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Abstract
Background Cetuximab, a monoclonal antibody targeting epidermal growth factor receptor (EGFR), is effective for RAS 
wild-type metastatic colorectal cancer (mCRC) patients. However, cetuximab resistance often occur and the mechanism 
has not been fully elucidated. The purpose of this study was to investigate the role of asparaginyl endopeptidase (AEP) in 
cetuximab resistance.
Methods Differentially expressed genes between cetuximab responders and non-responders were identified by analyzing 
the gene expression profile GSE5851, retrieved from Gene Expression Omnibus (GEO). The potential genes were further 
validated in cetuximab-resistant CRC cell lines. The expression of AEP in the peripheral blood and tumor tissues of mCRC 
patients in our hospital were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respec-
tively. The survival analysis was carried out by Kaplan–Meier method. The function and associated pathways of AEP were 
further investigated by lentivirus transfection, CCK8 assay, colony formation assay, real-time polymerase chain reaction 
(qPCR) and western blot.
Results Through bioinformatics analysis, we found that the expression of AEP gene was related to progress free survival 
(PFS) of mCRC patients treated with cetuximab alone (P = 0.00133). The expression of AEP was significantly higher in 
the cetuximab-resistant CRC cell lines, as well as in mCRC patients with shorter PFS treated with cetuximab-containing 
therapy. Furthermore, AEP could decrease the sensitivity of CRC cells to cetuximab in vitro. And the phosphorylation level 
of MEK and ERK1/2 was increased in AEP overexpression cells. The downregulation of AEP using specific inhibitors could 
partially restore the sensitivity of CRC cells to cetuximab.
Conclusion The higher expression of AEP could contribute to the shorter PFS of cetuximab treatment in mCRC. The reason 
might be that AEP could promote the phosphorylation of MEK/ERK protein in the downstream signal pathway of EGFR.
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Introduction

Colorectal cancer (CRC) is one of the most common malig-
nant tumors worldwide [1]. Among them, 40–50% patients 
had metastasis at the time of initial diagnosis, so the treat-
ment of metastatic CRC (mCRC) is particularly crucial. 
Over the past decade, monoclonal antibodies targeting 
epidermal growth factor receptor (EGFR), such as cetuxi-
mab and panitumumab, have obviously improved overall 
survival and disease control in mCRC [2–4]. The combina-
tions of cetuximab and chemotherapeutic regimens, such as 
FOLFIRI, FOLFOX or FOLFOXIRI, have been the most 
important strategies for the treatment of RAS wild-type 
mCRC [2, 5, 6]. However, resistance often occur in less 
than nine months after cetuximab treatment. A number of 
genetic mutations were found to contribute to the resistance 
[7–9], including mutation of RAS [10–13], BRAF [12, 14], 
PIK3CA [12, 15] and amplification of HER2 [16] and MET 
[17]. Despite these biomarkers, additional mechanisms of 
resistance to EGFR blockade are thought to exist in mCRC.

Asparaginyl endopeptidase (AEP), also known as legu-
main (LGMN), is a member of the C13 cysteine protease 
family [18]. The inactive precursor of AEP can be self-
activated in acidic environment to become an active mature 
enzyme, which mainly exists in the introsome or lysosome. 
In recent years, it is reported that AEP is also expressed in 
cytoplasm and nucleus [19, 20]. Many studies have shown 
that the expression of AEP increased in various tumors [21], 
such as breast cancer [22], ovarian cancer [23], colorectal 
cancer [20], gastric cancer [24, 25] and glioblastoma [26]. 
Furthermore, the higher level of AEP indicated poorer prog-
nosis and shorter survival in these patients. However, the 
mechanism has not been elucidated.

Through the Gene Expression Omnibus (GEO) data-
base, using the baseline gene expression profile (GSE5851) 
of KRAS wild-type mCRC patients before cetuximab treat-
ment, we found that the level of AEP was closely related to 
the progression free survival (PFS) (P = 0.00133). Patients 
with higher AEP had shorter PFS. The purpose of current 
study was to further validate the role of AEP in cetuximab 
resistance in mCRC.

