The traditional method of testing the usefulness or accuracy 
of a diagnostic test is to measure it against a reference diag-
nosis typically used in clinical settings.

Diagnostic tests are often binary in their conclusion: 
they either aim to confirm or exclude a diagnosis. While 
many statistical methods exist, certain measures of diag-
nostic accuracy are more commonly used than others to 
characterize biomarkers. Such measures include classifica-
tion probabilities (true positive fraction or TPF/sensitivity, 
true negative fraction or TNF/specificity), predictive values 
(positive predictive value or PPV, negative predictive value 
or NPV), diagnostic odds ratios (DORs), likelihood ratios 
(LRs), ROC curves, and Euclidean and Youden indexes. 
While some measures are discriminative (for example, ROC 
curves), others could be predictive (as in the case with logis-
tic regression) in nature. Predictive measures are most help-
ful in determining the likelihood that a disease will afflict 
an individual, for example, while discriminative measures 
are typically used to simply classify those with the disease 
from those without. While good discriminative performance 
is often more aligned with diagnostic biomarkers, predictive 
measures are helpful in quantifying the magnitude of the 
test’s result on the outcome. The ideal diagnostic biomarker 
would be one to discriminate perfectly, being able to com-
pletely diagnose an individual with a disease without any 
false diagnoses taking place. However, it is often difficult to 
realize such concepts for a variety of reasons. The choice on 
the acceptable degree of diagnostic uncertainty would then 
be based on a variety of factors on the clinical level, such as 
the nature of the disease, the cost of medical care, and the 
psychological effects of a missed diagnosis.

Sensitivity and specificity

Sensitivity (the test’s ability to truly detect all people with 
the disease, or the true positive) and specificity (the test’s 
ability to discount all people without the disease) are com-
mon metrics used to assess a diagnostic test. Although a 
test with both high sensitivity and specificity is desirable, 
trade-offs can be made depending on the intent of use, 
setting and the nature of the disease itself to prioritize one 
over the other. Sensitivity and specificity can be derived 
by simple equations from a confusion matrix (also known 
as a classification table), as demonstrated in Table 2. It 
includes all possible possibilities in a clinical setting: true 
positive indicates those correctly diagnosed with the dis-
ease, false positives are those diagnosed without actually 
having the disease, false negative indicates those misdiag-
nosed as healthy despite actually having the disease, and 
finally true negatives are those correctly diagnosed as not 
having the disease [9]. All the equations derived from the 
matrix are shown in Table 3.

The implications of false positives and negatives should 
be considered when designing the metrics and cut-offs of 
the diagnostic test. For example, a false negative means 
that a patient is misleadingly thought to be healthy until 
further symptoms develop or mortality occurs as a result 
of no treatment. Such a consequence is made worse in 
diseases where early diagnosis could result in treatment 
and full recovery or a better prognosis at minimum. On the 
other hand, a false positive result would cause unneces-
sary, if not harmful, medical interventions that may cause 
financial, psychological and overall avoidable harm to the 
individual.

Table 2  Confusion matrix or classification table

Observed

True False

Predicted
True True Positive (TP) False Positive (FP)
False False Negative (FN) True Negative (TN)

Table 3  Diagnostic equations derived from the confusion matrix

Possibilities in clinical setting Equation

False positive rate (FPR) FP/FP + TN
False negative rate (FNR) FN/FN + TP
Sensitivity TP/FN + TP
Specificity TN/TN + FP
Accuracy TN + TP/

TN + FP + FN + TP
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Certain aspects of the disease are also critical in design-
ing and evaluating diagnostic tests, particularly disease 
prevalence. Prevalence is defined as the fraction of people 
in the population having the disease as opposed to the total 
population under study itself. Prevalence is an important 
characteristic to take into consideration, particularly in 
metrics of diagnostic accuracy such as predictive values 
[10].

The tradeoffs in the measures of accuracy are therefore 
evaluated by assessing the relative risk of false positive or 
negative results within the population of the disease while 
taking into account the prevalence of the disease within 
the population itself as well.

