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Abstract
Breast cancer (BC) leads to the most amounts of deaths among women. Chemo-, endocrine-, and targeted therapies are the 
mainstay drug treatments for BC in the clinic. However, drug resistance is a major obstacle for BC patients, and it leads to 
poor prognosis. Accumulating evidences suggested that noncoding RNAs (ncRNAs) are intricately linked to a wide range 
of pathological processes, including drug resistance. Till date, the correlation between drug resistance and ncRNAs is not 
completely understood in BC. Herein, we comprehensively summarized a dysregulated ncRNAs landscape that promotes or 
inhibits drug resistance in chemo-, endocrine-, and targeted BC therapies. Our review will pave way for the effective manage-
ment of drug resistance by targeting oncogenic ncRNAs, which, in turn will promote drug sensitivity of BC in the future.
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PTBP1	� Polypyrimidine tract binding protein 1
PTEN	� Phosphatase and tensin homologs
RB1	� Retinoblastoma protein
RBP	� RNA-binding protein
ROS	� Reactive oxygen species
RPM	� RNA recognition motif
SERDs	� Selective estrogen receptor degraders
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siRNAs	� Small interfering RNAs
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SPIN	� Spindlin
STMN1	� Stathmin1
TF	� Transcription factor
TFAM	� Mitochondrial transcription factor A
TFF3	� Trefoil factor 3
TGF-β	� Transforming growth factor β
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UMPS	� Uridine monophosphate synthetase
VEGFA	� Vascular endothelial growth factor A
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Introduction

Breast cancer (BC) is a significant global health challenge 
[1]. It is a heterogeneous disease, involving numerous catego-
ries. There are five main categories of BC, stratified by the 
expressions of estrogen receptor (ER), progesterone receptor 
(PR), human epidermal growth factor receptor 2 (HER2), and 
Ki-67. The corresponding categories are Luminal A (LA), 
Luminal B (LB), Human epidermal growth factor receptor 2 
(HER2) + , Normal breast-like (NBl) and Basal subtype [Triple 
negative breast cancer (TNBC)] [2, 3]. LA tumors typically 
show strong ER and PR levels and scarce HER2 and Ki-67 
levels. LB cancers display strong ER and PR levels, strong or 
weak HER2 levels, and elevated Ki-67 levels. Given their dis-
tinct gene expressions, LA and LB tumors are generally more 
responsive to endocrine therapy, compared to chemotherapy 
[4]. In contrast, HER2 tumors have no ER and PR expres-
sions, instead, they express HER2 and Ki-67. HER2 tumors 
are, therefore, better managed with targeted therapies, and ade-
quately respond to neoadjuvant chemotherapy [4, 5]. The NBl 
form expresses ER and PR, and does not express HER2 and 
Ki-67. Therefore, these also respond well to chemotherapy. 
Lastly, TNBC responds well to neoadjuvant chemotherapy, 
however, the distant recurrence rates are markedly higher than 
other cancer forms [4]. Despite massive developments in vari-
ous treatment regimen, a large quantity of patients still expe-
rienced disease recurrence and reduced survival due to new 

or acquired resistance to treatments, which, in turn, enhances 
metastatic risk [6]. Unfortunately, once metastasis occurs, the 
five-year overall survival (OS) rate becomes less than 25% 
[7]. Numerous cancer drug resistance pathways involve modi-
fications in drug efflux, DNA repair, escape from apoptosis, 
immune system evasion, improvised and differential metabo-
lisms, drug target mutations, and epigenetic alterations [8].

Noncoding RNAs (NcRNAs) are known to regulate drug 
resistance in BC patients. Hence, it is critical to elucidate the 
correlation and underlying mechanism of the relationship gov-
erning ncRNAs and drug resistance in BC. Scientists reported 
that > 80% of the entire human genome undergoes transcrip-
tion [9, 10]. Interestingly, only < 2% of the transcription pro-
duces functional proteins, and the rest generates ncRNAs. 
NcRNAs are largely separated into two categories, depending 
on their size and function: (1) short ncRNAs:  < 200-nucleo-
tides long, include microRNAs (miRNAs), small interfering 
RNAs (siRNAs), small nucleolar RNAs (snoRNAs), and 
Piwi-interacting RNAs (piRNAs); and (2) long non-coding 
RNAs (lncRNAs): > 200-nucleotides long, transcribed via 
RNA polymerase II, and contains a 5’ cap, transcription 
start site, and polyadenylation [11]. There is a peculiar class 
of lncRNAs called circular RNAs (circRNAs), and they are 
ubiquitously found within mammals [12]. LncRNAs serve 
essential roles in tumor pathogenesis via both transcriptional 
and post-transcriptional regulation [13, 14]. In general, cyto-
plasmic lncRNAs modulate cell signaling, as well as transcript 
stability or protein translation, while nuclear lncRNAs regulate 
chromatin associations, as well as transcriptional and mRNA 
stability regulation [15]. MiRNAs belong to a category of 
small ncRNA that suppress protein-coding gene expression 
by targeting respective transcripts [16]. Several studies sug-
gested that ncRNAs modulate gene expression at the epige-
netic, transcriptional, post-transcriptional, translational and 
even sub-cellular localization levels [17]. Therefore, ncRNAs 
are known to regulate multiple facets of BC progression like 
cell proliferation, angiogenesis, epithelial-mesenchymal tran-
sition (EMT), cancer stem cells (CSCs), drug resistance, and 
metastasis [17].

In this report, we performed a review of the detailed 
mechanisms behind the ncRNAs-mediated regulation of 
chemo-, endocrine-, and targeted therapeutic resistance in 
BC. Moreover, our review identified possible therapeutic 
targets that may potentially diminish drug resistance or 
enhance BC treatment efficacy.

NcRNAs regulate chemotherapeutic 
resistance in BC

Chemotherapy is a well-known and effective BC treat-
ment that improves prognosis and OS of patients [18]. 
Chemotherapy includes anthracyclines and/or taxane 
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administration, and in select patients, cyclophospha-
mide, methotrexate, and/or 5-flurouracil (5-FU) are used 
[19]. The mechanism underlying chemoresistance likely 
involves both genetic and epigenetic alterations like 
drug-driven mutations, drug metabolic enzyme abnor-
malities, cell-cycle- and apoptosis- related genes, DNA 
methylation, and histone modifications [20]. Moreover, 
most chemotherapeutic medications destroy DNA, and 
in response, cells elicit a DNA damage response (DDR), 
which may inadvertently induce drug resistance [21]. In 
addition, drug efflux is a commonly examined mechanism 
of cancer drug resistance, and enhanced drug efflux is 
commonly present in multidrug resistance (MDR) [22, 
23]. Up-regulations in the levels of ATP-binding cassette 
(ABC) superfamily members like P-gp (ABCB1), multid-
rug-resistance-associated protein 1 (MRP1/ABCC1), mul-
tidrug-resistance-associated protein 7 (MRP7/ABCC10), 
and BC resistance protein (BCRP/ABCG2) are frequently 
observed in drug resistance associated with various forms 
of cancers [24–26].