Methods

Microarray profile analysis from gene expression 
omnibus (GEO) database

The gene expression profile GSE5851 was downloaded from 
the GEO database. GSE5851 contained 80 KRAS wide-type 
mCRC patients who were enrolled for treatment with cetuxi-
mab monotherapy [27]. The microarrays were conducted 

by Affymetrix GeneChip Scanner 3000 with GPL571 using 
pre-treatment tumor tissue samples. Statistical analyses were 
performed using quantile normalized signal intensity val-
ues. Univariate analysis to compare gene expression profiles 
according to clinical response was performed using a two-
sided unequal variance t test. P value < 0.05 was considered 
significant.

Patients

Forty-four mCRC patients treated in our department from 
August 2016 to April 2017 and provided informed consent 
for their biological samples to be use in future research. The 
patients were all histologically diagnosed with advanced or 
metastatic RAS wide-type colorectal adenocarcinoma with 
no previous palliative therapy. All of them received first-
line treatment with chemotherapy plus cetuximab. Tumor 
tissue samples were collected before treatment. The study 
was approved by Ethics Committee of Zhongshan Hospital 
Affiliated to Fudan University.

Cell culture

Caco2 and NCI-H508 cell line was obtained from Cell Bank 
of the Chinese Academy of Sciences (Shanghai, China). 
Caco2 cells were cultured in Dulbecco’s Modified Eagle’s 
Medium (Gibco, USA) containing 10% FBS (Gibco, USA) 
and 1% penicillin/streptomycin (Invitrogen, USA). NCI-
H508 cells were maintained in RMPI-1640 medium (Gibco, 
USA) supplemented with 10% FBS and 1% penicillin/strep-
tomycin in a 5%  CO2 humidified atmosphere at 37 °C. In 
order to verify the role of AEP or MEK/ERK pathways, AEP 
inhibitors (AEPI, obtained from Lin [26]) or MEK inhibitors 
U0126 (Cell Signaling Technology, 9903) were used for cell 
intervention.

Cetuximab‑resistant CRC cells establishment

NCI-H508 cells, known as cetuximab-sensitive CRC cells, 
were continuously exposed to increasing concentrations of 
cetuximab for 6 months. The IC50 value for cetuximab of 
NCI-H508 cells was about 1 μg/mL. The drug dose was 
progressively increased to 10  μg/mL in approximately 
2 months, to 50 μg/mL after other 2 months, and finally, 
to 100 μg/mL after additional 2 months. The established 
cetuximab-resistant NCI-H508 cell line (NCI-H508-CR) 
was then maintained in continuous culture with this maxi-
mally achieved dose of cetuximab that allowed cellular 
proliferation.
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Cell proliferation assay

For cell proliferation assay, the viability of CRC cell lines 
was determined by Cell Counting Kit 8 (CCK8) (Dojindo, 
Japan) and measured at OD450 nm with the BioTek Gen5 
system (BioTeck, USA). For clonogenic assay, cells were 
plated in 6-well plates with 2 ml media. Media was changed 
every 3 to 4 days. After 7–10 days, colonies were fixed in 
80% methanol and stained with 0.1% crystal violet.

Real‑time polymerase chain reaction (qPCR)

RNA isolation was performed using the TRIZOL reagent 
(Invitrogen, USA). The cDNA was prepared using an oligo 
(dT) primer (Supplement Table 1) and reverse transcriptase 
(Takara, Shiga, Japan) following standard protocols. Quan-
titative real-time polymerase chain reaction (qRT-PCR) 
was performed using SYBR Green on the ABI 7500 real-
time PCR System (Applied Biosystems, Foster City, CA). 
Relative expression was presented using the  2−ΔCt method 
[ΔCt = Ct (chemokine) − Ct (beta-actin)].

Western blot

Cell samples were collected and lysed in RIPA buffer with 
protease inhibitor cocktails. Total cell protein extracts 
(20 µg/lane) were subjected to SDS-PAGE analysis. The 
membrane was blocked with 5% milk in TBST before incu-
bation in the following antibody overnight at 4 °C, AEP 
antibody (R&D Systems, AF2199) or EGFR antibody (Cell 
Signaling Technology, 2085), phosphor-EGFR antibody 
(Cell Signaling Technology, 3777), MEK1/2 (Cell Signaling 
Technology, 4694), phosphor-MEK1/2 (Cell Signaling Tech-
nology, 9154), ERK1/2 (Cell Signaling Technology, 4695), 
phosphor-ERK1/2 (Cell Signaling Technology, 4370), beta-
actin (Cell Signaling Technology, 3700). The membranes 
were washed with TBST and incubated with the secondary 
antibodies (Santa Cruz Biotechnology). The immunoreac-
tive proteins were visualized by chemiluminescence reagents 
(ECL; Amersham Biosciences).

