Skip to main content

Advertisement

Log in

Bone marrow mesenchymal stem cells promote the progression of prostate cancer through the SDF-1/CXCR4 axis in vivo and vitro

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the involvement of the SDF-1/CXCR4 axis in the process of BMMSC homing in prostate cancer (PCa) in vivo and in vitro.

Methods

After verification of BMMSCs, we fixed the concentration gradient of SDF-1 for BMMSC cultivation to analyze CXCR4 expression by qRT-PCR and flow cytometric analysis. Furthermore, we developed a non-contact co-culture system and explored the participation of the SDF-1/CXCR4 axis in PCa using qRT-PCR, flow cytometry, and ELISA. In addition, A green fluorescent protein (GFP)-transplanted methylnitrosourea (MNU)-induced PCa mouse model was established to investigate the CXCR4 expression in vivo.

Results

The CXCR4 expression was up-regulated with the increase in SDF-1 concentrations, and elevated SDF-1 had a significant promoting effect on cell proliferation and migration in BMMSCs. Moreover, the CXCR4 expression of BMMSCs was significantly increased in the non-contact co-culture model with vascular endothelial cells (VECs), and analysis of this model also showed that the proliferation and migration of BMMSCs were promoted in the presence of VECs. The ELISA assay showed that the SDF-1 levels in the co-culture model at 48 h were significantly increased. Twenty of the GFP-transplanted mice were divided into a PCa group and a control group, and four GFP-transplanted mice were observed to have prostate tumorigenesis. It also showed that CXCR4 was obviously increased in the prostate tissue of PCa mice.

Conclusion

Our findings suggest that BMMSCs could home and promote the proliferation and migration of PCa through the SDF-1/CXCR4 axis in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

Abbreviations

PCa:

Prostate cancer

PSA:

Prostate-specific antigen

RP:

Radical prostatectomy

ADT:

Androgen deprivation therapy

AR:

Androgen receptor

BMDCs:

Bone marrow-derived cells

BMMSCs:

Bone marrow mesenchymal stem cells

GFP:

Green fluorescent protein

TRAMP:

Transplanted transgenic adenocarcinoma of mouse prostate

MUN:

Methylnitrosourea

SDF-1:

Stromal cell-derived factor-1

VECs:

Vascular endothelial cells

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  2. Perdana NR, Mochtar CA, Umbas R, Hamid ARA. The risk factors of prostate cancer and its prevention: a literature review. Acta Med Indones. 2016;48(3):228–38.

    PubMed  Google Scholar 

  3. Daniyal M, Siddiqui ZA, Akram M, Asif HM, Sultana S, Khan A. Epidemiology, etiology, diagnosis and treatment of prostate cancer. Asian Pac J Cancer Prev. 2014;15(22):9575–8. https://doi.org/10.7314/apjcp.2014.15.22.9575.

    Article  PubMed  Google Scholar 

  4. Tolkach Y, Kristiansen G. The heterogeneity of prostate cancer: a practical approach. Pathobiology. 2018;85(1–2):108–16. https://doi.org/10.1159/000477852.

    Article  CAS  PubMed  Google Scholar 

  5. Ciccarese C, Massari F, Iacovelli R, Fiorentino M, Montironi R, Di Nunno V, et al. Prostate cancer heterogeneity: discovering novel molecular targets for therapy. Cancer Treat Rev. 2017;54:68–73. https://doi.org/10.1016/j.ctrv.2017.02.001.

    Article  CAS  PubMed  Google Scholar 

  6. Neschadim A, Summerlee AJS, Silvertown JD. Targeting the relaxin hormonal pathway in prostate cancer. Int J Cancer. 2015;137(10):2287–95. https://doi.org/10.1002/ijc.29079.

    Article  CAS  PubMed  Google Scholar 

  7. Stone L. Prostate cancer: the pathway to progression: DHT biosynthesis. Nat Rev Urol. 2017;14(9):516. https://doi.org/10.1038/nrurol.2017.118.

    Article  PubMed  Google Scholar 

  8. Schneider JA, Logan SK. Revisiting the role of Wnt/β-catenin signaling in prostate cancer. Mol Cell Endocrinol. 2018;462(Pt A):3–8. https://doi.org/10.1016/j.mce.2017.02.008.

