Skip to main content

Advertisement

Log in

The regulation roles of miRNAs in Helicobacter pylori infection

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Helicobacter pylori is a kind of Gram-negative bacteria that parasitizes on human gastric mucosa. Helicobacter pylori infection is very common in human beings, which often causes gastrointestinal diseases, including chronic gastritis, duodenal ulcer and gastric cancer. MicroRNAs are a group of endogenous non-coding single stranded RNAs, which play an important role in cell proliferation, differentiation, autophagy, apoptosis and inflammation. In recent years, relevant studies have found that the expression of microRNA is changed after Helicobacter pylori infection, and then regulate the biological process of host cells. This paper reviews the regulation role of microRNAs on cell biological behavior through different signal pathways after Helicobacter pylori infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data availability is not applicable to this article as no new data were created or analyzed in this review.

References

  1. Dastmalchi N, Safaralizadeh R, Banan Khojasteh SM. The correlation between microRNAs and Helicobacter pylori in gastric cancer. Pathogens and disease. 2019. https://doi.org/10.1093/femspd/ftz039.

    Article  PubMed  Google Scholar 

  2. Assa A, Borrelli O, Broekaert I, Saccomani MD, Dolinsek J, Martin-de-Carpi J, et al. Helicobacter pylori-negative chronic gastritis in children: a systematic review. J Pediatr Gastroenterol Nutr. 2022. https://doi.org/10.1097/MPG.0000000000003414.

    Article  PubMed  Google Scholar 

  3. Maeda T, Zai H, Fukui Y, Kato Y, Kumade E, Watanabe T, et al. Impact of helicobacter pylori infection on fluid duodenal microbial community structure and microbial metabolic pathways. BMC Microbiol. 2022. https://doi.org/10.1186/s12866-022-02437-w.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Backert S, Tegtmeyer N, Fischer W. Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol. 2015. https://doi.org/10.2217/fmb.15.32.

    Article  PubMed  Google Scholar 

  5. Backert S, Haas R, Gerhard M, Naumann M. The Helicobacter pylori type IV secretion system encoded by the cag pathogenicity island: architecture, function, and signaling. Curr Top Microbiol Immunol. 2017. https://doi.org/10.1007/978-3-319-75241-9_8.

    Article  PubMed  Google Scholar 

  6. Stein SC, Faber E, Bats SH, Murillo T, Speidel Y, Coombs N, et al. Helicobacter pylori modulates host cell responses by CagT4SS-dependent translocation of an intermediate metabolite of LPS inner core heptose biosynthesis. PLoS Pathog. 2017. https://doi.org/10.1371/journal.ppat.1006514.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zou D, Xu L, Li H, Ma Y, Gong Y, Guo T, et al. Role of abnormal microRNA expression in Helicobacter pylori associated gastric cancer. Crit Rev Microbiol. 2019. https://doi.org/10.1080/1040841X.2019.1575793.

    Article  PubMed  Google Scholar 

  8. Hill M, Tran N. MiRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021. https://doi.org/10.1242/dmm.047662.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee RC, Feinbaum RL, Ambros V, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993. https://doi.org/10.1016/0092-8674(93)90529-y.

    Article  PubMed  Google Scholar 

  10. Cao W, Ni L, Li P, Wang QX, Li MM, Huang SH, et al. MiR-498 targets UBE2T to inhibit the proliferation of malignant melanoma cells. Technol Cancer Res Treat. 2022. https://doi.org/10.1177/15330338221082431.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Feng X, Zou B, Nan T, Zheng X, Zheng L, Lan J, et al. MiR-25 enhances autophagy and promotes sorafenib resistance of hepatocellular carcinoma via targeting FBXW7. Inter J med sci. 2022. https://doi.org/10.7150/ijms.67352.

    Article  Google Scholar 

  12. Wang F, Li J, Zhao Y, Guo D, Liu D, Chang S, et al. MiR-672-3p promotes functional recovery in rats with contusive spinal cord injury by inhibiting ferroptosis suppressor protein 1. Oxid Med Cell Longev. 2022. https://doi.org/10.1155/2022/6041612.

    Article  PubMed  PubMed Central  Google Scholar 

  13. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019. https://doi.org/10.1002/cbin.11137.