ELISA

Levels of AEP protein in the cell supernatant were deter-
mined using ELISA kit (R&D Systems, DY4769) in accord-
ance with the protocol provided by the manufacturer. Briefly, 
samples and standards were added in a 96-well polystyrene 
microplate coated with diluted AEP capture antibody and 
incubated for 2 h. The plates were washed, added with AEP 
detection antibody, and incubated for 2 h. The working dilu-
tion was added after washing twice. Cover the plate and 
incubate for 20 min at room temperature. Substrate solution 
was added to each well and incubate for 20 min at room 

temperature. The reaction was terminated with stop solution. 
Then, determine the optical density of each well immedi-
ately, using a microplate reader set to 450 nm.

Immunohistochemistry

Slides were routinely de-paraffinizated and rehydrated, and 
then heated at 98 °C in a citrate buffer for 20 min and cooled 
naturally to room temperature. Sections were incubated in 
0.3% hydrogen peroxide for 20 min and blocked with 5% 
normal horse serum in PBS for 30 min. AEP antibody (R&D 
Systems, AF2199) was added for incubating overnight at 
4 °C, then stained using a highly sensitive streptavidin–bio-
tin–peroxidase detection system and counterstained with 
hematoxylin.

Lentiviral vector transfection

The target sequences for AEP shRNAs were 5′-gatccGAT 
GGT GTT CTA CATTG-AAT TCA AGA GAT TCA ATG TAG 
AAC ACC ATC TTT TTT g-3′ (AEP-KD1) and 5′-gatccAAA 
CTG ATG AAC ACC AAT GAT TTC AAG AGA ATC ATT GGT 
GTT CAT CAG TTT TTT TTTg-3′ (AEP-KD2). After 48 h, the 
efficiency of AEP knockdown was confirmed via western 
blot and ELISA. Lentiviral vectors for human AEP-shRNA 
carrying a green fluorescent protein (GFP) sequence were 
constructed by Hanyin Co. (Shanghai, China). To obtain the 
stable AEP knockdown cell line, cells were seeded in six-
well dishes at a density of 2 ×  105 cells per well. The cells 
were then infected with the same titer virus with 8 μg/ml 
polybrene on the following day. Approximately 72 h after 
viral infection, GFP expression was confirmed under a fluo-
rescence microscope, and the culture medium was replaced 
with selection medium containing 4 μg/ml puromycin. The 
cells were then cultured for at least 14 days. The puromy-
cin-resistant cell clones were isolated, amplified in medium 
containing 2 μg/ml puromycin for seven to nine days, and 
transferred to a medium without puromycin. The clones 
were designated as AEP-KD or NC cells.

Colony formation experiment

Cells were seeded in six-well dishes at a density of 1000 
cells per well and cultured at 37 °C, 5%  CO2. When clones 
were visible, the culture was stopped. The supernatant was 
removed by vacuum pump. 80% methanol was added at 
room temperature for 20 min. Crystal violet staining solu-
tion was added dropwise, and the colonies were counted by 
software image J.
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Immunofluorescence assay

Cells fixed on coverslips were treated with the AEP anti-
body (R&D Systems, AF2199) and secondary antibodies 
conjugated with Alexa Fluor-488 (Abcam). Then, coverslips 
were washed with PBS, stained with 4′, 6-diamidino-2-phe-
nylindole (DAPI, Yeasen, China), and evaluated using laser 
confocal microscopy (Leica TCS SP5 II, Wetzlar, Germany).

Statistical analysis

The median PFS was calculated by Kaplan–Meier survival 
analysis, and its significance was evaluated by log rank test. 
The data results of continuous variables were expressed by 
mean ± standard deviation, and the difference between the 
two groups was analyzed by t test. P value of < 0.05 was 
considered statistically significant. SPSS 24 software was 
used for statistical analysis.