    Article  CAS  PubMed  Google Scholar 

  9. Patel M, Sachidanandan M, Adnan M. Serine arginine protein kinase 1 (SRPK1): a moonlighting protein with theranostic ability in cancer prevention. Mol Biol Rep. 2019;46(1):1487–97. https://doi.org/10.1007/s11033-018-4545-5.

    Article  CAS  PubMed  Google Scholar 

  10. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306(5701):1568–71. https://doi.org/10.1126/science.1099513.

    Article  CAS  PubMed  Google Scholar 

  11. Yan X, Zhang D, Wu W, Wu S, Qian J, Hao Y, et al. Mesenchymal stem cells promote hepatocarcinogenesis via lncRNA-MUF interaction with ANXA2 and miR-34a. Can Res. 2017;77(23):6704–16. https://doi.org/10.1158/0008-5472.CAN-17-1915.

    Article  CAS  Google Scholar 

  12. Pietrovito L, Leo A, Gori V, Lulli M, Parri M, Becherucci V, et al. Bone marrow-derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Mol Oncol. 2018;12(5):659–76. https://doi.org/10.1002/1878-0261.12189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou X-M, Wang D, He H-L, Tang J, Wu J, Xu L, et al. Bone marrow derived mesenchymal stem cells involve in the lymphangiogenesis of lung cancer and Jinfukang inhibits the involvement in vivo. J Cancer. 2017;8(10):1786–94. https://doi.org/10.7150/jca.17859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu X-Z, Zhang L-T, Tong W-Q, Wang S, Xu Z-B, Chen F. Research advances in molecular mechanisms of the invasion and metastasis of lung cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2016;38(1):108–12. https://doi.org/10.3881/j.issn.1000-503X.2016.01.020.

    Article  CAS  PubMed  Google Scholar 

  15. Luo F, Liu T, Wang J, Li J, Ma P, Ding H, et al. Bone marrow mesenchymal stem cells participate in prostate carcinogenesis and promote growth of prostate cancer by cell fusion in vivo. Oncotarget. 2016;7(21):30924–34. https://doi.org/10.18632/oncotarget.9045.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wen S, Niu Y, Yeh S, Chang C. BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts. Int J Oncol. 2015;47(2):719–27. https://doi.org/10.3892/ijo.2015.3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou Y, Cao H-B, Li W-J, Zhao L. The CXCL12 (SDF-1)/CXCR4 chemokine axis: oncogenic properties, molecular targeting, and synthetic and natural product CXCR4 inhibitors for cancer therapy. Chin J Nat Med. 2018;16(11):801–10. https://doi.org/10.1016/S1875-5364(18)30122-5.

    Article  CAS  PubMed  Google Scholar 

  18. Teicher BA, Fricker SP. CXCL12(SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–31. https://doi.org/10.1158/1078-0432.CCR-09-2329.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou W, Guo S, Liu M, Burow ME, Wang G. Targeting CXCL12/CXCR4 axis in tumor immunotherapy. Curr Med Chem. 2019;26(17):3026–41. https://doi.org/10.2174/0929867324666170830111531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meng W, Xue S, Chen Y. The role of CXCL12 in tumor microenvironment. Gene. 2018;641:105–10. https://doi.org/10.1016/j.gene.2017.10.015.

    Article  CAS  PubMed  Google Scholar 

  21. Kowalski K, Kołodziejczyk A, Sikorska M, Płaczkiewicz J, Cichosz P, Kowalewska M, et al. Stem cells migration during skeletal muscle regeneration—the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis. Cell Adhes Migr. 2017;11(4):384–98. https://doi.org/10.1080/19336918.2016.1227911.

    Article  CAS  Google Scholar 

  22. Li M, Sun X, Ma L, Jin L, Zhang W, Xiao M, et al. SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways. Sci Rep. 2017;7:40161. https://doi.org/10.1038/srep40161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen D, Xia Y, Zuo K, Wang Y, Zhang S, Kuang D, et al. Crosstalk between SDF-1/CXCR4 and SDF-1/CXCR7 in cardiac stem cell migration. Sci Rep. 2015;5:16813. https://doi.org/10.1038/srep16813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bi J, Li P, Li C, He J, Wang Y, Zhang H, et al. The SDF-1/CXCR4 chemokine axis in uveal melanoma cell proliferation and migration. Tumour Biol. 2016;37(3):4175–82. https://doi.org/10.1007/s13277-015-4259-4.