    Article  PubMed  Google Scholar 

  14. Li M, Tang D, Yang T, Qian D, Xu R. Apoptosis triggering, an important way for natural products from herbal medicines to treat pancreatic cancers. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2021.796300.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Varela-Nieto I, Palmero I, Magariños M. Complementary and distinct roles of autophagy, apoptosis and senescence during early inner ear development. Hear Res. 2019. https://doi.org/10.1016/j.heares.2019.01.014.

    Article  PubMed  Google Scholar 

  16. Feng Y, Wang L, Zeng J, Shen L, Liang X, Yu H, et al. FoxM1 is overexpressed in Helicobacter pylori-induced gastric carcinogenesis and is negatively regulated by miR-370. Mol Cancer Res. 2013. https://doi.org/10.1158/1541-7786.MCR-13-0007.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou X, Xia Y, Li L, Zhang G. MiR-101 inhibits cell growth and tumorigenesis of Helicobacter pylori related gastric cancer by repression of SOCS2. Cancer Biol Ther. 2015. https://doi.org/10.4161/15384047.2014.987523.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li S, Liang X, Ma L, Shen L, Li T, Zheng L, et al. MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene. 2018. https://doi.org/10.1038/onc.2017.381.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kiga K, Mimuro H, Suzuki M, Shinozaki-Ushiku A, Kobayashi T, Sanada T, et al. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat Commun. 2014. https://doi.org/10.1038/ncomms5497.

    Article  PubMed  Google Scholar 

  20. Zhao M, Liu Q, Liu W, Zhou H, Zang X, Lu J. MicroRNA-140 suppresses Helicobacter pylori-positive gastric cancer growth by enhancing the antitumor immune response. Mol Med Rep. 2019. https://doi.org/10.3892/mmr.2019.10475.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Noto JM, Piazuelo MB, Chaturvedi R, Bartel CA, Thatcher EJ, Delgado A, et al. Strain-specific suppression of microRNA-320 by carcinogenic Helicobacter pylori promotes expression of the antiapoptotic protein Mcl-1. American journal of physiology-Gastrointestinal and liver physiology 2013 https://doi.org/10.1152/ajpgi.00279.2013.

  22. Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C, et al. MiR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer. 2011. https://doi.org/10.1186/1476-4598-10-29.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu K, Yang L, Li C, Zhu CH, Wang X, Yao Y, et al. MicroRNA-146a enhances Helicobacter pylori induced cell apoptosis in human gastric cancer epithelial cells. Asian Pac J Cancer Prev. 2014. https://doi.org/10.7314/apjcp.2014.15.14.5583.

    Article  PubMed  Google Scholar 

  24. Liu J, Wang L, Li J, Xu Y. Upregulation of microRNA-650 by PBX1 is correlated with the development of Helicobacter pylori-associated gastric carcinoma. Neoplasma. 2021. https://doi.org/10.4149/neo_2020_200806N823.

    Article  PubMed  Google Scholar 

  25. Tan X, Tang H, Bi J, Li N, Jia Y. MicroRNA-222-3p associated with Helicobacter pylori targets HIPK2 to promote cell proliferation, invasion, and inhibits apoptosis in gastric cancer. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.26542.

    Article  PubMed  Google Scholar 

  26. Herbster S, Trombetta-Lima M, de Souza-Santos PT, Paladino A, Silveira C, Sogayar MC, et al. Low RECK expression is part of the cervical carcinogenesis mechanisms. Cancers. 2021. https://doi.org/10.3390/cancers13092217.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, et al. MiR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008. https://doi.org/10.1038/labinvest.2008.94.

    Article  PubMed  Google Scholar 

  28. Liu W, Song N, Yao H, Zhao L, Liu H, Li G. MiR-221 and miR-222 simultaneously target RECK and regulate growth and invasion of gastric cancer cells. Medical science monitor. 2015. https://doi.org/10.12659/MSM.894324.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cheng S, Li X, Jia Z, Lin L, Ying J, Wen T, et al. The inflammatory cytokine TNF-α regulates the biological behavior of rat nucleus pulposus mesenchymal stem cells through the NF-κB signaling pathway in vitro. J Cell Biochem. 2019. https://doi.org/10.1002/jcb.28640.

    Article  PubMed  Google Scholar 

  30. Voisin A, Grinberg-Bleyer Y. The many-sided contributions of NF-κB to T-cell biology in health and disease. Int Rev Cell Mol Biol. 2021. https://doi.org/10.1016/bs.ircmb.2020.10.006.