NcRNAs promote chemoresistance

The mechanisms of ncRNAs promoting chemoresistance 
are summarized based on the following aspects: (i) EMT, 
(ii) cell cycle, (iii) autophagy, (iv) drug efflux transport-
ers, (v) pro-survival signaling pathways, (vi) apoptosis, 
and (vii) DNA damage repair (Fig. 1 and Table 1).

LINK00160

Abnormally expressed trefoil factor 3 (TFF3) enhances 
oncogenesis of prostate cancer cells [27]. In addition, 
LINC00160 overexpression was shown to increase TFF3 
levels via C/EBPβ regulation. In doing so, MCF-7 cells were 
made to be resistant to paclitaxel (PTX) and BT474 cells to 
doxorubicin (DOX) [28].

LncMIAT

Autophagy is a cellular process that is induced by nutri-
ent deprivation, endoplasmic reticulum stress (ERS), and 
hypoxia [29]. The ERS is intricately linked to drug resist-
ance in BC [30–32]. 5-FU induces BC cell resistance via 
induction of ERS. As a result, the GRP78/OCT4/lncRNA 
MIAT/AKT pathway is activated [33].

LncNEAT1

HMGA2 is reported to regulate EMT transcription fac-
tors (TFs) in BC patients [34]. LncRNA NEAT1 promotes 
cell proliferation using the miR-211/HMGA2 pathway in 
BC patients. They also revealed that NEAT1 suppression 
enhances 5-FU responsiveness to BC [35].

LncRNA BORG

LncRNA BORG levels are very susceptible to cytotoxic 
medications, and promotes a transcriptional response that 
mediates survival and chemoresistance of TNBC cells. 

Fig. 1   NcRNAs promote 
chemo-resistance
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Mechanically, the chemo-resistant BORG traits depend on 
the robust activation of the NF-κB axis via a new BORG-
based feedback loop, and via its ability to interact with and 
activate RPA1 [36].

LncRNA NONHSAT101069

Overexpressing lncRNA NONHSAT101069 enhances epi-
rubicin resistance and EMT processing of BC cells. In terms 
of underlying mechanism, NONHSAT101069 functions as 
a competing endogenous RNA (ceRNA) and sequesters 
miR-129-5p, which, in turn, promotes epirubicin resistance, 
metastasis, and EMT processing of BC cells via the Twist1 
axis [37].

LncRNA FTH1P3

FTH1P3 upregulation accelerates cell proliferation, migra-
tion, cell cycle and migration via suppression of miR-
224-5p in uveal melanoma cell lines [38]. FTH1P3 levels 
are enriched in PTX-resistant BC tissue specimen and cells. 

Mechanically, FTH1P3 serves as a ceRNA and sequesters 
miR-206 to augment ABCB1 protein concentration [39].

Linc00518

MRP1 which originated from the ABCC1 gene, belongs to 
the ABC transporter superfamily residing on chromosome 
16p13.1. Elevated MRP1 levels enhance MDR in BC [40, 
41]. Linc00518 induces MDR in BC by modulating the miR-
199a/MRP1 network [42].

LncZEB1‑AS1

ZEB1-driven BC progression occurs via acceleration of 
EMT, tumor pathogenesis, and angiogenesis [43, 44]. 
LncRNA ZEB1-AS1 is ubiquitously expressed in BC. In 
addition, researchers demonstrated that ZEB1-AS1 defi-
ciency drastically reduces ZEB1 content by up-regulating 
miR-129-5p, which, ultimately enhances drug sensitivity to 
cisplatin in BC [45].

Table 1   NcRNAs promote chemotherapeutic resistance in breast cancer

Either up-regulated (↑) or down-regulated (↓) in chemotherapy resistant BC cells

NcRNAs Expression Target gene Drug Refs

LINK00160 Upregulation C/EBPβ/TEF3 Paclitaxel
and DOX

[28]

LncMIAT Upregulation AKT 5-FU [33]
LncNEAT1 Upregulation Unknown 5-FU [35]
LncRNA BORG Upregulation RPA1/NF-κB Chemotherapy [36]
LncNONHSAT101069 Upregulation MiR-129-5p;Twist1 Epirubicin [37]
LncRNA FTH1P3 Upregulation MiR-206/ABCB1 Paclitaxel [38, 39]
Linc00518 Upregulation MiR-199a/MRP1 MDR [42]
LncZEB1-AS1 Upregulation MiR-129-5p/ZEB1 Cisplatin [45]
LncPTENP1 Upregulation MiR-20a/PTEN/PI3K/Akt ADR [47]
LncMat2B Upregulation DNA damage; ROS Cisplatin [48]
Linc00668 Upregulation SND1 DOX [53]
LncMAPT-AS1 Upregulation MAPT Paclitaxel [56]
LncRNA DCST1-AS1 Upregulation ANXA1 DOX and Paclitaxel [57, 58]
LncRNA CBR3-AS1 Upregulation JNK1/MEK4/MAPK ADR [59]
MIR200CHG Upregulation YB-1 Cisplatin [60]
LncRNA GAS5 Upregulation MiR-221-3p/DKK2; Wnt/β-catenin ADR [63]
CircCDR1as Upregulation MiR-7/CCNE1 5-FU [65]
MiR-191-5p Upregulation SOX4 DOX [66, 67]
MiR-105/93-3p Upregulation SFPR1/Wnt/β-catenin Cisplatin [68]
MiR-132/212 Upregulation PTEN/AKT/NF-Κb/BCRP DOX [69]
MiR-424(322)/503 Downregulation BCL-2;IGF1R Paclitaxel [70]
MiR-125b Upregulation Bak1 Paclitaxel [71]
MiR-671-5p Downregulation FOXM1 Cisplatin and Paclitaxel [76]
MiR-1246 Upregulation CCNG2 Chemotherapy [80, 81]
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LncPTENP1

There is evidence of considerable homology between 
lncRNA PTENP1 and the upstream section of the 
3’untranslated region (UTR) of phosphatase and tensin 
homologs (PTEN). As such, lncPTENP1 readily modulates 
PTEN levels, which, in turn, affects cancer pathogenesis 
[46]. PTENP1 modulates Adriamycin (ADR) chemoresist-
ance by interacting with miR-20a via the PTEN/PI3K/Akt 
network in BC [47].

LncMat2B

LncMat2B is ubiquitously expressed in the cisplatin-resist-
ant MCF-7 cell line. Moreover, its incorporation into wild 
type MCF-7 cells reduces sensitivity to cisplatin exposure 
by diminishing DNA damage and reactive oxygen species 
(ROS) formation [48].

Linc00668

SND1 is crucial for tumor progression in BC [49–52]. 
Linc00668 promotes BC cell resistance to DOX via inter-
action with SND1. This enables the expression of down-
stream SND1 targets [53].

