Skip to main content

Advertisement

Log in

Exploring underlying mechanism of artesunate in treatment of acute myeloid leukemia using network pharmacology and molecular docking

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Acute myeloid leukemia (AML) is a highly heterogeneous hematological cancer. The current diagnosis and therapy model of AML has gradually shifted to personalization and accuracy. Artesunate, a member of the artemisinin family, has anti-tumor impacts on AML. This research uses network pharmacology and molecular docking to anticipate artesunate potential mechanisms of action in the therapy of AML.

Methods

Screening the action targets of artesunate through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PubChem, and Swiss Target Prediction databases; The databases of Online Mendelian Inheritance in Man (OMIM), Disgenet, GeneCards, and Drugbank were utilized to identify target genes of AML, and an effective target of artesunate for AML treatment was obtained through cross-analysis. Protein–protein interaction (PPI) networks are built on the Cytoscape platform. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on the relevant targets using R software. Finally, using molecular docking technology and Pymol, we performed verification of the effects of active components and essential targets.

Results

Artesunate 30 effective targets for treating AML include CASP3, EGFR, MAPK1, and STAT3, four targeted genes that may have a crucial function in disease management. The virus infection-related pathway (HeptatisB (HBV), Human papillomavirus (HPV), Epstein-Barr virus (EBV) infection and etc.), FoxO, viral carcinogenesis, and proteoglycans in cancer signaling pathways have all been hypothesized to be involved in the action mechanism of GO, which is enriched in 2044 biological processes, 125 molecular functions, 209 cellular components, and 106 KEGG pathways. Molecular docking findings revealed that artesunate was critically important in the therapy of AML due to its high affinity for the four primary disease targets. Molecular docking with a low binding energy yields helpful information for developing medicines against AML.

Conclusions

Consequently, artesunate may play a role in multi-targeted, multi-signaling pathways in treating AML, suggesting that artesunate may have therapeutic potential for AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

References

  1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  Google Scholar 

  2. Dong Y, Shi O, Zeng Q, Lu X, Wang W, Li Y, et al. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp Hematol Oncol [Internet]. 2020 [cited 2022 Dec 11]; 9:14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304189/

  3. Rowe JM. Perspectives on current survival and new developments in AML. Best Pract Res Clin Haematol [Internet]. 2021;34:101248.

    Article  CAS  PubMed  Google Scholar 

  4. Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, et al. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021;11:41.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Döhner H, Wei AH, Löwenberg B. Towards precision medicine for AML. Nat Rev Clin Oncol. 2021;18:577–90.

    Article  PubMed  Google Scholar 

  6. Wang J, Wong Y-K, Liao F. What has traditional Chinese medicine delivered for modern medicine? Expert Rev Mol Med. 2018;20:e4.

    Article  PubMed  Google Scholar 

  7. Wang J, Xu C, Wong YK, Liao FL, Jiang T, Tu Y. Malaria eradication. Lancet. 2020;395:e69.

    Article  PubMed  Google Scholar 

  8. Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med. 2011;17:1217–20.

    Article  CAS  PubMed  Google Scholar 

  9. Tu Y. Artemisinin-A gift from traditional chinese medicine to the world (nobel lecture). Angew Chem Int Ed Engl. 2016;55:10210–26.

    Article  CAS  PubMed  Google Scholar 

  10. Ma N, Zhang Z, Liao F, Jiang T, Tu Y. The birth of artemisinin. Pharmacol Ther. 2020;216:107658.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Wang Y, Yin C, Gong P, Zhang Z, Zhao L, et al. Artesunate improves venetoclax plus cytarabine AML cell targeting by regulating the Noxa/Bim/Mcl-1/p-Chk1 axis. Cell Death Dis. 2022;13:379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nogales C, Mamdouh ZM, List M, Kiel C, Casas AI, Schmidt HHHW. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci [Internet]. 2022;43:136–50.

    Article  CAS  PubMed  Google Scholar 

  13. Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20:4331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Halladay CW, Trikalinos TA, Schmid IT, Schmid CH, Dahabreh IJ. Using data sources beyond PubMed has a modest impact on the results of systematic reviews of therapeutic interventions. J Clin Epidemiol. 2015;68:1076–84.

    Article  PubMed  Google Scholar 

  16. Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47:W357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amberger JS, Hamosh A. Searching online mendelian inheritance in man (OMIM): a knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics. 2017;58:121–1212.

    Article  Google Scholar 

  18. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45:D833–9.

    Article  PubMed  Google Scholar 

  19. Safran M, Chalifa-Caspi V, Shmueli O, Olender T, Lapidot M, Rosen N, et al. Human gene-centric databases at the weizmann institute of science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Res. 2003;31:142–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Valente TW, Fujimoto K. Bridging: locating critical connectors in a network. Soc Networks. 2010;32:212–20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sahin Y. LncRNA H19 is a potential biomarker and correlated with immune infiltration in thyroid carcinoma. Clin Exp Med. 2022. https://doi.org/10.1007/s10238-022-00853-w.

    Article  PubMed  Google Scholar 

  23. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma Z, Woon CY-N, Liu C-G, Cheng J-T, You M, Sethi G, et al. Repurposing artemisinin and its derivatives as anticancer drugs: a chance or challenge? Front Pharmacol. 2021;12:828856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abba ML, Patil N, Leupold JH, Saeed MEM, Efferth T, Allgayer H. Prevention of carcinogenesis and metastasis by Artemisinin-type drugs. Cancer Lett. 2018;429:11–8.