    Article  CAS  PubMed  Google Scholar 

  25. Chang AI, Schwertschkow AH, Nolta JA, Wu J. Involvement of mesenchymal stem cells in cancer progression and metastases. Curr Cancer Drug Targets. 2015;15(2):88–98. https://doi.org/10.2174/1568009615666150126154151.

    Article  CAS  PubMed  Google Scholar 

  26. Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V. Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Transl Med. 2017;6(12):2115–25. https://doi.org/10.1002/sctm.17-0138.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu C, Feng X, Wang B, Wang X, Wang C, Yu M, et al. Bone marrow mesenchymal stem cells promote head and neck cancer progression through Periostin-mediated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin. Cancer Sci. 2018;109(3):688–98. https://doi.org/10.1111/cas.13479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mi F, Gong L. Secretion of interleukin-6 by bone marrow mesenchymal stem cells promotes metastasis in hepatocellular carcinoma. Biosci Rep. 2017;37(4):BSR20170181. https://doi.org/10.1042/BSR20170181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer. 2017;16(1):31. https://doi.org/10.1186/s12943-017-0597-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo J, Lee SO, Cui Y, Yang R, Li L, Chang C. Infiltrating bone marrow mesenchymal stem cells (BM-MSCs) increase prostate cancer cell invasion via altering the CCL5/HIF2α/androgen receptor signals. Oncotarget. 2015;6(29):27555–65. https://doi.org/10.18632/oncotarget.4515.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang K-Q, Liu Y, Huang Q-H, Mo N, Zhang Q-Y, Meng Q-G, et al. Bone marrow-derived mesenchymal stem cells induced by inflammatory cytokines produce angiogenetic factors and promote prostate cancer growth. BMC Cancer. 2017;17(1):878. https://doi.org/10.1186/s12885-017-3879-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kise K, Kinugasa-Katayama Y, Takakura N. Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev. 2016;99(Pt B):197–205. https://doi.org/10.1016/j.addr.2015.08.005.

    Article  CAS  PubMed  Google Scholar 

  33. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  34. Yu F-X, Hu W-J, He B, Zheng Y-H, Zhang Q-Y, Chen L. Bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion. World J Surg Oncol. 2015;13:52. https://doi.org/10.1186/s12957-015-0465-1.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guo Q, Gao B-L, Zhang X-J, Liu G-C, Xu F, Fan Q-Y, et al. CXCL12-CXCR4 axis promotes proliferation, migration, invasion, and metastasis of ovarian cancer. Oncol Res. 2014;22(5–6):247–58. https://doi.org/10.3727/096504015X14343704124430.

    Article  PubMed  Google Scholar 

  36. Wang C, Cheng H, Li Y. Role of SDF-1 and CXCR4 in the proliferation, migration and invasion of cervical cancer. Pak J Pharm Sci. 2016;29(6 Spec):2151–4.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Tianjin Health Science and Technology Fund [No. KJ20051 and ZC20182] in collection, analysis, and interpretation of data as well as in writing the manuscript, and Tianjin Union Medical Center Fund [No. 2018YJZD004, 2020HL029, 2020YJ021] in the design of the study and collection, analysis, and interpretation of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

The present study was carried out at Tianjin Union Medical Center and was approved by the Institutional Ethics and Research Committee. The maximum tumor size that was permitted by the ethics committee in the experimental animals used was 15 mm, and we confirmed that the maximum tumor size was not exceeded 15 mm at any point during the duration of study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12094_2021_2740_MOESM1_ESM.tif

Supplementary file1Supplement Fig. 1 A1: Experimental design picture about mouse model. C57BL/6 mice received lethal doses of 137Cs radiation to finish myeloablative, and subjected to retrobulbar injection with about 2 × 106 (100 μl) BMDCs from GFP transgenic mice. Chimera mice were performed an orthotopic injection of MNU (2 mg per mouse) every 3 weeks to induce prostate cancer. A2: Schematic diagram of non-contact model of BMMSCs and VECs cells. B1-4: The separation superstition of BM-MSCS in GFP transgenic mice. C1: Collection of Blood sample of Chimera mice from inner canthus. C2: Castration surgery of Chimera mice. C3-4: MNU injection into mouse prostate (TIF 7160 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Su, Y., Zhang, Z. et al. Bone marrow mesenchymal stem cells promote the progression of prostate cancer through the SDF-1/CXCR4 axis in vivo and vitro. Clin Transl Oncol 24, 892–901 (2022). https://doi.org/10.1007/s12094-021-02740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02740-4

Keywords

Navigation