Results

Identification of differentially expressed genes 
(DEGs)

A total of 1002 DEGs were identified from GSE5851 
data set. Among them, 343 genes were upregulated in 

non-responders of cetuximab in mCRC. The top 100 upreg-
ulated genes are shown in Supplement Table 2. By search-
ing previous literature, eight candidate genes (Fig. 1) were 
identified which were closely related to tumor development. 
Among them, the expression of asparaginyl endopeptidase 
gene (LGMN) was significantly related to the progression 
free survival (PFS) (P = 0.00133) (Fig. 1). Patients with 
higher LGMN expression had shorter PFS of cetuximab.

AEP increased in cetuximab‑resistant cells

CCK8 assay and colony formation assay were used to verify 
the function of cetuximab-resistant cells. We found that the 
proliferation and colony formation of NCI-H508-CR cells 
after treatment with cetuximab did not decrease, compared 
with its parallel NCI-H508 cells (Fig. 2A–C). Eight can-
didate genes were identified by qPCR in these cells. The 
results showed that the expression of AEP gene in NCI-
H508-CR cells was significantly higher than that in NCI-
H508 cells (P < 0.01), while there was no significant differ-
ence in the expression levels of other seven genes (Fig. 2D). 
Also, the expression of AEP protein in NCI-H508-CR cells 
was significantly elevated as shown in the results of western 
blot and ELISA (P < 0.01) (Fig. 2E, F). Data of immuno-
fluorescence staining and confocal microscopy indicated 
that cytoplasmic localization of AEP was increased in NCI-
H508-CR cells (Fig. 2G).

Fig. 1  Identification of differentially expressed genes. Eight candidate genes upregulated in cetuximab non-responders. The expression of aspar-
aginyl endopeptidase gene (LGMN) was significantly related to the progression free survival (PFS) (P = 0.00133)
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AEP increased in cetuximab‑resistant patients

From August 2016 to April 2017, tissue and serum sam-
ples from 44 patients with mCRC treated with cetuximab-
containing therapy in our department were collected and 
detected by immunohistochemistry and ELISA, respec-
tively. The baseline characteristics are shown in Table 1. 
The immunohistochemical scoring was defined as follows: 
according to the staining intensity, it could be divided into 
0 (no staining), 1 (light staining), 2 (moderate staining) and 
3 (strong staining); according to the staining area, it could 
be divided into 1 point (≤ 25%), 2 points (> 25%, ≤ 50%), 3 
points (> 50%, ≤ 75%), 4 points (> 75%). Multiply the scores 
of staining intensity and staining area, and the product was 
between 0 and 12 points. 0–6 was defined as low expression, 
and 7–12 was defined as high expression (Fig. 2H). The 
median level of serum AEP expression was 218.35 pg/ml, 
ranging from 101.67 to 423.33 pg/ml. Taking the median 
level as the cut-off, the expression level of AEP was divided 
into high expression (> 218.35 pg/ml) and low expression 

(≤ 218.35 pg/ml). The results showed that the expression of 
AEP in tumor tissues or serum was closely related to PFS 
(Fig. 2I, J). The median PFS of patients with high expression 
of AEP was shorter than that of patients with low expression 
of AEP (tissue: 6 months vs 10 months, P = 0.0023; serum: 
6.35 months vs 9.7 months, P = 0.0055).

Knockdown of AEP restore the sensitivity 
of cetuximab

Results of western blot and ELISA in Caco2 and NCI-
H508 cells showed that the expression of AEP in AEP-
KD group was significantly decreased (Fig. 3A, B). Cells 
was treated with a series of concentration of cetuximab for 
48 h (0–250 μg/ml in Caco2 cells and 0–50 μg/ml in NCI-
H508 cells). CCK8 assay showed that the proliferation of 
AEP-KD cells was significantly decreased than that of the 
control group (AEP-NC cells) after cetuximab intervention 
(P < 0.001) (Fig. 3C), the same as the results of colony for-
mation assay (P < 0.001) (Fig. 3D). However, the prolifera-
tion and colony formation of AEP-OE cells did not change 
obviously. The AEP-OE cells were treated with AEP inhibi-
tor (20 μM or 40 μM) for different hours, and the prolifera-
tion was significantly decreased after cetuximab intervention 
(Fig. 3E). The results showed that AEP inhibitor could par-
tially restore the sensitivity to cetuximab in AEP-OE cells.

