Skip to main content

Advertisement

Log in

Exploration and analysis of differentially expressed genes in Epstein–Barr virus negative and positive plasmablastic lymphoma

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Objectives

Plasmablastic lymphoma (PBL) is a subtype of diffuse large B-cell lymphoma (DLBCL) often associated with Epstein–Barr virus (EBV) infection. Despite recent advances in treatment, PBL still has a poor prognosis. EBV is listed as one of the human tumor viruses that may cause cancer, and is closely related to the occurrence of some nasopharyngeal carcinoma (NPC), lymphoma and 10% of gastric cancer (GC). It is very important to explore the differentially expressed genes (DEGs) between EBV-positive and EBV-negative PBL. Through bioinformatics analysis of DEGs between EBV-positive PBL and EBV-negative PBL, we gain a deeper understanding of the pathogenesis of EBV-positive PBL.

Methods

We selected the GSE102203 data set, and screened the DEGs between EBV-positive PBL and EBV-negative PBL. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied. The protein–protein interaction (PPI) network was constructed, and screened for the hub genes. Finally, Gene Set Enrichment Analysis (GSEA) was performed.

Results

In EBV-positive PBL, the immune-related pathway is upregulated and Cluster of differentiation 27 (CD27) and programmed cell death-ligand 1 (PD-L1) are hub genes.

Conclusions

In EBV-positive PBL, EBV may affect tumorigenesis through activation of immune-related pathways and upregulation of CD27, PD-L1. Immune checkpoint blockers of CD70/CD27 and programmed cell death 1 (PD-1)/PD-L1 pathways may be one of the effective strategies for the treatment of EBV-positive PBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

PBL:

Plasmablastic lymphoma

DLBCL:

Diffuse large B cell lymphoma

EBV:

Epstein–Barr virus

NPC:

Nasopharyngeal carcinoma

GC:

Gastric cancer

DEGs:

Differentially expressed genes

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

PPI:

Protein–protein interaction

GSEA:

Gene set enrichment analysis

CD27:

Cluster of differentiation

PD-L1:

Programmed cell death-ligand 1

PD-1:

Programmed cell death 1

ISH:

In situ hybridization

HIV:

Human immunodeficiency virus

CC:

Cellular component

MF:

Molecular function

BP:

Biological process

Th1:

T-helper type 1

ARLs:

AIDS-related lymphomas

EBNA1:

Epstein–Barr nuclear antigen 1

EBERs:

EBV-encoded RNAs

TNFRSF:

Tumor necrosis factor receptor superfamily

RCC:

Renal cell carcinoma

LMP2A:

Latent membrane protein 2A

ICIs:

Immune checkpoint inhibitors

HPD:

Hyperprogressive disease

NSCLC:

Non-small cell lung cancer

HNSCC:

Head and neck squamous cell carcinoma

References

  1. Khan G, Fitzmaurice C, Naghavi M, Ahmed LA. Global and regional incidence, mortality and disability-adjusted life-years for Epstein-Barr virus-attributable malignancies, 1990–2017. BMJ Open. 2020;10:e037505. https://doi.org/10.1136/bmjopen-2020-037505.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bhatt R, Desai DS. StatPearls. Treasure Island, FL: Publishing Copyright © 2021, StatPearls Publishing LLC; 2021.

    Google Scholar 

  3. Fernández-Álvarez R, Sancho JM, Ribera JM. Plasmablastic lymphoma. Med Clin. 2016;147:399–404. https://doi.org/10.1016/j.medcli.2016.06.036.

    Article  Google Scholar 

  4. Han B, Feng D, Yu X, Zhang Y, Liu Y, Zhou L. Identification and interaction analysis of molecular markers in colorectal cancer by integrated bioinformatics analysis. Med Sci Monit. 2018;24:6059–69. https://doi.org/10.12659/msm.910106.

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Li R, Liao X, Jiang W. Comprehensive bioinformatic analysis genes associated to the prognosis of liposarcoma. Med Sci Monit. 2018;24:7329–39. https://doi.org/10.12659/msm.913043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. https://doi.org/10.1038/nprot.2008.211.

    Article  CAS  PubMed  Google Scholar 

  7. Castillo JJ, Bibas M, Miranda RN. The biology and treatment of plasmablastic lymphoma. Blood. 2015;15:2323–30. https://doi.org/10.1182/blood-2014-10-567479.

    Article  CAS  Google Scholar 

  8. Bibas M, Castillo JJ. Current knowledge on HIV-associated plasmablastic lymphoma. Mediterr J Hematol Infect Dis. 2014;6:e2014064. https://doi.org/10.4084/MJHID.2014.064.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carbone A, Vaccher E, Gloghini A, Pantanowitz L, Abayomi A, de Paoli P, et al. Diagnosis and management of lymphomas and other cancers in HIV-infected patients. Nat Rev Clin Oncol. 2014;11:223–38. https://doi.org/10.1038/nrclinonc.2014.31.

    Article  CAS  PubMed  Google Scholar 

  10. Castillo JJ, Furman M, Beltrán BE, Bibas M, Bower M, Chen W, et al. Human immunodeficiency virus-associated plasmablastic lymphoma: poor prognosis in the era of highly active antiretroviral therapy. Cancer. 2012;21:5270–7. https://doi.org/10.1002/cncr.27551.