LncRNA MAPT‑AS1

MAPT is strongly correlated with PTX resistance in BC 
[54, 55]. MAPT-AS1 is an antisense MAPT transcript, 
and it is co-expressed with MAPT. Mechanically, MAPT-
AS1 overexpression partially protects MAPT transcripts 
from degradation, and vice versa. Conversely, MAPT-AS1 
knock-down makes cancer cells more susceptible to PTX 
by modulating MAPT levels in ER-negative BC [56].

LncRNA DCST1‑AS1

Annexin A1 (ANXA1) modulates cancer cell prolifera-
tion, apoptosis, invasion, and metastasis [57]. DCST1-AS1 
induces transforming growth factor β (TGF β)-triggered 
EMT, and augments DOX and PTX resistance in TNBC 
cells using ANXA1 [58].

LncRNA CBR3‑AS1

LncRNA CBR3 antisense RNA 1 (CBR3-AS1) induces 
chemotherapeutic (ADR) resistance of BC by serving as 

a ceRNA via the JNK1/MEK4-based mitogen-activated 
protein kinase (MAPK) network [59].

MIR200CHG

Cellular and animal models revealed that MIR200CHG 
induces BC cisplatin resistance. Mechanically, MIR200CHG 
physically interacts with the TF Y-box binding protein-1 
(YB-1), and prevents its ubiquitination-mediated destruc-
tion. MIR200CHG modulates YB-1-mediated phosphoryla-
tion at serine 102, which, in turn, influences expression of 
tumor cell cisplatin resistance-related genes [60].

LncRNA GAS5

P-gp/ABCB1 overexpression increases energy-based cyto-
toxic drug efflux from cancer cells, thereby enhancing drug 
resistance [61, 62]. A recent study revealed that GAS5 
restores the ABCB1-induced ADR resistance using the 
miR-221-3p/DKK2 pathway, and by suppressing the Wnt/β-
catenin network [63].

CircCDR1as

CDR1as serves as a miR-7 suppressor in the developing 
midbrain of zebrafish [64]. Mechanically, circRNACDR1as 
decreases 5-FU chemo-responsiveness in BC by sequester-
ing miR-7 to modulate CCNE1 [65].

MiR‑191‑5p

Researchers revealed that miR-191-5p is a negative apop-
tosis modulator in BC. In addition, SOX4 was shown to 
influence apoptosis in BC [66]. MiR-191-5p directly targets 
SOX4. Mechanically, the P53-miR-191-SOX4 axis modu-
lates drug resistance in BC. In contrast, anti-miR-191 treat-
ment makes BC cells more susceptible to the DOX-mediated 
apoptotic death [67].

MiR‑105 and MiR‑93‑3p

MiR-105 and miR-93-3p are generally elevated and asso-
ciated with worse outcome in TNBC. Mechanically, miR-
105/93-3p promotes cisplatin resistance in BC by activating 
the Wnt/β-catenin network while down-regulating SFPR1 
[68].

MiR‑132 and MiR‑212

MiR-132/-212 are ubiquitously expressed in DOX-resistant 
BC. MiR-132/-212 overexpression induces BCRP-induced 
DOX efflux in MCF-7 cells. Moreover, miR-132/-212 over-
expression in MCF-7/ADR cells suppresses PTEN levels, 
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while activating AKT phosphorylation and the NF-κB axis, 
which, in turn, augments BCRP content [69].

MiR‑424 (322)/503

The miR-424 (322)/503 cluster contains both miR-424 (322) 
and miR-503. MiR-424 (322)/503 is often absent in a sub-
category of aggressive BCs. MiR-424(322)/503 deficiency 
enhances PTX chemoresistance owing to the elevation of 
pro-apoptotic BCL-2 and insulin-like growth factor-1 recep-
tor (IGF1R) [70].

MiR‑125b

MiR-125b is commonly elevated in PTX-resistant cells. 
Mechanically, miR-125b promotes resistance of BC cells to 
PTX via inhibition of the pro-apoptotic BCL-2 antagonist 
killer 1 (Bak1) expression [71].

MiR‑671‑5p

Forkhead box protein M1 (FOXM1) is a TF that regulates 
drug resistance in BC cells by activating DNA damage 
repair networks [72–75]. MiR-671-5p deficiency, in con-
trast, activates the FOXM1-triggered EMT progression 
while enhancing DNA repair, and increasing chemoresist-
ance (cisplatin and PTX) [76].

MiR‑1246

MiR-1246 functions as an oncogene in cancer [77, 78]. 
Cyclin G2 (CCNG2) is modulated via the cell cycle and 
serves as a tumor-suppressor gene [79] and its expres-
sion is drastically diminished in BC [80]. Exosomal miR-
1246 incorporation induces drug resistance by regulating 
CCNG2 expression in BC [81].

NcRNAs promotes chemotherapeutic sensitivity

The mechanisms of ncRNAs promoting chemotherapeutic 
sensitivity using the following factors: (i) EMT, (ii) cell 
cycle (arrest), (iii) autophagy, (iv) drug efflux transporters, 
(v) pro-survival signaling pathways, (vi) drug metabolic 
enzymes, (vii) apoptosis, and (viii) DNA damage repair 
(Fig. 2 and Table 2).

LncTUG1

NLK is a negative modulator of the WNT network [82]. 
LncRNA TUG1 mediates its action through the regulation 

of the miR-197/NLK axis to enhance cisplatin sensitivity in 
TNBC patients [83].

LncRNA EGOT

Eosinophil granule ontogeny transcript (EGOT) is gener-
ated/released by ITPR1, a ligand-gated ion channel involved 
in the calcium secretion from the intracellular storage [84, 
85]. LncRNA EGOT augments autophagy, which, in turn, 
makes BC more susceptible to PTX cytotoxicity, owing to 
an elevation in ITPR1 levels [86].

LncRNA‑ARA​

LncRNA-ARA regulates cell adhesion- and cell cycle pro-
gression-linked axes. Jiang et al. reported that ARA defi-
ciency reverses drug resistance, and suppresses cell prolif-
eration, migration, while promoting apoptosis and G2/M 
arrest in ADR-resistant cells [87].

LINC00968

WNT2 is a major Wnt ligand that regulates placental devel-
opment [88]. LINC00968 reduces drug resistance (ADR, 
PTX and Vincristine) in BC by sequestering WNT2 by 
recruiting HEY1, thereby, suppressing the Wnt/β-catenin 
axis [89].

LncRNA HCP5

HCP5 was drastically reduced in MDA-MB-231/cisplatin 
cells, relative to the MDA-MB-231 cells. HCP5 deficiency 
induces cisplatin resistance in MDA-MB-231 cells by sup-
pressing PTEN levels. Conversely, HCP5 overexpression 
reverses cisplatin resistance in MDA-MB-231/DDP cells 
by increasing PTEN levels [90].

LncRNA SNORD3A

Uridine monophosphate synthetase (UMPS) is a 5-FU 
metabolism-related gene. Mechanically, lncRNA SNORD3A 
sensitizes BC cells to 5-FU by sequestering miR-185-5p to 
augment UMPS levels [91].