Phosphorylation of MEK/ERK in AEP‑OE cells

The results of Western blot showed that the phosphoryla-
tion level of MEK and ERK 1/2 increased in AEP-OE 
cells (Fig. 4A). As shown in Fig. 4B, ERK specific inhibi-
tor, U0126, significantly inhibited the phosphorylation of 
ERK. The AEP-OE cells were treated with U0126 (10 μM 
or 20 μM) for different hours, and the proliferation was sig-
nificantly decreased after cetuximab intervention (Fig. 4C). 
The results showed that ERK inhibitors could also restore 
the sensitivity to cetuximab in AEP-OE cells. The colony 
formation of AEP-OE cells was also significantly decreased 
after cetuximab and U0126 intervention (Fig. 4D).

Discussion

In this study, we identified differentially expressed genes 
between cetuximab responders and non-responders by 
analyzing the gene expression profile GSE5851, retrieved 
from Gene Expression Omnibus (GEO). We found that the 
expression level of AEP was closely related to the PFS of 
cetuximab treatment.

The GSE5851 profile was reported in 2007 [27], contain-
ing 80 KRAS wide-type mCRC patients who were enrolled 
for cetuximab monotherapy. Therefore, it is a very suitable 

Table 1  Baseline characteristics of patients

Baseline characteristics N (%) (N = 44)

Age, n (%)
 ≤ 60 22 (50)
 > 60 22 (50)

Gender, n (%)
 Male 30 (68.2)
 Female 14 (31.8)

ECOG PS, n (%)
 0 11 (25)
 1 33 (75)

Number of metastatic organs
 Single 14 (31.8)
 Multiple 30 (68.2)

Treatment
 E + FOLFIRI 26 (59.1)
 E + FOLFOX 18 (40.9)

Fig. 2  AEP increased in cetuximab-resistant cells and patients. A 
CCK8 assay showed that the proliferation of NCI-H508-CR cells 
after cetuximab intervention did not decrease. B, C Number of col-
onies did not decrease in NCI-H508-CR cells after cetuximab inter-
vention. D Eight candidate genes were identified by qPCR in NCI-
H508-CR cells (**P < 0.01). E, F AEP expression results of western 
blot and ELISA (**P < 0.01). G Subcellular localization of AEP was 
assessed by immunofluorescence staining (100×). H Expression level 
of AEP in tumor tissue detected by immunohistochemistry (10× , 
40×). I, J The median PFS of patients with high expression of AEP 
was shorter than that of patients with low expression of AEP in tissue 
(Figure I: 6 months vs 10 months, P = 0.0023) and in serum (Figure 
J: 6.35 months vs 9.7 months, P = 0.0055)

◂
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database for analysis of biomarkers for cetuximab. Over the 
past decade, the combinations of cetuximab and chemo-
therapeutic regimens have been the standard treatment of 
RAS wild-type mCRC [2, 5, 6], and few patients are treated 
with cetuximab monotherapy in clinic practice. As a result, 
cetuximab resistance research have been interfered by the 
addition with chemotherapeutic drugs. Based on the cetuxi-
mab-sensitive cell line NCI-H508, we established its parallel 
cetuximab-resistant cell line NCI-H508-CR by continuous 
exposure of cetuximab as described in previous report [28], 
to further explore the resistant mechanism in vitro.

Since 2003, it has been well established that AEP is 
widely expressed in various cancers, such as glioblastoma 
[26], esophageal cancer [29], breast cancer [22], ovarian can-
cer [23]. High AEP expression was associated with progres-
sion and poor prognosis and considered as a potential thera-
peutic target. Down-regulation of AEP significantly reduced 
the migration and invasion ability of cancer cells [30]. In 
colorectal cancer, a study [20] showed that AEP was highly 
expressed in tumor and stromal cells and could be detected 
in nucleus in 30% of tumors. Higher AEP expression was 
associated with shorter overall survival and metastasis free 
survival. In glioblastoma patients [26], overexpression of 
AEP promoted tumorigenesis and shortened the survival 
time. Knock down or pharmacological inhibition of AEP 
reduced tumorigenesis and prolonged survival in murine 
models. Our previous study also found that metastatic gas-
tric cancer patients with low expression of AEP achieved 
more complete response or partial response after chemo-
therapy [31]. Therefore, AEP may not only be an independ-
ent indicator of poor prognosis, but also be involved in the 
occurrence of drug resistance. The current study focused on 
the relationship between AEP and cetuximab resistance in 
colorectal cancer. First, we verified the higher cytoplasmic 
expression of AEP in cetuximab-resistant cells compared 
with sensitive cells in vitro. Then, we found that the higher 
expression of AEP indicated the shorter PFS in the mCRC 
patients treated with cetuximab-containing therapy.

