Skip to main content

Advertisement

Log in

Claudin-6 enhances the malignant progression of gestational trophoblastic neoplasm by promoting proliferation and metastasis

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Choriocarcinoma (CC) is a rare and highly malignant epithelial tumour. However, the mechanism underlying its occurrence and development remains unknown. We aimed to reveal the biological significance and prognostic value of Claudin-6 (CLDN6) in gestational trophoblastic disease (GTD).

Patients and methods

We collected clinical GTD specimens from 2011 to 2019 and measured CLDN6 gene expression by immunohistochemistry (IHC). High-throughput mRNA sequencing (RNA-seq) revealed a GTD progression-associated gene. CCK-8, wound healing, and flow cytometry assays were used to assess the biological effects of CLDN6 overexpression and knockdown. The medical records of 118 GTD patients from 2011 to 2019 were retrospectively analysed to identify correlations between CLDN6 expression and GTD patient clinical–pathological parameters; these correlations were analysed using the chi-square test and one-way ANOVA. Univariate logistic regression was used to analyse various prognostic parameters of patients with post-molar GTN.

Results

CLDN6 had the second highest fold change in gene expression between GTN and normal samples. CLDN6 was highly expressed in GTN tissues and CC cell lines, and silencing CLDN6 inhibited the proliferation and migration and promoted the apoptosis of CC cells. CLDN6 overexpression was significantly correlated with uterine size (p = 0.01) and ovarian cysts > 6 cm (p = 0.027), CLDN6 expression was significantly higher in HR-GTNs than in low-risk GTNs (LR-GTNs) (p = 0.008), and logistic regression analysis showed that CLDN6 expression in hydatidiform moles (HMs) was related to a high risk of developing post-molar GTN (OR = 2.393, p = 0.03).

Conclusion

We propose that CLDN6 participates in the development of GTD and may become a new therapeutic target for CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data in our study will be made available by the authors upon reasonable request (addressed to Yifeng Wang).

Abbreviations

CC:

Choriocarcinoma

HR-GTN:

High-risk gestational trophoblastic neoplasm

CLDN6:

Claudin-6

GTD:

Gestational trophoblastic disease

IHC:

Immunohistochemistry

RNA-seq:

RNA sequencing

LR-GTNs:

Low-risk GTNs

DEGs:

Differentially expressed genes

rHMs:

Hydatidiform moles that regressed

FIGO:

International Federation of Obstetrics and Gynecology

cHMs:

Complete HMs

STR:

Short tandem repeat

MEM:

Minimum essential medium

RPMI:

Roswell Park Memorial Institute

IRS:

Immunoreactive score

IC50:

Half-maximal inhibitory concentration values

GO:

Gene ontology

shCLDN6/CLDN6-OV:

CLDN6 overexpression or downregulation

References

  1. Jiang F, Wan XR, Xu T, Feng FZ, Ren T, Yang JJ, et al. Evaluation and suggestions for improving the FIGO 2000 staging criteria for gestational trophoblastic neoplasia: a ten-year review of 1420 patients. Gynecologic Oncol. 2018;149(3):539–44. https://doi.org/10.1016/j.ygyno.2018.04.001.

    Article  Google Scholar 

  2. Zohoun AG, Hounmenou K, Mechtani Sel I, Razine R, Dami A, Filali A, et al. Intérêt du dosage de l’hormone chorionique gonadotrope dans les maladies trophoblastiques gestationnelles [Utility of hCG dosage in the management of gestational trophoblastic diseases]. Annales de Biologie Clinique. 2013;71(6):639–43. https://doi.org/10.1684/abc.2013.0908.

    Article  CAS  PubMed  Google Scholar 

  3. Nadhan R, Vaman JV, Nirmala C, Sengodan SK, Hemalatha S, Rajan A, et al. Insights into dovetailing GTD and cancers. Critical Rev Oncol/Hematol. 2017;114:77–90. https://doi.org/10.1016/j.critrevonc.2017.04.001.