    Article  PubMed  Google Scholar 

  31. Gao C, Zhang Z, Liu W, Xiao S, Gu W, Lu H. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer. 2010. https://doi.org/10.1002/cncr.24743.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhao XD, Lu YY, Guo H, Xie HH, He LJ, Shen GF, et al. MicroRNA-7/NF-κB signaling regulatory feedback circuit regulates gastric carcinogenesis. J Cell Biol. 2015. https://doi.org/10.1083/jcb.201501073.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shao L, Chen Z, Soutto M, Zhu S, Lu H, Romero-Gallo J, et al. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer. FASEB J. 2019. https://doi.org/10.1096/fj.201701456RR.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nyåkern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T, et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia. 2006. https://doi.org/10.1038/sj.leu.2404057.

    Article  PubMed  Google Scholar 

  35. Wang F, Liu J, Zou Y, Jiao Y, Huang Y, Fan L, et al. MicroRNA-143–3p, up-regulated in H. pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2. Oncotarget. 2017 https://doi.org/10.18632/oncotarget.15646.

  36. Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial-mesenchymal transition. Cells. 2020. https://doi.org/10.3390/cells9010217.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miao L, Liu K, Xie M, Xing Y, Xi T. MiR-375 inhibits Helicobacter pylori-induced gastric carcinogenesis by blocking JAK2-STAT3 signaling. Cancer Immunol Immunother. 2014. https://doi.org/10.1007/s00262-014-1550-y.

    Article  PubMed  Google Scholar 

  38. Silva-García O, Valdez-Alarcón JJ, Baizabal-Aguirre VM. Wnt/β-catenin signaling as a molecular target by pathogenic bacteria. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.02135.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu X, Ji Q, Zhang C, Liu X, Liu Y, Liu N, et al. MiR-30a acts as a tumor suppressor by double-targeting COX-2 and BCL9 in H. pylori gastric cancer models. Scientific reports. 2017; https://doi.org/10.1038/s41598-017-07193-w.

  40. Geng Y, Lu X, Wu X, Xue L, Wang X, Xu J. MicroRNA-27b suppresses Helicobacter pylori-induced gastric tumorigenesis through negatively regulating Frizzled7. Oncol Rep. 2016. https://doi.org/10.3892/or.2016.4572.

    Article  PubMed  Google Scholar 

  41. Araújo G, Marques HS, Santos M, da Silva F, da Brito BB, Correa Santos GL, et al. Helicobacter pylori infection: How does age influence the inflammatory pattern? World J Gastroenterol. 2022. https://doi.org/10.3748/wjg.v28.i4.402.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Săsăran MO, Meliț LE, Dobru ED. MicroRNA modulation of host immune response and inflammation triggered by Helicobacter pylori. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22031406.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Feng J, Guo J, Wang JP, Chai BF. MiR-32-5p aggravates intestinal epithelial cell injury in pediatric enteritis induced by Helicobacter pylori. World J Gastroenterol. 2019. https://doi.org/10.3748/wjg.v25.i41.6222.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pagliari M, Munari F, Toffoletto M, Lonardi S, Chemello F, Codolo G, et al. Helicobacter pylori affects the antigen presentation activity of macrophages modulating the expression of the immune receptor CD300E through miR-4270. Front Immunol. 2017. https://doi.org/10.3389/fimmu.2017.01288.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xiao B, Liu Z, Li BS, Tang B, Li W, Guo G, et al. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis. 2009. https://doi.org/10.1086/605443.

    Article  PubMed  Google Scholar 

  46. Wang J, Deng Z, Wang Z, Wu J, Gu T, Jiang Y, et al. MicroRNA-155 in exosomes secreted from Helicobacter pylori infection macrophages immunomodulates inflammatory response. Am J Translational Res. 2016;8(9):3700–9.

    CAS  Google Scholar 

  47. Tang B, Xiao B, Liu Z, Li N, Zhu ED, Li BS, et al. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett. 2010. https://doi.org/10.1016/j.febslet.2010.02.063.