CircKDM4C

PBLD overexpression is correlated with the suppression of 
multiple signal networks (Vascular endothelial growth factor 
A [VEGFA], MAPK, NF-κB, EMT, and angiogenesis) [92]. 
CircKDM4C abrogates doxorubicin resistance by modulat-
ing the miR-548p/PBLD network in BC [93].
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MiR‑17 and MiR‑20b

Nuclear receptor coactivator 3 (NCO3) is a nuclear recep-
tor coactivator which accelerates BC tumor pathogenesis 
by increasing the ER and PR transcriptional activities [94]. 
Moreover, miR-17 and miR-20b deficiencies induce PTX 
resistance in BC by up-regulating NCOA3 levels [95]. In 
addition, JAB1 is ubiquitously found in BC, and it activates 
pro-survival cellular networks to confer tamoxifen resistance 
in ERα-positive BC [96]. MiR-17 also suppresses JAB1’s 
oncogenic activity, which results in the suppression of tumor 
development while sensitizing TNBC cells to chemothera-
peutic treatments [97].

MiR‑708‑3p

MiR-708-3p is an anti-cancer miRNA that is inversely asso-
ciated with BC chemoresistance. MiR-708-3p restoration 
improves BC chemosensitivity (DOX) by inhibiting EMT 
via regulating CDH2, ZEB1, and vimentin (EMT stimula-
tors) levels [98].

MiR‑20a

MiR-20a overexpression sensitizes BC cells to chemo-
therapeutic medications (PTX). Mechanically, miR-20a 
physically interacts with the 3’ UTR of MAPK1, thereby 
down-regulating levels of P-gp and c-Myc by suppressing 
the MAPK/ERK network. In the meantime, c-Myc binds to 
the promoter of the miR-20a gene to induce transcription of 
the miR-20a gene [99].

MiR‑205

VEGFA and fibroblast grow factor-2 (FGF2) are the strong-
est modulators of angiogenesis [100]. MiR-205 greatly 
improves chemosensitivity of BC cells to neoadjuvant 
chemotherapy (docetaxol, DOX, and cyclophosphamide) by 
diminishing both VEGFA and FGF2 levels, thereby increas-
ing cellular apoptosis evasion [101].

MiR‑489

SPIN1 was identified to involve in tumorigenesis [102]. 
MiR-489 is scarcely expressed in drug resistant BC. 
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Fig. 2   NcRNAs promote chemo-sensitivity
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Mechanically, miR-489 enhances chemosensitivity (ADR) 
via the SPIN1/PI3K/Akt network [103].

MiR‑199a‑3p

MDA-MB-231/cisplatin exhibited a significantly lower 
expression level of miR-199a-3p compared with its parental 
cell line MDA-MB-231. MiR-199a-3p regulates mitochon-
drial transcription factor A (TFAM) levels. TFAM strongly 
regulates drug resistance (cisplatin) and tumor progression, 
by suppressing TFAM 3’UTR activity [104].

MiR‑181c

Osteopontin (OPN) is excessively expressed in cancer cell 
lines that are prone to metastasis [105]. MiR-181c increases 
chemosensitivity (ADR) via diminishing OPN levels, which, 
in turn, enhances p53-based transactivation and apoptosis in 
resistant BC cells [106].

MiR‑135b‑5p

Anterior gradient 2 (AGR2) regulates BC pathogenesis, 
particularly, growth, drug resistance, and metastasis [107]. 
Mechanically, miR-135b-5p sequesters AGR2 to augment 
DOX-responsiveness of BC cells [108].

MiR‑302S

BCRP eliminates its substrate anti-cancer drugs to induce 
MDR in cancer cells [109]. MiR-302a-d is also termed “miR-
302S”, owing to the same seed sequence (5’-aagugcu-3’) 
[110, 111]. MiR-302S down-regulates BCRP expression to 
enhance chemosensitivity (mitoxantrone) of BC [112].

MiR‑140

FEN1 regulates genomic stability and integrity via participa-
tion in multiple DNA repair pathways (BER, NHEJ, HRR 

Table 2   NcRNAs promote 
chemotherapeutic sensitivity in 
breast cancer

Either up-regulated (↑) or down-regulated (↓) in chemotherapy sensitive breast cancer cells

NcRNAs Expression Target gene Medicine Refs

LncTUG1 Upregulation MiR-197/NLK Cisplatin [83]
LncRNA EGOT Upregulation ITPR1 Paclitaxel [86]
LncRNA-ARA​ Downregulation Apoptosis;G2/M arrest ADR [87]
LINC00968 Upregulation Wnt/β-catenin ADR, Taxel, VCR [89]
Lnc HCP5 Upregulation PTEN Cisplatin [90]
Lnc SNORD3A Upregulation MiR-185-5p/UMPS 5-FU [91]
CircKDM4C Upregulation MiR-548p/PBLD Doxorubicin [93]
MiR-17 Upregulation NCOA3;JAB1 Paclitaxel [95, 97]
MiR-20b Upregulation NCOA3 Paclitaxel [95]
MiR-708-3p Upregulation CDH2, ZEB1, Vimentin DOX [98]
MiR-20a Upregulation MAPK1/P-gp/c-Myc PTX [99]
MiR-205 Upregulation VEGFA/FGF2 Docetaxel, DOX, 

Cyclophosphamide
[101]

MiR-489 Upregulation SPIN1/PI3K/Akt ADR [103]
MiR-199a-3p Upregulation TFAM Cisplatin [104]
MiR-181c Upregulation OPN/P53 ADR [106]
MiR-135b-5p Upregulation AGR2 DOX [108]
MiR-302S Upregulation BCRP Mitoxantrone [112]
MiR-140 Upregulation FEN1 DOX and ADR [117]
MiR-140-5p Upregulation ABCB1 DOX [118]
MiR-200c-141 Upregulation EMT DOX and Carboplatin [120]
MiR-770 Upregulation STMN1 DOX [123]
MiR-27b-3p Upregulation MAPK/Erk;PI3K/Akt PTX [126]
MiR-200b Upregulation ARRDC3 5-FU [128]
MiR-100 Upregulation HAX1 Cisplatin [134]
MiR-148/152 family Upregulation SPIN1 ADR [135]
MiR-451 Upregulation YWHAZ/β-catenin PTX [139]
piRNA-36,712 Upregulation SEPW1 PTX and DOX [140]
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and NER) [113–116]. MiR-140 suppresses FEN1 levels via 
direct interaction with its 3’ UTR, which results in dysfunc-
tional DNA repair and impaired BC progression. MiR-140 
overexpression makes BC cells more susceptible to chemo-
therapeutic drugs (DOX and ADR) targeting BC [117].

MiR‑140‑5p

Wnt1 belongs to the Wnt family, and accelerates cell cycle, 
migration, and survival. MiR-140-5p induces chemosensi-
tivity to DOX in BC stem cells (BCSCs) via suppression 
of ABCB1 levels [118].