    Article  CAS  PubMed  Google Scholar 

  26. Efferth T. Cancer combination therapies with artemisinin-type drugs. Biochem Pharmacol. 2017;139:56–70.

    Article  CAS  PubMed  Google Scholar 

  27. Mancuso RI, Foglio MA, Olalla Saad ST. Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother Pharmacol. 2021;87:1–22.

    Article  CAS  PubMed  Google Scholar 

  28. Lu X, Efferth T. Repurposing of artemisinin-type drugs for the treatment of acute leukemia. Semin Cancer Biol. 2021;68:291–312.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao F, Vakhrusheva O, Markowitsch SD, Slade KS, Tsaur I, Cinatl J, et al. Artesunate impairs growth in cisplatin-resistant bladder cancer cells by cell cycle arrest, apoptosis and autophagy induction. Cells [Internet]. 2020;9:2643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Estrov Z, Thall PF, Talpaz M, Estey EH, Kantarjian HM, Andreeff M, et al. Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia. Blood. 1998;92:3090–7.

    Article  CAS  PubMed  Google Scholar 

  31. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–39.

    Article  CAS  PubMed  Google Scholar 

  32. Huang Q, Li F, Liu X, Li W, Shi W, Liu F-F, et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med [Internet]. 2011;17:860–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carlile GW, Smith DH, Wiedmann M. Caspase-3 has a nonapoptotic function in erythroid maturation. Blood. 2004;103:4310–6.

    Article  CAS  PubMed  Google Scholar 

  34. Man N, Tan Y, Sun X-J, Liu F, Cheng G, Greenblatt SM, et al. Caspase-3 controls AML1-ETO-driven leukemogenesis via autophagy modulation in a ULK1-dependent manner. Blood. 2017;129:2782–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cai S, Zhang Y-X, Han K, Ding Y-Q. Expressions and clinical significance of COX-2, VEGF-C, and EFGR in endometrial carcinoma. Arch Gynecol Obstet. 2017;296:93–8.

    Article  CAS  PubMed  Google Scholar 

  36. Thomas NJ, Myall NJ, Sun F, Patil T, Mushtaq R, Yu C, et al. Brain metastases in EGFR- and ALK-positive NSCLC: outcomes of central nervous system-penetrant tyrosine kinase inhibitors alone versus in combination with radiation. J Thorac Oncol. 2022;17:116–29.

    Article  CAS  PubMed  Google Scholar 

  37. Gehart H, Kumpf S, Ittner A, Ricci R. MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep [Internet]. 2010;11:834–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D’Souza WN, Chang C-F, Fischer AM, Li M, Hedrick SM. The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol. 2008;181:7617–29.

    Article  PubMed  Google Scholar 

  39. Moshofsky KB, Cho HJ, Wu G, Romine KA, Newman MT, Kosaka Y, et al. Acute myeloid leukemia–induced T-cell suppression can be reversed by inhibition of the MAPK pathway. Blood Adv [Internet]. 2019;3:3038–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Turkson J. STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets. 2004;8:409–22.

    Article  CAS  PubMed  Google Scholar 

  41. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer. 2020;19:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Amaya ML, Inguva A, Pei S, Jones C, Krug A, Ye H, et al. The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood. 2022;139:584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rezvani K, Barrett J. STAT3: the “Achilles” heel for AML? Blood. 2014;123:1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo Y, Wang W, Sun H. A systematic review and meta-analysis on the risk factors of acute myeloid leukemia. Transl Cancer Res. 2022;11:796–804.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Movassagh M, Oduor C, Forconi C, Moormann AM, Bailey JA. Sensitive detection of EBV microRNAs across cancer spectrum reveals association with decreased survival in adult acute myelocytic leukemia. Sci Rep. 2019;9:20321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen C-Y, Huang S-Y, Cheng A, Chou W-C, Yao M, Tang J-L, et al. High risk of hepatitis b reactivation among patients with acute myeloid leukemia. PLoS ONE. 2015;10:e0126037.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO signaling pathways as therapeutic targets in cancer. Int J Biol Sci [Internet]. 2017;13:815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Long J, Jia M-Y, Fang W-Y, Chen X-J, Mu L-L, Wang Z-Y, et al. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Blood [Internet]. 2020;135:1472–83.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.81873286), Program of Shanghai Academic Research Leader (No.20XD1403500), Shanghai Science Technology and Innovation Action Plan (No.21Y31920400), Clinical Science and Technology Innovation Project of Shanghai Shenkang Hospital Development Center (No. SHDC12020128).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the article and approved the submitted version. YT and WL participated in data collection and analysis. JY, TX, YW, XD, HX, and JR participated in manuscript writing. JL is responsible for the integrity and accuracy of the data.

Corresponding author

Correspondence to Jiahui Lu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval and informed consent

We declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y., Li, W., Yang, J. et al. Exploring underlying mechanism of artesunate in treatment of acute myeloid leukemia using network pharmacology and molecular docking. Clin Transl Oncol 25, 2427–2437 (2023). https://doi.org/10.1007/s12094-023-03125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03125-5

Keywords

Navigation