We further studied the possible mechanisms for AEP-
mediated cetuximab resistance. In our previous report, AEP 
could activate the MAPK/MEK/ERK signaling pathway and 
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with 5  μg/mL cetuximab intervention for 48  h. E The proliferation 
of AEP-OE cells was significantly decreased after AEP inhibitor and 
cetuximab intervention (***P < 0.001)
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promote resistance to microtubule inhibitors in gastric can-
cers cells, including paclitaxel, docetaxel, and T-DM1 [31]. 
Cetuximab is an anti-EGFR immunoglobulin G1 (IgG1) 
mAb. Gene mutations in the EGFR downstream, includ-
ing RAS [10–13], BRAF [12, 14], PIK3CA [12, 15], con-
tribute to cetuximab resistance. Thus, we assumed that, as 
the downstream signal pathway of EGFR, the alteration of 
MAPK pathway might also play a role in cetuximab resist-
ance. In this study, we found that the phosphorylation of 
MEK/ERK proteins increased after AEP overexpression, 
and MEK inhibitors U0126 could partially block the resist-
ance induced by AEP. U0126, as an inhibitor of the MAPK 
signaling pathway, is closely related to various biological 
processes, such as differentiation, cell growth, autophagy, 
apoptosis, and stress responses. It makes U0126 play an 
essential role in various cancers [32].

It has been well reported that AEP may promote cancer 
progression through diverse pathways, but little is known 
about the mechanism of AEP-mediated drug resistance. AEP 
could promote tumor progression by blocking the tumor-
suppressive function of P53 [26], activating the PI3K/AKT 
pathway [33], remodeling of the extracellular matrix (ECM) 
[34], increasing endothelial permeability [35], or modulat-
ing epithelial-to-mesenchymal transition (EMT) [36]. AEP 
may also be involved in the immune regulation process. In 
experimental colitis and graft versus host disease (GVHD) 
mice, the researchers found that programmed cell death 
ligand 1 (PD-L1) maintains the intrinsic function of Foxp3 
by specifically lowering the AEP in lysozyme [37]. AEP is 
an upstream activator of the cathepsin L-C3-IFN-gamma 
axis in human CD4(+) T cells and hence an important sup-
porter of human Th1 induction [38]. All these mechanisms 
may also contribute to drug resistance and further research 
is needed.

In this study, AEP inhibitors (AEPIs) were used to restore 
the sensitivity of AEP-overexpressed cells to cetuximab. 
Another study [39] has shown that AEP-specific small mol-
ecule inhibitor can effectively inhibit tumor progression 
and improved survival in breast cancer transgenic mice. 
Therefore, AEP may be an effective target for tumor treat-
ment or reversal of drug resistance in the future. Referring 
to the reported strategy, the following therapeutic methods 
are proposed for consideration: a combination of medica-
tions consisting of signaling pathway inhibitors and AEPI or 
immunotherapy plus AEPI. Moreover, what triggers the up-
regulation of AEP in cancers has not been well known. The 
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concrete signaling pathway regulation of the AEP protein 
and the activation of AEP are worth exploring and will be 
helpful for blocking the carcinoma-promoting effect of AEP.

In conclusion, this study suggested that the higher expres-
sion of AEP could contribute to the shorter PFS of cetuxi-
mab treatment in mCRC. The sensitivity of AEP overexpres-
sion colon cancer cells to cetuximab decreased, which can 
be partially restored by AEP inhibitor. AEP may mediate 
cetuximab resistance by activating the phosphorylation of 
EGFR/MEK/ERK signaling pathway.
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