    Article  PubMed  Google Scholar 

  48. Bayer AL, Alcaide P. MyD88: At the heart of inflammatory signaling and cardiovascular disease. J Mol Cell Cardiol. 2021. https://doi.org/10.1016/j.yjmcc.2021.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006. https://doi.org/10.1073/pnas.0605298103.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu Z, Xiao B, Tang B, Li B, Li N, Zhu E, et al. Up-regulated microRNA-146a negatively modulate Helicobacter pylori-induced inflammatory response in human gastric epithelial cells. Microbes Infect. 2010. https://doi.org/10.1016/j.micinf.2010.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li N, Wang J, Yu W, Dong K, You F, Si B, et al. MicroRNA-146a inhibits the inflammatory responses induced by interleukin-17A during the infection of Helicobacter pylori. Mol Med Rep. 2019. https://doi.org/10.3892/mmr.2018.9725.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang J, Wu J, Cheng Y, Jiang Y, Li G. Over-expression of microRNA-223 inhibited the proinflammatory responses in Helicobacter pylori-infection macrophages by down-regulating IRAK-1. American journal of translational research. 2016;8(2):615–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Novodvorsky P, Chico TJ. The role of the transcription factor KLF2 in vascular development and disease. Prog Mol Biol Transl Sci. 2014. https://doi.org/10.1016/B978-0-12-386930-2.00007-0.

    Article  PubMed  Google Scholar 

  54. Li N, Liu SF, Dong K, Zhang GC, Huang J, Wang ZH, et al. Exosome-transmitted miR-25 induced by H. pylori promotes vascular endothelial cell injury by targeting KLF2. Frontiers in cellular and infection microbiology. 2019; https://doi.org/10.3389/fcimb.2019.00366.

  55. Teng GG, Wang WH, Dai Y, Wang SJ, Chu YX, Li J. Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0056709.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang Z, Chen S, Fan M, Ruan G, Xi T, Zheng L, et al. Helicobacter pylori induces gastric cancer via down-regulating miR-375 to inhibit dendritic cell maturation. Helicobacter. 2021. https://doi.org/10.1111/hel.12813.

    Article  PubMed  Google Scholar 

  57. Guo JX, Tao QS, Lou PR, Chen XC, Chen J, Yuan GB. MiR-181b as a potential molecular target for anticancer therapy of gastric neoplasms. Asian Pac J Cancer Prev. 2012. https://doi.org/10.7314/apjcp.2012.13.5.2263.

    Article  PubMed  Google Scholar 

  58. Zhou X, Xu G, Yin C, Jin W, Zhang G. Down-regulation of miR-203 induced by Helicobacter pylori infection promotes the proliferation and invasion of gastric cancer by targeting CASK. Oncotarget. 2014. https://doi.org/10.18632/oncotarget.2600.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xu XC, Zhang WB, Li CX, Gao H, Pei Q, Cao BW, et al. Up-Regulation of miR-1915 inhibits proliferation, invasion, and migration of Helicobacter pylori-infected gastric cancer cells via targeting RAGE. Yonsei Med J. 2019. https://doi.org/10.3349/ymj.2019.60.1.38.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen P, Guo H, Wu X, Li J, Duan X, Ba Q, et al. Epigenetic silencing of microRNA-204 by Helicobacter pylori augments the NF-κB signaling pathway in gastric cancer development and progression. Carcinogenesis. 2020. https://doi.org/10.1093/carcin/bgz143.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Datta C, Subuddhi A, Kumar M, Lepcha TT, Chakraborty S, Jana K, et al. Genome-wide mRNA-miRNA profiling uncovers a role of the microRNA miR-29b-1-5p/PHLPP1 signalling pathway in Helicobacter pylori-driven matrix metalloproteinase production in gastric epithelial cells. Cell Microbiol. 2018. https://doi.org/10.1111/cmi.12859.

    Article  PubMed  Google Scholar 

  62. Poillet-Perez L, Sarry JE, Joffre C. Autophagy is a major metabolic regulator involved in cancer therapy resistance. Cell Rep. 2021. https://doi.org/10.1016/j.celrep.2021.109528.