    Article  Google Scholar 

  4. Stenman U, Tiitinen A, Alfthan H, Valmu LJ. The classification, functions and clinical use of different isoforms of HCG. HRU. 2006;12(6):769–84. https://doi.org/10.1093/humupd/dml029.

    Article  CAS  Google Scholar 

  5. Stenman U, Alfthan H, Hotakainen KJ. Human chorionic gonadotropin in cancer. CB. 2004;37(7):549–61. https://doi.org/10.1016/j.clinbiochem.2004.05.008.

    Article  CAS  Google Scholar 

  6. Wu Q, Liu Y, Ren Y, Xu X, Yu L, Li Y, et al. Tight junction protein, claudin-6, downregulates the malignant phenotype of breast carcinoma. Eur J Cancer Prev. 2010;19(3):186–94. https://doi.org/10.1097/CEJ.0b013e328337210e.

    Article  CAS  PubMed  Google Scholar 

  7. Krause G, Winkler L, Mueller S, Haseloff R, Piontek J, Blasig IJ, et al. Structure and function of claudins. BEBA. 2008;1778(3):631–45. https://doi.org/10.1016/j.bbamem.2007.10.018.

    Article  CAS  Google Scholar 

  8. Oliveira S, Morgado-Díaz JJC. Claudins: multifunctional players in epithelial tight junctions and their role in cancer. CMLS. 2007;64(1):17–28. https://doi.org/10.1007/s00018-006-6314-1.

    Article  CAS  PubMed  Google Scholar 

  9. Sullivan LM, Yankovich T, Le P, Martinez D, Santi M, Biegel JA, et al. Claudin-6 is a nonspecific marker for malignant rhabdoid and other pediatric tumors. Am J Surg Pathol. 2012;36(1):73–80. https://doi.org/10.1097/PAS.0b013e31822cfa7e.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ushiku T, Shinozaki-Ushiku A, Maeda D, Morita S, Fukayama M. Distinct expression pattern of claudin-6, a primitive phenotypic tight junction molecule, in germ cell tumours and visceral carcinomas. Histopathology. 2012;61(6):1043–56. https://doi.org/10.1111/j.1365-2559.2012.04314.x.

    Article  PubMed  Google Scholar 

  11. Turksen K, Troy T-C. Claudin-6: a novel tight junction molecule is developmentally regulated in mouse embryonic epithelium. Dev Dyn. 2001;222(2):292–300. https://doi.org/10.1002/dvdy.1174.

    Article  CAS  PubMed  Google Scholar 

  12. Hui P. Gestational trophoblastic tumors: a timely review of diagnostic pathology. Arch Pathol Lab Med. 2019;143(1):65–74. https://doi.org/10.5858/arpa.2018-0234-RA.

    Article  PubMed  Google Scholar 

  13. Vilotic A, Bojic-Trbojevic Z, Vicovac L, Jovanovic KM. Macrophage migration inhibitory factor is differentially expressed in normal and choriocarcinoma trophoblast cells. Neoplasma. 2020;67(2):323–32. https://doi.org/10.4149/neo_2020_190321N255.

    Article  CAS  PubMed  Google Scholar 

  14. Kingdon S, Coleman R, Ellis L, Hancock B. Deaths from gestational trophoblastic neoplasia: any lessons to be learned? JORM. 2012;57:293–6.

    Google Scholar 

  15. Neubauer N, Strohl A, Schink J, Lurain J. Fatal gestational trophoblastic neoplasia: an analysis of treatment failures at the brewer trophoblastic disease center from 1979–2012 compared to 1962–1978. GO. 2015;138(2):339–42. https://doi.org/10.1016/j.ygyno.2015.05.041.

    Article  Google Scholar 

  16. Ottevanger PJ. Ovarian cancer stem cells more questions than answers. SICB. 2017;44:67–71. https://doi.org/10.1016/j.semcancer.2017.04.009.