    Article  Google Scholar 

  11. Hintzen RQ, de Jong R, Lens SM, van Lier RA. CD27: marker and mediator of T cell activation? Immunol Today. 1994;15:307–11. https://doi.org/10.1016/0167-5699(94)90077-9.

    Article  CAS  PubMed  Google Scholar 

  12. Yu L, Li L, Medeiros LJ, Young KH. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev. 2017;31:77–92. https://doi.org/10.1016/j.blre.2016.10.001.

    Article  CAS  PubMed  Google Scholar 

  13. Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF-κB: at the borders of autoimmunity and inflammation. Front Immunol. 2021;12:716469. https://doi.org/10.3389/fimmu.2021.716469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hövelmeyer N, Schmidt-Supprian M, Ohnmacht C. NF-κB in control of regulatory T cell development, identity, and function. J Mol Med (Berl). 2022;100:985–95. https://doi.org/10.1007/s00109-022-02215-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai MB, Han HQ, Bei JX, Liu CC, Lei JJu, Cui Q, et al. Expression of human leukocyte antigen G is associated with prognosis in nasopharyngeal carcinoma. Int J Biol Sci. 2012;8:891–900. https://doi.org/10.7150/ijbs.4383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morales O, Mrizak D, François V, Mustapha R, Miroux C, Depil S, et al. Epstein–Barr virus infection induces an increase of T regulatory type 1 cells in Hodgkin lymphoma patients. Br J Haematol. 2014;166:875–90. https://doi.org/10.1111/bjh.12980.

    Article  CAS  PubMed  Google Scholar 

  17. Sun SC, Cesarman E. NF-κB as a target for oncogenic viruses. Curr Top Microbiol Immunol. 2011;349:197–244. https://doi.org/10.1007/82_2010_108.

    Article  CAS  PubMed  Google Scholar 

  18. Starzer AM, Berghoff AS. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open Suppl. 2020;3:e000629. https://doi.org/10.1136/esmoopen-2019-000629.

    Article  Google Scholar 

  19. Roberts DJ, Franklin NA, Kingeter LM, Yagita H, Tutt AL, Glennie MJ, et al. Control of established melanoma by CD27 stimulation is associated with enhanced effector function and persistence, and reduced PD-1 expression of tumor infiltrating CD8(+) T cells. J Immunother. 2010;33:769–79. https://doi.org/10.1097/CJI.0b013e3181ee238f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019;12:92. https://doi.org/10.1186/s13045-019-0779-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li X, Zhang W. Expression of PD-L1 in EBV-associated malignancies. Int Immuno pharmacol. 2021;95:107553. https://doi.org/10.1016/j.intimp.2021.107553.

    Article  CAS  Google Scholar 

  22. Gru AA, Haverkos BH, Freud AG, Hastings J, Nowacki NB, Barrionuevo C, et al. The Epstein–Barr virus (EBV) in T Cell and NK cell lymphomas: time for a reassessment. Curr Hematol Malig Rep. 2015;10:456–67. https://doi.org/10.1007/s11899-015-0292-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Granai M, Mundo L, Akarca AU, Siciliano MC, Rizvi H, Mancini V, et al. Immune landscape in Burkitt lymphoma reveals M2-macrophage polarization and correlation between PD-L1 expression and non-canonical EBV latency program [published correction appears in infect agent cancer. Infect Agent Cancer. 2020;15:28. https://doi.org/10.1186/s13027-020-00292-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosado FG, Coberly J, Gupta A, John G, Naina H, Koduru P, et al. PD1/PD-L1 expressions in plasmablastic lymphoma with clinicopathological correlation. Ann Clin Lab Sci. 2021;51:174–81.

    CAS  PubMed  Google Scholar 

  25. Ahrends T, Bąbała N, Xiao Y, Yagita H, van Eenennaam H, Borst J. CD27 Agonism Plus PD-1 blockade recapitulates CD4+ T-cell help in therapeutic anticancer vaccination. Cancer Res. 2016;76:2921–31. https://doi.org/10.1158/0008-5472.CAN-15-3130.

    Article  CAS  PubMed  Google Scholar 

  26. Buchan SL, Fallatah M, Thirdborough SM, Taraban VY, Rogel A, Thomas LJ, et al. PD-1 blockade and CD27 stimulation activate distinct transcriptional programs that synergize for CD8+ T cell-driven antitumor immunity. Clin Cancer Res. 2018;24:2383–94. https://doi.org/10.1158/1078-0432.CCR-17-3057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JY, Lee KH, Kang J, Borcoman E, Saada-Bouzid E, Kronbichler A, et al. Hyperprogressive disease during anti-PD-1 (PDCD1)/PD-L1 (CD274) therapy: a systematic review and meta-analysis. Cancers (Basel). 2019;11:1699. https://doi.org/10.3390/cancers11111699.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Yue Liang, Hanqing Wang, Bing Luo designed research; Yue Liang, Hanqing Wang analyzed data; Yue Liang performed research and wrote the paper; Yue Liang, Bing Luo agreed to be accountable for all aspects of the work. Thanks to everyone who helped with this article. The research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Luo.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Wang, H. & Luo, B. Exploration and analysis of differentially expressed genes in Epstein–Barr virus negative and positive plasmablastic lymphoma. Clin Transl Oncol 25, 2884–2891 (2023). https://doi.org/10.1007/s12094-023-03150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03150-4

Keywords

Navigation