MiR‑200c‑141

The miR-200 family is a critical modulator of EMT [119]. 
In a study, miR-200c-141 cluster overexpression in an 
in vivo CSC-enriched claudin-low tumor model, reduced 
tumor development and stem cell functionality, thus result-
ing in the absence of EMT characteristics, along with an 
enhancement of chemotherapeutic (DOX and carboplatin) 
sensitivity [120].

MiR‑770

Stathmin1 (STMN1) induces microtubule depolymeriza-
tion by sponging tubulin and activating catastrophes [121, 
122]. MiR-770 directly targets and diminishes STMN1 
levels to suppress chemoresistance (DOX) in TNBC cells 
[123].

MiR‑27b‑3p

CBLB is an upstream factor of the PI3K/Akt network. It 
regulates sensitivity of cetuximab in gastric cancer [124]. 
GRB2, another essential upstream factor in the MAPK/
Erk network is known to resist ovarian cancer therapy by 
cisplatin. This occurs through the activation of the MAPK/
Erk network [125]. Mechanically, miR-27b-3p reverses the 
PTX-mediated resistance by specifically reducing its target 
genes (CBLB and GRB2), and thus down-regulating the 
MAPK/Erk and PI3K/Akt networks [126].

MiR‑200b

Arrestin domain containing 3 (ARRDC3) is scarcely 
expressed in metastatic TNBC cells owing to epigenetic 
silencing [127]. ARRDC3 inverses EMT characteristics 
and chemo-resistance (5-FU) of TNBC cells by increasing 
miR-200b levels [128].

MiR‑100

MiR-100 promotes cancer apoptosis [129, 130]. HAX1 
(an anti-apoptotic protein) overexpression induces chem-
oresistance in BC [131–133], whereas, miR-100 overex-
pression enhances responsiveness of MDA-MB-231/R 
and MCF-7/R cells to cisplatin treatment, while promot-
ing cisplatin-driven mitochondrial apoptosis by regulating 
HAX1 [134].

MiR‑148/152 family

Spindlin (SPIN) is up-regulated in chemo-resistant BC tis-
sues, and participates in the PI3K/Akt-based chemoresist-
ance [103]. The miR-148/152 family targets SPIN1 in BC. 
As a result, miR-148a-3p, miR-148b-3p, and miR-152-3p 
enhance ADR responsiveness by modulating SPIN1 in BC 
[135].

MiR‑451

β-catenin is central to the Wnt/β-catenin network. Upon acti-
vation of Wnt signaling, β-catenin is rescued from degrada-
tion, resulting in its accumulation in the cytoplasm, followed 
by its translocation to the nucleus, activation of target genes 
(c-Myc and cyclin D1), which ultimately enhances tumor 
pathogenesis [136–138]. MiR-451 accelerates apoptosis and 
cell-cycle arrest of PTX-resistant cells via direct binding of 
the YWHAZ/β-catenin network [139].

PiRNA‑36,712

PiRNA-36,712 restrains BC chemoresistance. Mechani-
cally, piRNA-36,712 binds to SEPW1P transcript, thereby 
decreasing SEPW1 expression via sponging by miR-7 and 
miR-324. In addition, piRNA-36,712 elicits a combined anti-
cancer effect with PTX and DOX [140].

NcRNAs with endocrine therapy resistance 
in BC

Approximately 70% of all BC patients exhibit ubiquitous 
ER expression [141, 142]. As such, it is a promising target 
for endocrine therapy. Two major ER isoforms (ERα and 
ERβ), encoded by 2 distinct genes (ESR1 and ESR2), regu-
late the nuclear and extranuclear ER axes [143, 144]. At 
present, three forms of endocrine therapies are used in clin-
ics: (a) aromatase inhibitors (AI), (b) selective ER modula-
tors (SERMs) and (c) selective ER degraders (SERDs) that 
antagonize ER [145]. The first of these SERMs is tamox-
ifen, a drug used frequently till this day to treat ER-positive 
patients. However, patients soon become resistant to this 
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drug, which limits its use [146, 147]. AI blocks the enzyme 
aromatase, which regulates estrogen production. This pre-
vents the development of hormone-receptor-positive BC 
cells. AI is primarily employed in postmenopausal women, 
and it performs better than tamoxifen in this demographic 
[148]. Fulvestrant is the preferred SERD for treating cancer 
patients. Both preclinical and clinical trials revealed that this 
is effective even in the tamoxifen-resistant (TR) models, and 
do not elicit agonistic activity in oestrogen-sensitive tissues 
like the endometrium [149, 150]. Scientists uncovered sev-
eral underlying mechanisms that produce endocrine resist-
ance, namely, deregulation of the classical estrogen signal-
ing, activation of growth factor receptor networks, changes 
in the cell cycle and apoptotic process, and epigenetic modi-
fication [151].

Herein, we detailed the ncRNAs-related pathways 
involved in endocrine therapy resistance and sensitivity, par-
ticularly, in terms of the dysregulated signaling pathways: 
(i) ER signaling pathway, (ii) autophagy signaling pathway, 
(iii) PI3K/Akt/mTOR signaling pathway, (iv) and other pro-
survival signaling pathways (Fig. 3 and Table 3).

NcRNAs promotes endocrine therapy resistance

LncMIR2052HG

MIR2052HG directly interacts with the early growth 
response protein 1 (ERG1) protein to increase LMTK3 
expression, thereby sustaining ESR1 levels and stabilized 
ERα protein, thus leading to AI resistance. Mechanistically, 
LMTK3 regulates ERα stability via the PKC/MEK/ERK/
RSK1 pathway and ERα expression via the PKC/AKT/
FOXO3 network [152].

LncRNA HOTAIR

HOTAIR is markedly elevated in tumors of TR BC patients, 
relative to their primary tumors prior to treatment. Direct 
association between HOTAIR and ER results in high lev-
els of nuclear ER, even under estrogen-depleted conditions. 
This enables ER genomic targeting and induces transcription 
of the ER-target genes. Hence, HOTAIR augments the ER 
axis, and elicits tamoxifen resistance in BC [153].

Fig. 3   NcRNAs regulate response to endocrine therapy
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BCAR4

BCAR4 accelerates BC progression. Godinho et al. reported 
that BCAR4 levels in BC are strongly correlated with 
aggressiveness and tamoxifen resistance via regulation of 
the HER2 axis [154].

LncRNA H19

Autophagy is a potential mechanism for tamoxifen resist-
ance. Beclin1 (a key mediator of autophagy) overexpression 
makes cells unresponsive to estrogen-based signaling, which 
leads to tamoxifen resistance in BCs [155]. H19 overexpres-
sion augments autophagy and induces tamoxifen resistance 
in ER-positive BC cells by diminishing methylation in the 
Beclin 1 promotor region using the H19/SAHH/DNMT3B 
network [156]. In addition, H19 deficiency makes endocrine 
therapy resistant (ETR) cells susceptible to tamoxifen and 
fulvestrant, in an H19-dependent manner. H19 also modu-
lates ERα levels in ETR cells, and protects against fulves-
trant-based apoptosis [157].