PPV and NPV

The positive predictive value is the proportion of correctly 
predicted cases with the observed outcome versus the total 
number of cases predicted to have the outcome. The nega-
tive predictive value, on the other hand, is the proportion of 
correctly predicted cases lacking the observed characteristic 
in comparison with the overall number of cases predicted 
as not having the outcome. PPV and NPV are functions of 
prevalence and are influenced by prevalence. In other words, 
to calculate the two values, the prevalence must be known. 
While PPV and NPV are metrics often used in diagnostic 
accuracy studies, any interpretation derived would not be 
generalizable across studies, as they are greatly affected by 
prevalence. Meaning the interpretation derived would only 
be exclusive to the studied population.

In general, high specificity (ability to correctly diagnose 
those without disease or false positives/true negatives) tends 
to occur with a high PPV (ratio of truly diagnosed over all 
the diagnosed) value due to the presence of few false posi-
tives/falsely diagnosed.

ROC curve

The receiver operating characteristic curve is a curve drawn 
by joining together a series of points obtained from the 
determination of (sensitivity/true positive; 1—specific-
ity/false positive) at different cut-offs. The area under the 

generated curve is used to evaluate classification perfor-
mance with all possible different cut-offs of the biomarker.

There is no absolute consensus or calculation to derive 
what would be an acceptable AUC for a diagnostic bio-
marker, but generally speaking, most studies tend to follow 
general guideline values highlighted in Table 4 to evaluate 
the value calculated by the plot [11, 12]: Greater AUC val-
ues indicate better test performance, with AUC values that 
can range from 0.5 (no diagnostic ability) to 1.0. (Perfect 
diagnostic ability). The ROC curve is an important statisti-
cal technique for evaluating the performance of diagnostic 
medical tests, especially for tests that aim to detect cancers 
early [13].

Another way of interpretation would be to take into con-
sideration the clinical setting where the biomarker will be 
used to determine whether the given AUC would have any 
meaningful significance.

Logistic regression

To fit models for the probability of disease as the outcome 
given marker values, logistic regression is used. Logistic 
regression, also known as the logistic model or the logit 
model, examines the relationship between a single or sev-
eral independent continuous variables and a dichotomous/
binary dependent variable. These types of analyses create a 
model to relate the outcome (the dependent variable), to the 
predictor variable (the independent variable). The probabil-
ity of the occurrence of an outcome is estimated by fitting 
input data from epidemiological data (for example, patients 
and controls) to a logistic curve, where the predictive power 
is represented as the regression coefficients. There are two 
types of models used in analyses, depending on the number 
of possible outcomes in the dependent (Predictor) variable: 
if it is two/dichotomous, then binary logistic regression 
is utilized, and if it consists of more than two then multi-
variate logistic regression is used. Possible uses of logistic 
regression in the field of biomarker studies are highlighted 
in Table 5.

Feature selection is another aspect of logistic regression 
that may be beneficial in the early stages of biomarker dis-
covery, especially in high throughput techniques (for exam-
ple, “-omics” methods involving DNA or RNA sequencing, 
or mass spectrometry) [14], where many potential candi-
dates exist. Such methods help decrease the dimensionality 
of the data by removing redundant or irrelevant candidates 
to minimize complexity and further fine-tune the model gen-
erated to prevent overfitting [15]. This can be performed 
through several broad methods that include filter, wrapper, 
and embedded methods. The methods are classified depend-
ing on whether or not a model needs to be generated through 
learning algorithms like logistic regression in order to assess 

Table 4  General interpretation of AUC values

AUC of ROC Interpretation

0.50–0.60 No value diagnostic biomarker
0.60–0.70 Poor diagnostic biomarker
0.70–0.80 Acceptable diagnostic biomarker
0.80–0.90 Good diagnostic biomarker
0.90–1.00 Excellent diagnostic biomarker
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the features, with filter being the only methodology out of 
the three to act independently of the model [16]. Hybrid 
methods that combine two or all three exists as well [17]. 
An overview of each method’s strengths and weaknesses is 
highlighted in Table 6.

The evaluation of the logistic regression model includes 
multiple phases. The overall model is evaluated in terms 
of the relationship between all independent variables and 
the dependent variable. Then, the significance of the inde-
pendent variable or variables is determined by assessing the 
derived regression coefficient per variable. Another phase 
includes assessing the model’s predictive accuracy/dis-
criminating ability. The model must then be validated. The 
exhaustive steps are underlined below:

1. Evaluation of the overall model
  The overall fit of a model can be evaluated by compar-

ing the predicted model to a null model (a model with 
no independent variable) when fitted to the input data. 
The model is said to be a better fit only if it exhibits 
improvement over the empty model [18], which is usu-
ally assessed through an Omnibus test or a Hosmer & 
Lemeshow test [11, 19].