    Article  PubMed  Google Scholar 

  63. King KE, Losier TT, Russell RC. Regulation of autophagy enzymes by nutrient signaling. Trends Biochem Sci. 2021. https://doi.org/10.1016/j.tibs.2021.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shi Y, Yang Z, Zhang T, Shen L, Li Y, Ding S. SIRT1-targeted miR-543 autophagy inhibition and epithelial-mesenchymal transition promotion in Helicobacter pylori CagA-associated gastric cancer. Cell Death Dis. 2019. https://doi.org/10.1038/s41419-019-1859-8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tang B, Li N, Gu J, Zhuang Y, Li Q, Wang HG, et al. Compromised autophagy by miR30B benefits the intracellular survival of Helicobacter pylori. Autophagy. 2012. https://doi.org/10.4161/auto.20159.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang XJ, Si RH, Liang YH, Ma BQ, Jiang ZB, Wang B, et al. MiR-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway. World J Gastroenterol. 2016. https://doi.org/10.3748/wjg.v22.i15.3978.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li X, Zhu M, Zhao G, Zhou A, Min L, Liu S, et al. MiR-1298-5p level downregulation induced by Helicobacter pylori infection inhibits autophagy and promotes gastric cancer development by targeting MAP2K6. Cell Signal. 2022. https://doi.org/10.1016/j.cellsig.2022.110286.

    Article  PubMed  Google Scholar 

  68. Zhong X, Chen O, Zhou T, Lü M, Wan J. Cytotoxin-associated gene A-positive Helicobacter pylori promotes autophagy in colon cancer cells by inhibiting miR-125b-5p. Can J infectious diseases med microbiology. 2021. https://doi.org/10.1155/2021/6622092.

    Article  Google Scholar 

  69. Al-Bari M, Xu P. Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci. 2020. https://doi.org/10.1111/nyas.14305.

    Article  PubMed  Google Scholar 

  70. Kim YC, Guan KL. MTOR: a pharmacologic target for autophagy regulation. J Clin Investig. 2015. https://doi.org/10.1172/JCI73939.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wu K, Zhu C, Yao Y, Wang X, Song J, Zhai J. MicroRNA-155-enhanced autophagy in human gastric epithelial cell in response to Helicobacter pylori. Saudi J gastroenterology. 2016. https://doi.org/10.4103/1319-3767.173756.

    Article  Google Scholar 

  72. Yang L, Li C, Jia Y. MicroRNA-99b promotes Helicobacter pylori-induced autophagyand suppresses carcinogenesis by targeting mTOR. Oncol Lett. 2018. https://doi.org/10.3892/ol.2018.9269.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Abdi E, Latifi-Navid S, Abedi Sarvestani F, Esmailnejad MH. Emerging therapeutic targets for gastric cancer from a host-Helicobacter pylori interaction perspective. Expert Opin Ther Targets. 2021. https://doi.org/10.1080/14728222.2021.1971195.

    Article  PubMed  Google Scholar 

  74. Nista EC, Pellegrino A, Giuli L, Candelli M, Schepis T, De Lucia SS, Ojetti V, et al. Clinical implications of Helicobacter pylori antibiotic resistance in italy: a review of the literature. Antibiotics (Basel, Switzerland). 2022. https://doi.org/10.3390/antibiotics11101452.

    Article  PubMed  Google Scholar 

  75. Ranjbar R, Hesari A, Ghasemi F, Sahebkar A. Expression of microRNAs and IRAK1 pathway genes are altered in gastric cancer patients with Helicobacter pylori infection. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.27067.

    Article  PubMed  Google Scholar 

  76. Khayam N, Nejad HR, Ashrafi F, Abolhassani M. Expression Profile of miRNA-17-3p and miRNA-17-5p Genes in Gastric Cancer Patients with Helicobacter pylori Infection. J Gastrointest Cancer. 2021. https://doi.org/10.1007/s12029-019-00319-5.

    Article  PubMed  Google Scholar 

  77. Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev. 2015. https://doi.org/10.1016/j.addr.2014.10.031.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province (2020JJ4527, 2019JJ50494), the Scientific Research Fund of Hunan Provincial Education Department (20A438).

Author information

Authors and Affiliations

Authors

Contributions

TT had the idea for the article and drafted the manuscript. TT, YZ, QH, CX and QB performed the literature search and revised the manuscript. LC critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lili Chen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Not necessary; this is a review.

Consent to participate

Not applicable; this is a review.

Consent to publish

Not applicable; this is a review.

Human and animal rights

This is a review, without the participation human and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, T., Zhou, Y., Huang, Q. et al. The regulation roles of miRNAs in Helicobacter pylori infection. Clin Transl Oncol 25, 1929–1939 (2023). https://doi.org/10.1007/s12094-023-03094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03094-9

Keywords

Navigation