LincRNA‑ROR

LincRNA-ROR regulates BC metastasis [158]. LincRNA-
ROR deficiency enhances MDA-MB-231 cell sensitivity to 
tamoxifen by inhibiting PI3K/Akt/mTOR activity [159].

LncRNA DSCAM‐AS1

Epidermal growth factor receptor pathway substrate 8 
(EPS8) modulates cancer cell proliferation and apopto-
sis [160]. DSCAM‐AS1 induces tamoxifen resistance in 
BC, and is inversely proportional to miR-137 levels, and 
directly proportional to EPS8 levels in tamoxifen-resistant 
BC [161].

LncRNA TMPO‑AS1

TMPO-AS1 is ubiquitously expressed in ER-positive BCs 
from tamoxifen-treated patients. Mechanically, TMPO-
AS1 augments the estrogen axis by stabilizing the ESR1 

Table 3   NcRNAs promote resistance or sensitivity to endocrine therapy in breast cancer

NcRNAs Expression Target signaling pathway Medicine Refs

LncMIR2052HG Upregulation ERG1/LMTK3/PKC/MEK/ERK/RSK1;
PKC/AKT/FOXO3
ERα

AI (Resistance) [152]

LncRNA HOTAIR Upregulation ER-target genes Tamoxifen (Resistance) [153]
BCAR4 Upregulation HER2 Tamoxifen (Resistance) [154]
LncRNA H19 Upregulation SAHH/DNMT3B/Beclin; ERα Tamoxifen, Fulvestrant (Resistance) [156, 157]
LincRNA-ROR Upregulation PI3K/Akt/mTOR Tamoxifen (Resistance) [159]
LncRNA DSCAM‐AS1 Upregulation MiR-137/EPS8 Tamoxifen (Resistance) [161]
LncRNA TMPO-AS1 Upregulation ESR1 Endocrine therapy (Resistance) [162]
LncDILA1 Upregulation Cyclin D1 phosphorylation Tamoxifen (Resistance) [163]
LINC ERINA Upregulation E2F1 CDK inhibitors (Resistance) [164]
MiR-125b Upregulation AKT/mTOR Letrozole (Resistance) [168]
MiR-519a Upregulation PTEN, RB1, CDKN1A/p21 Tamoxifen (Resistance) [169]
MiR-186-3p Upregulation EREG Tamoxifen (Resistance) [173]
MiR-21 Upregulation PI3K/Akt/mTOR Tamoxifen, Fulvestrant (Resistance) [175]
LncRNA GAS5 Downregulation MiR-222/GAS5/PTEN Tamoxifen (Sensitivity) [177]
CircRNA_0025202 Upregulation MiR-182-5p/FOXO3a Tamoxifen (Sensitivity) [179]
MiR-449a Upregulation ADAM22 Tamoxifen (Sensitivity) [181]
MiR-27b-3p Upregulation NR5A2, CREB1 Tamoxifen (Sensitivity) [185]
MiR-873 Upregulation CDK3 Tamoxifen (Sensitivity) [186]
MiR-125a-3p Upregulation CDK3 Tamoxifen (Sensitivity) [188]
MiR-26a/b Upregulation ERBB2 Tamoxifen (Sensitivity) [190]
MiR-190 Upregulation SOX9 Endocrine therapy (Sensitivity) [191]
MiR-214 Upregulation UCP2 Tamoxifen, Fulvestrant (Sensitivity) [194]
MiR-1254 Upregulation CCAR1 Tamoxifen (Sensitivity) [197]
MiR-135a Upregulation ERα Tamoxifen (Sensitivity) [200]
MiR-375 Upregulation MTDH Tamoxifen (Sensitivity) [199]
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transcript, encoding ERα, and via direct RNA: RNA associa-
tion with the 3’UTR of ESR1 [162].

DILA1

DILA1 binds to Cyclin D1, and is ubiquitously expressed in 
tamoxifen-resistant BC. Mechanistically, DILA1 prevents 
Cyclin D1 phosphorylation at Thr286 via direct association 
with Thr286, which blocks its degradation, thus enhancing 
Cyclin D1 levels in BC [163].

LINC ERINA

High lincRNA ERINA levels are strongly associated with 
worse ER-positive BC patient outcome and responsive-
ness to CDK inhibitors in BC cell lines. Mechanistically, 
ERINA is induced by estrogen, and promotes cell cycle 
progression by regulating the TF E2F1 [164].

MiR‑125b

The AKT/mTOR axis regulates AI resistance [165–167]. 
Silencing miR-125b in letrozole-resistant cells prevents 
the constitutive activation of the AKT/mTOR axis, and 
overcomes letrozole resistance, by sensitizing cells to the 
AI treatment [168].

MiR‑519a

PTEN, CDKN1/p21, and retinoblastoma protein (RB1) are 
directly targeted by miR-519a. Mechanically, tamoxifen-
resistant cells express high levels of miR-519a, which 
blocks the expressions of PTEN, RB1, and CDKN1A/
p21, thus enabling cells to proliferate, even after tamox-
ifen exposure [169].

MiR‑186‑3p

EGFR signaling is also crucial for developing tamoxifen 
resistance in BC cells [170, 171]. Epiregulin (EREG) 
induces EGFR homodimerization, which initiates down-
stream signaling to promote cell proliferation [172]. MiR-
186-3p targets EREG in BC. Moreover, the miR-186-3p/
EREG network produces tamoxifen resistance and aerobic 
glycolysis in ER-positive BC [173].

MiR‑21

Aberrant expression of miR-21 involved in chemoresist-
ance of tumor [174]. Silencing of miR-21 confers the 
sensitivity to tamoxifen and fulvestrant by enhancing 
autophagic cell death through inhibition of the PI3K/AKT/
mTOR by targeting PTEN [175].

NcRNAs promotes endocrine therapy sensitivity

LncRNA GAS5

PTEN regulates tamoxifen responsiveness in BC [176]. 
MiR-222 sequesters GAS5, suppresses PTEN, and 
enhances BC sensitivity to tamoxifen [177].

CircRNA_0025202

FOXO3a was downregulated in BC [178]. Cir-
cRNA_0025202 was significantly downregulated in MCF-7/
TR cells. In terms of mechanism, circRNA_0025202 pro-
motes tamoxifen sensitization via miR-182-5p/FOXO3a axis 
[179].

MiR‑449a

A disintegrin and metalloproteinase (ADAM22) promotes 
ER-positive BC progression [180]. Downregulation of miR-
449a promotes ADAM22 expression, which induces tamox-
ifen resistance in BC cells [181].

MiR‑27b‑3p

Nuclear receptor subfamily 5 group A member 2 (NR5A2) 
enhances BC cell proliferation by interacting with the ERα 
promoter to initiate its expression [182]. cAMP-response 
element binding protein 1 (CREB1) activates essential fac-
tors related to the anti-apoptosis pathway [183, 184]. MiR-
27b-3p inhibits NR5A2 and CREB1 expressions. As a result, 
tamoxifen-induced cytotoxicity is enhanced in BC [185].