    Article  CAS  Google Scholar 

  17. Batlle E, Clevers H. Cancer stem cells revisited. NM. 2017;23(10):1124–34. https://doi.org/10.1038/nm.4409.

    Article  CAS  Google Scholar 

  18. Ohkubo T, Ozawa MJ. The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. JOCS. 2004;117:1675–85. https://doi.org/10.1242/jcs.01004.

    Article  CAS  Google Scholar 

  19. Aiello N, Stanger B. Echoes of the embryo: using the developmental biology toolkit to study cancer. JDM Mech. 2016;9(2):105–14. https://doi.org/10.1242/dmm.023184.

    Article  CAS  Google Scholar 

  20. Anderson WJ, Zhou Q, Alcalde V, Kaneko OF, Blank LJ, Sherwood RI, et al. Genetic targeting of the endoderm with claudin-6CreER. Dev Dyn. 2008;237(2):504–12. https://doi.org/10.1002/dvdy.21437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu Y, Dang Q, Bo Y, Su X, Wang L, Sun J, et al. The expression of CLDN6 in hepatocellular carcinoma tissue and the effects of CLDN6 on biological phenotypes of hepatocellular carcinoma cells. J Cancer. 2021;12(18):5454–63. https://doi.org/10.7150/jca.55727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kojima M, Sugimoto K, Kobayashi M, Ichikawa-Tomikawa N, Kashiwagi K, Watanabe T, et al. Aberrant Claudin-6-adhesion signaling promotes endometrial cancer progression via estrogen receptor α. Mol Cancer Res. 2021;19(7):1208–20. https://doi.org/10.1158/1541-7786.MCR-20-0835.

    Article  CAS  PubMed  Google Scholar 

  23. Yu S, Zhang Y, Li Q, Zhang Z, Zhao G, Xu J, et al. CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer. Cell Death Dis. 2019;10(12):949. https://doi.org/10.1038/s41419-019-2168-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kong FE, Li GM, Tang YQ, Xi SY, Loong JHC, Li MM, et al. Targeting tumor lineage plasticity in hepatocellular carcinoma using an anti-CLDN6 antibody-drug conjugate. Sci Transl Med. 2021. https://doi.org/10.1126/scitranslmed.abb6282.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Song P, Li Y, Dong Y, Liang Y, Qu H, Qi D, et al. Estrogen receptor β inhibits breast cancer cells migration and invasion through CLDN6-mediated autophagy. J Exp Clin Cancer Res. 2019;38(1):354. https://doi.org/10.1186/s13046-019-1359-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang L, Zhao C, Sun K, Yang D, Yan L, Luo D, et al. Downregulation of CLDN6 inhibits cell proliferation, migration, and invasion via regulating EGFR/AKT/mTOR signalling pathway in hepatocellular carcinoma. Cell Biochem Function. 2020;38(5):541–8. https://doi.org/10.1002/cbf.3489.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of Fujian Province (2021j01409), Science and Technology Project of Health Commission of Fujian Province (2021CX0101) and Joint Funds for the Innovation of Science and Technology, Fujian province (2020y9155).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: QW, YW; Methodology: MP, TL, LC; Formal analysis and investigation: MP, CL, XM, Writing–original draft preparation: MP; Writing–review and editing: QW; Funding acquisition: QW; Resources: PS, YW; Supervision: PS, YW.

Corresponding authors

Correspondence to Pengming Sun or Yifeng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University (FMCH2021KRD020).

Informed consent

Informed consent was obtained from all the patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Peng, M., Lv, C. et al. Claudin-6 enhances the malignant progression of gestational trophoblastic neoplasm by promoting proliferation and metastasis. Clin Transl Oncol 25, 1114–1123 (2023). https://doi.org/10.1007/s12094-022-03021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03021-4

Keywords

Navigation