2. Predictive accuracy and discrimination of model
  Once the fitness of a model is evaluated, the accuracy 

is assessed. The accuracy can be determined from the 
sensitivity and specificity of the model, which is calcu-
lated using a confusion matrix. A user defined cut-off 
is defined by the user (anywhere from 0 to 1) where 

Table 5  Possible uses of logistic regression is diagnostic studies

Application Response variable Predictor variable References

Association Has septic shock or not? Expression value of 13 lncRNAs from Micro-
array sets

[32]

High and low MSC-AS1 levels The clinicopathological features of gastric 
cancer

[33]

Predictive model clinically diagnosed Pulmonary tuberculosis 
(PTB) cases/patients with suspected PTB

LncRNA levels and electronic health records [34]

Has septic shock/normal controls LncRNA levels [35]
Screening test (risk score analysis) Risk of developing severe acute pancreatitis systemic inflammatory response syndrome, 

albumin, blood urea nitrogen and pleural 
effusion

[36]

Predicting hilar cholangiocarcinoma develop-
ment

Levels of lncRNA [37]

Risk assessment Metabolic syndrome Various Biomarkers [38]
Adjusting for confounder effects 1. Plasma or CSF biomarker levels (beta-amy-

loid, phosphorylated tau, neurofilament light, 
glial fibrillary acidic protein)

2. development of dementia

1. Plasma or CSF biomarkers (beta-amyloid, 
phosphorylated tau, neurofilament light, 
glial fibrillary acidic protein) with confound-
ers

2. Plasma biomarkers and confounders

[39]

Table 6  The advantages and disadvantages of each feature selection method that is commonly used with learning algorithms

Methods Advantages Disadvantages References

Filter 1. Less computationally exhaustive
2. Faster
3. Less risk of overfitting/more generalizable due to being 

independent of model

1. decreased predictive performance of model
2. Due to generalizability, often selects a large number (if 

not all) of features

[40–42]

Embedded 1. Selects features to cater better to the model, with both 
feature selection and model training done simultaneously

2. Performs better than filter method

1. Risk of overfitting
2. Slower than filter method Not free from model’s bias 

due to depending on it
3. Computationally exhaustive

[40–42]

Wrapper 1. Selects features to cater better to the model
2. Performs better than filter method

1. Risk of overfitting
2. Not free from model’s bias due to depending on it
3. Slowest method
4. Most computationally exhaustive, least favorable with 

high volume datasets

[40–42]
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all predicted values above the cut-off are classified as 
predictive [18].

3. Statistical significance of regression coefficients of inde-
pendent variable

  Is the predictive power of the independent vari-
able significant enough? The relationship between the 
dependent and independent variable can be confirmed 
through statistical significance, which can be assessed 
by multiple tests such as the Wald statistic, the odds 
ratio, and the likelihood ratio test [18, 20].

4. Validation of the model
  Once the model has been constructed, one final point 

must be assessed: whether the model developed with 
the independent/predictor variables can correctly predict 
the dependent/outcome variable in another subset of the 
population. There are two major methods of validation: 
external and internal. External validation is performed 
by testing the model on an entirely different dataset than 
the one used to build the model. Internal validation is 
performed using a similar subset of the population used 
to develop the model, if not the same.

  4.a Validation by frequentist approach
  The split-sample technique is performed by randomly 

splitting the dataset into training and validation sets. The 
disadvantages of such a method include the reduction of 
the dataset sample size used to develop the model, and 
different splitting formats may produce different results. 
Cross-validation mimics the split-sample method of 
dividing the sample into a training and validation set 
but adds to it in that it is a resampling technique where 
development and testing are done in rounds.

  Another commonly used method is bootstrap valida-
tion. This type depends on a hypothetical test set created 
based on the given values and is used to validate the 
model. In bootstrapping, the complete dataset is resa-
mpled several times with replacement, with statistics 
being generated on each resampling, and the statistics 
from each resampling are merged in a specific way. In 
logistic regression models developed in smaller samples, 
bootstrapping is commonly used to derive optimal esti-
mates of internal validity [21].

  Biomarker studies that have been published with 
logistic regression often report either the coefficient of 
the logistic regression equation or the odds ratio (which 
is simply the exponent of the coefficient) [22], along 
with the confidence intervals (CI) or the significance 
(p value), to indicate the statistical significance of the 
associations established by these values between the 
predictor variable and the outcome variable.