MiR‑873

Cyclin-dependent kinase 3 (CDK3) phosphorylated ER and 
enhances ER activity. MiR-873 inhibits ERα transcriptional 
activity and tamoxifen resistance via targeting CDK3 in BC 
[186].

MiR‑125a‑3p

CDK3 is a potential target of miR-125a-3p in ER-positive 
BC [187]. MiR-125a-3p can function as a novel tumor 



1881Clinical and Translational Oncology (2023) 25:1869–1892	

1 3

suppressor in ER-positive BC by targeting CDK3, which 
may be a potential therapeutic approach for tamoxifen resist-
ant BC therapy [188].

MiR‑26a/b

Hu-antigen R (HuR) is an RNA-interacting protein (RBP) 
which binds to the AU-rich regions in the 3’UTR of tran-
scripts to enhance their stability [189]. Reduced miR-26a/b 
and enhanced HuR levels post-transcriptionally augments 
ERBB2 expression, which, in turn, mediates the acquired 
tamoxifen resistance in ER-positive BC cells [190].

MiR‑190

MiR-190 suppresses the Wnt/β-catenin axis to enhance anti-
estrogen responsiveness by regulating SRY-related high 
mobility group box 9 (SOX9). In addition, recent evidences 
suggest a mechanism involving ZEB1-miR-190-SOX9 that 
mediates resistance to endocrine therapy in BC. ZEB1 inter-
acts with the miR-190 promoter region to competitively 
inhibit ERα interaction, which enhances resistance to endo-
crine therapy [191].

MiR‑214

Overexpression of UCP2 conferred drug resistance to 
chemotherapy and a higher survival through downregula-
tion of ROS [192, 193]. MiR-214 increases the sensitivity 
of BC cells to tamoxifen and fulvestrant through inhibition 
of autophagy by targeting UCP2 [194].

MiR‑1254

Cell cycle and apoptosis regulator 1 (CCAR1) is an apopto-
sis mediator or transcriptional coactivator for nuclear recep-
tors or P53. As such, it has multiple roles in regulating can-
cer cell progression [195, 196]. CCAR1 5’ UTR is a natural 
miRancer of the endogenous miR-1254, and it makes TR BC 
cells susceptible to tamoxifen [197].

MiR‑135a

MiR-135a was downregulated in BC/TR [198, 199]. The 
decreased expression of miR-135a resulted in an increased 
level of the miR-135a target genes (ESR1, ESRRA, NCOA1, 
PIM2, MRAS, and LCP1), which we have demonstrated to 
be key mediators of ERK1/2 and AKT1 activation, and sub-
sequent increased ERα transcriptional activity to promote 
tamoxifen resistance [200].

MiR‑375

Metadherin (MTDH) has been involved in BC metastasis. 
MTDH overexpression could induce EMT and modulate 
invasion as well as metastasis in BC [201]. Re-expression 
of miRNA-375 reverses both tamoxifen resistance and 
accompanying EMT-like properties by targeting MTDH in 
BC [199].

NcRNAs with targeted therapy resistance 
in BC

Erb-2/Her-2 is up-regulated in 20–30% of human invasive 
BCs, and is correlated with a worse patient outcome [202, 
203]. In terms of monoclonal antibodies, small molecu-
lar inhibitors are used to specifically bind a target mol-
ecule. At the present time, trastuzumab, lapatinib, and 
pertuzumab are commonly employed for HER-2-positive 
BCs treatment [204]. Trastuzumab is a humanized mono-
clonal antibody that interacts with the HER2 receptor to 
suppress HER2 dimer formation, thus interrupting down-
stream networks, which, in turn, inhibits cell proliferation 
and apoptosis [148]. Lapatinib is a HER2 kinase inhibitor, 
which improves prognosis of HER2-amplified BC [205]. 
Multiple mechanisms produce resistance to targeted thera-
pies. These include, ErbB2 levels, enhanced pro-survival 
signaling via alternation in tyrosine kinases receptors or 
intracellular signaling, which markedly enhances cell pro-
liferation [206, 207]. Herein, we detailed the ncRNAs-
mediated mechanism governing targeted therapy resistance 
and BC sensitivity (Fig. 4 and Table 4).

NcRNAs promotes targeted therapeutic resistance

LncSNHG14

Polyadenylate‐binding proteins (PABPs) are special pro-
teins that associate in a sequence-specific fashion with 
single-stranded poly (A) by RNA recognition motif 
(RPM). PABPC1 regulates mRNA translation and deg-
radation [208, 209], and facilitates the stability of the 5’ 
cap of transcripts. Mechanically, SNHG14 induces BC 
trastuzumab resistance by modulating PABPC1 levels via 
H3K27 acetylation [210].

LncAGAP2‑AS1

AGAP2-AS1 induces trastuzumab resistance of BC via 
epigenetic modulation of MyD88. Mechanically, AGAP2-
AS1 interacts with the CREB-interacting protein to increase 
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H3K27ac levels at the MyD88 promoter region, thereby up-
regulating MyD88. Hence, the NF-κB axis is activated by 
MyD88 and AGAP2-AS1 [211].

Lnc TINCR

TINCR deficiency reverses trastuzumab resistance, and 
acquired EMT in BC. Mechanically, TINCR remains in the 
cytoplasm of BC cells and is sequestered by miR-125b. This, 
in turn, releases HER-2 and induces trastuzumab resistance 
[212].

Fig. 4   NcRNAs regulate response to targeted therapy

Table 4   NcRNAs promote resistance or sensitivity to targeted therapy in breast cancer

NcRNAs Expression Target gene/Signaling pathway Medicine Refs

LncSNHG14 Upregulation PABPC1 Trastuzumab (Resistance) [210]
LncAGAP2-AS1 Upregulation MyD88/NF-κB Trastuzumab (Resistance) [211]
Lnc TINCR Upregulation MiR-125b/HER-2 Trastuzumab (Resistance) [212]
LncRNA ZNF649-AS1 Upregulation ATG5 Trastuzumab (Resistance) [213]
LncRNA AFAP1-AS1 Upregulation AUF1/ ERBB2 Trastuzumab (Resistance) [214]
MiR-205-5p Upregulation p63/EGFR Lapatinib (Resistance) [215]
tRF-30-JZOYJE22RR33
tRF-27-ZDXPHO53KSN

Upregulation Unknown Trastuzumab (Resistance) [218]

MiR-129-5p Upregulation rpS6 Trastuzumab (Sensitivity) [221]
MiR-182 Upregulation MET/PI3K/AKT/mTOR Trastuzumab (Sensitivity) [223]
MiR-16 Upregulation CCNJ;FUBP1 Trastuzumab and Lapatinib (Sen-

sitivity)
[226]
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LncRNA ZNF649‑AS1

Trastuzumab treatment enhances H3K27ac levels at the 
ZNF649-AS1 promoter region, which elevates ZNF649-
AS1, which, in turn, enhances ATG5 levels by associat-
ing with polypyrimidine tract binding protein 1 (PTBP1) 
to initiate its transcription. Subsequently, enhanced 
autophagy related 5 (ATG5) expression induces autophagy 
and trastuzumab resistance [213].