Bayesian approach

The Bayesian approach is another statistical language 
approach that can substitute conventional logistic regres-
sion. This language has the ability to take into consideration 
our beliefs (current beliefs) and obtain the probability of 
distribution. The following equation demonstrates Bayes’ 
theorem.

This approach depends mainly on the availability of prior 
probabilities before conducting the study which is represented 
as P(A) (probability of A occurring). P(B/A) is the probability 
of event B to occur given A and this is termed the likelihood. 
P(B) is the probability of B to occur, and this is termed the evi-
dence. Finally, from all this information, Pr(A/B) is computed, 
which is the posterior distribution, meaning that the prior is 
converted to posterior after taking into account the results of 
the experiment [23].

One main advantage in this approach is its ability to validate 
the model if the data available is limited. For instance, rare dis-
eases could be a hurdle that face any clinical study due to small 
number of patients in the population [24, 25]. It also gives a 
range for how to be certain for or against a hypothesis rather 
than a point estimate. However, it is still a more complex type 
of statistical analysis, and more advanced statistical software 
is needed to utilize this method.

One main disadvantage, on the other hand, is that priors 
could be subjective and possibly affect the posterior distribu-
tion in some way. Moreover, the presence of priors is critical, 
which is not possible without the analysis.

Cut‑off determination

In diagnostic studies, the test should yield binary outcomes 
(positive or negative). When a new biomarker is explored, 
the optimum cut-off to transform the continuous values into 
dichotomous ones is assessed through the use of several met-
rics that often incorporate sensitivity and specificity [26]. A 
general outline is detailed below of the most common calcula-
tions used for such assessments.

Youden’s index

An optimum cut-off in the statistical sense would be one with 
the greatest possible difference between the total positive rate 
(i.e., Sensitivity) and false positive rate (i.e., 1-Specificity) [27].

Diagnostic odds ratios/DOR

The DOR of a test is the ratio of the odds of positivity in dis-
eased subjects compared to the odds of positivity in healthy 
subjects. The ratio is derived from sensitivity and specificity 
and as a result, is not affected by the prevalence of the disease 
[28]. DOR can be calculated using the following equation:
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Values higher than one generally indicate some degree of 
diagnostic usefulness [28], with increasing values indicat-
ing better performances. The DOR is commonly used as a 
measure of association in epidemiology; however, the dis-
criminatory power is often put to the question [29, 30]. Since 
an odds ratio is a single number, it does not account for 
the trade-off between accurately identifying cancer patients 
and mistakenly identifying otherwise healthy individuals, 
but may be useful in characterizing population level risks 
[29]. Hence, some studies discourage the use of DOR when 
examining binary early detection biomarkers [31].

Likelihood ratios/LR

It is defined as the ratio of the probability of correctly diag-
nosing the disease in patients with the target disease to the 
probability of incorrectly diagnosing the disease. The LR 
predicts how likely a patient would have a disease using sen-
sitivity and specificity. (LR+ indicates positive test results, 
while LR- indicates negative test results).

They are calculated using the following equations:

Rough guidelines on how LR is generally interpreted in 
the literature [27] are highlighted in Table 7. 

DOR = (Sensitivity ∗ Specificity)
∕(1 − Specificity∕False positives
∗ 1 − Sensitivity∕False negatives)
or (Sensitivity∕1 − Sensitivity)
∕(1 − Specificity∕Specificity).

LR+ = Sensitivity∕1 − Specificity

LR− = 1 − Sensitivity∕Specificity

Conclusion

The clinical field is still in an immense need for the develop-
ment of new biomarkers.

Biomarkers offer guidance for clinicians at the beginning 
or throughout the clinical intervention itself. They could be 
screening, diagnostic, prognostic, predictive, monitoring, 
risk or response. Regardless of their specific use, studying 
biomarkers is often tied to statistical analysis. Statistical 
analyses are often carried out by biostatisticians.

The hurdles encountered by clinical researchers in sta-
tistical analysis are often attributed to the lack of a com-
prehensive and straightforward guide outlining the essential 
steps, together with their corresponding definitions, calcu-
lation methods, and reasoning behind why and how each 
calculation is used. This review serves as a general guide for 
the main statistical analyses that are needed to develop and 
validate a biomarker study.
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