LncRNA AFAP1‑AS1

AFAP1-AS1 is ubiquitously expressed in trastuzumab-resist-
ant cells, relative to sensitive cells. Enhanced AFAP1-AS1 
expression is associated with worse response and reduced 
survival of BC patients. Exosome-mediated AFAP1-AS1 
induces trastuzumab resistance via interaction with AUF1 
and activation of ERBB2 translation [214].

MiR‑205‑5p

MiR-205-5p is up-regulated in BCSCs, and directly dimin-
ishes ERBB2 expression, while indirectly reducing EGFR 
expression to induce to resistance to lapatinib. In addition, 
miR-205-5p also modulates p63 expression, which, in turn, 
modulates the miR-205/p63/EGFR axis [215].

TRF‑30‑JZOYJE22RR33/tRF‑27‑ZDXPHO53KSN

tRNA derived small RNA fragments (TRFs) regulate 
human cancers [216, 217]. TRF-30-JZOYJE22RR33 and 
TRF-27-ZDXPHO53KSN are strongly expressed in trastu-
zumab-resistant versus -sensitive patients, and ROC analysis 
revealed a strong correlation with trastuzumab resistance 
[218].

NcRNAs promotes targeted therapy sensitivity

MiR‑129‑5p

Dysregulated PI3K/Akt/mTOR/rpS6 axis and PTEN defi-
ciency contributes to trastuzumab resistance in BC [219, 
220]. MiR-129-5p makes Her-2-positive BC more suscepti-
ble to trastuzumab by reducing rpS6 activity [221].

MiR‑182

The PI3K/AKT/mTOR axis is an signaling target of MET, 
and it modulates multiple physiological processes [222]. 
MiR-182 overexpression reduces trastuzumab resistance in 
trastuzumab-resistant cells in part by suppressing the MET/
PI3K/AKT/mTOR axis [223].

MiR‑16

FUBP1 is a TF and RBP that modulates both transcrip-
tion and translation of multiple genes [224]. CCNJ is not 
well characterized in mammals, and it may modulate BC 
[225]. MiR-16 serves as a tumor suppressor to mediate tras-
tuzumab and lapatinib anti-proliferative effects, and CCNJ 
and FUBP1 are newly confirmed targets of miR-16 [226].

Targeting oncogenic‑NcRNAs to conquer 
drug resistance

In terms of the aforementioned ncRNAs-mediated drug 
resistance, multiple ncRNAs also possess great therapeu-
tic target potential in future drug developments. There-
fore, several researchers targeted oncogenic ncRNAs to 
address cancer drug resistance. Herein, we detailed the 
ncRNAs that are highly expressed in cancer cells, where 
they serve an oncogenic function to induce BC resistance 
to anti-cancer therapies (Fig. 5). With advancements in 
nanotechnology, multiple clinical trials either examined or 
are examining RNA-guided precision machines [227–229]. 
Among the annotated ncRNAs, miRNAs are most com-
monly examined. Additionally, lncRNAs and circRNAs 
were also identified as novel targets [230–232]. Double-
stranded RNA-mediated interference (RNAi) and single-
stranded antisense oligonucleotides (ASOs) are two main 
strategies that target lncRNAs. Till now, three approaches 
were proposed for targeting ncRNAs: ASOs, locked 
nucleic acids (LNAs), and morpholinos [233]. Fortunately, 
a clinical trial (NCT02950207) was launched to testify 
whether miR-100 silencing impacts patients’ response 
rate to hormonal treatment in BC (https://​clini​caltr​ials.​
gov). Moreover, the researchers also examined miR-10b, 
and revealed that miR-10b LNAs enhances BC sensitivity 
to doxorubicin in mouse models, with no further damage 
to normal tissue. This suggests that reduced toxicity is 
strongly related to the delivery of this LNA nanoparticle 
[234].

Conclusions

BC is the most common cancer among women, and the 
major contributor to cancer-related deaths in women [235]. 
Technological enhancements in early diagnosis and ther-
apy have markedly reduced BC-related mortality, while 
improving patient outcome to a certain extent [236]. How-
ever, close to 35% of BC patients experience recurrence 
and metastasis. Moreover, they also experience resistance 
to chemo-, endocrine-, and radiotherapies [237, 238]. 

https://clinicaltrials.gov
https://clinicaltrials.gov
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The often encountered drug resistance within BC patients 
severely restricts therapeutic efficacy, and negatively 
impacts BC patient prognosis [239]. Emerging evidences 
revealed that ncRNAs can function as diagnostic indicators 
for multiple diseases, estimator of drug response, and as 
targets of new drug development [240].

Herein, we summarized the dysregulated ncRNAs gov-
erning drug resistance in BC, thereby providing a com-
prehensive ncRNAs landscape for drug resistance in BC. 
Some ncRNAs regulate drug resistance and sensitivity via 
a complex regulatory network. For instance, lncRNA H19 
modulate endocrine resistance by regulating autophagy 
and ERα in BC. Meanwhile, different ncRNAs also influ-
ence drug efficacy by targeting the same target molecule. 
For instance, PTEN modulates drug resistance by simul-
taneously regulating lncPTENP1, miR-132, miR-212, 
lncHCP5, miR-519a, GAS5, and miR-129-5p levels in 
BC. Several studies demonstrated a concrete mechanism 
of ncRNAs modulating drug resistance, however, some 
reports only suggested a role of few ncRNAs in regulat-
ing drug resistance. This review highlights the direction 
of future anti-cancer drug development, particularly, 
approaches that weaken drug resistance by inhibiting 
drug resistance-related oncogenic ncRNAs. Other studies 

demonstrated that ncRNAs possess great potential in treat-
ing tumor. For example, small molecules were recently 
shown to abrogate HOTAIR activity by interrupting the 
HOTAIR/EZH2 scaffold association. This offers a novel 
approach of inhibition with enhanced applicability in 
humans. EZH2 inhibitor compounds like DZNep was pre-
viously suggested as potential medications targeting solid 
tumors in clinics [241]. Dysregulated ncRNAs are widely 
present in tumor drug resistance. A clinical trial must also 
be launched to enhance drug sensitivity by targeting ncR-
NAs, as mentioned above. Hence, given the significance 
of ncRNAs in drug resistance, additional investigations 
are warranted to identify potential therapeutic targets and 
approaches that enhance drug sensitivity in BC.

In conclusion, we recommend an extensive investiga-
tion, involving clinical trials, to examine the mechanisms 
behind drug resistance, and subsequently, develop ncR-
NAs-based therapies to fight BC. Additionally, miRNA, 
circRNA and TRFs, and other ncRNAs were not reported 
to modulate drug resistance. However, additional inves-
tigations are needed to confirm their association, if any, 
with drug resistance.
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