Skip to main content

Advertisement

Log in

DDAB cationic lipid-mPEG, PCL copolymer hybrid nano-carrier synthesis and application for delivery of siRNA targeting IGF-1R into breast cancer cells

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background and objective

To use siRNA molecule as a therapeutic agent in gene silencing, an efficient delivery system is necessary. Stability and clearance by reticuloendothelial of siRNA still remains the major challenges for clinical application. Herein, we could develop new lipid-polymer hybrid nanoparticles (LPHNP) as a siRNA carrier to silence insulin-like growth factor type I (IGF-1R) gene overexpression in MCF-7 human breast cancer cell line.

Methods

Dimethyldioctadecylammonium bromide-methoxy poly(ethylene glycol)-poly (ε-caprolactone) (DDAB-mPEG-PCL) LPHNPs were synthesized using a single step nanoprecipitation method and characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) microscope. Cytotoxicity of the nanoparticles was assessed in the MCF7 cell line using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Desired LPHNP-siRNA complex was determined using different Nitrogen:Phosphate ratio (N/P) ratios and gel retardation. To determine the encapsulation efficiency of siRNA (%) in LPHNP, its absorbance was measured. The effect of the siRNA-LPHNP complex on IGF-1R silencing was assessed by reverse transcription-polymerase chain reaction (RT-PCR)

Results

LPHNP was synthesized using a single-step sonication method with a size below 100 nM. The viability of cells treated with hybrid nanoparticles was significantly greater than the corresponding cationic lipid (P < 0.01). As demonstrated by gel retardation assay, efficient siRNA binding to LPHNP occurred at N/P equal to 40 and siRNA encapsulation efficiency was found to be 95% ± 4 at this ratio. LPHNP-IGF-1R siRNA complex could be able to down-regulate the target more efficiently when it compared with the corresponded controls (P < 0.001).

Conclusion

In conclusion, our results suggest that DDAB cationic lipid and mPEG-PCL copolymer hybrid nanoparticle may be a good candidate for efficient siRNA delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

LPHNPs:

Lipid polymer hybrid nanoparticles

PEG:

Poly(ethylene glycol)

PCL:

Poly(ε-caprolactone)

DDAB:

Dimethyldioctadecylammonium bromide

IGF-1R:

Insulin-like growth factor type I

siRNA:

Small interfering RNA

FT-IR:

Fourier transform infrared spectroscopy

1H NMR:

Proton nuclear magnetic resonance spectroscopy

AFM:

Atomic force microscopy

DLS:

Dynamic light scattering

RT-PCR:

Reverse transcription-polymerase chain reaction

PDI:

Polydispersity index

N:P ratio:

Nitrogen:Phosphate ratio

PBS:

Phosphate-buffered saline

References

  1. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494.

    Article  CAS  PubMed  Google Scholar 

  2. Cheng JC, Moore TB, Sakamoto KM. RNA interference and human disease. Mol Genet Metab. 2003;80:121–8.

    Article  CAS  PubMed  Google Scholar 

  3. Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther. 2005;107:222–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Drude I, Dombos V, Vauleon S, Muller S. Drugs made of RNA: development and application of engineered RNAs for gene therapy. Mini Rev Med Chem. 2007;7:912–31.

    Article  CAS  PubMed  Google Scholar 

  5. Chalbatani GM, Dana H, Gharagouzloo E, et al. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomed. 2019;14:3111.

    Article  CAS  Google Scholar 

  6. Singh A, Trivedi P, Jain NK. Advances in siRNA delivery in cancer therapy. Artif Cells Nanomed Biotechnol. 2018;46:274–83.

    Article  CAS  PubMed  Google Scholar 

  7. Lee J-M, Yoon T-J, Cho Y-S. Recent developments in nanoparticle-based siRNA delivery for cancer therapy. Biomed Res Int. 2013;2013:782041.

    PubMed  PubMed Central  Google Scholar 

  8. Van de Water FM, Boerman OC, Wouterse AC, Peters JG, Russel FG, Masereeuw R. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos. 2006;34:1393–7.

    Article  PubMed  CAS  Google Scholar 

  9. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cho K, Wang X, Nie S, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310–6.

    Article  CAS  PubMed  Google Scholar 

  11. Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26:523–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–9.

    Article  CAS  PubMed  Google Scholar 

  13. Taetz S, Bochot A, Surace C, et al. Hyaluronic acid-modified DOTAP/DOPE liposomes for the targeted delivery of anti-telomerase siRNA to CD44-expressing lung cancer cells. Oligonucleotides. 2009;19:103–16.

    Article  CAS  PubMed  Google Scholar 

  14. Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv. 2008;5:25–44.

    Article  CAS  PubMed  Google Scholar 

  15. Wu SY, McMillan NA. Lipidic systems for in vivo siRNA delivery. AAPS J. 2009;11:639–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751.

    Article  CAS  PubMed  Google Scholar 

  17. Singha K, Namgung R, Kim WJ. Polymers in small-interfering RNA delivery. Nucleic Acid Ther. 2011;21:133–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamidi M, Shahbazi MA, Rostamizadeh K. Copolymers: efficient carriers for intelligent nanoparticulate drug targeting and gene therapy. Macromol Biosci. 2012;12:144–64.

    Article  CAS  PubMed  Google Scholar 

  19. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6:715–28.

    Article  CAS  PubMed  Google Scholar 

  20. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145.

    Article  CAS  PubMed  Google Scholar 

  21. Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85:427–43.

    Article  CAS  PubMed  Google Scholar 

  22. Farabaugh SM, Boone DN, Lee AV. Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation. Front Endocrinol. 2015;6:59.

    Article  Google Scholar 

  23. Chan JY, LaPara K, Yee D. Disruption of insulin receptor function inhibits proliferation in endocrine-resistant breast cancer cells. Oncogene. 2016;35(32):4235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shu S, Yang Y, Li X, et al. Down-regulation of IGF-1R expression inhibits growth and enhances chemosensitivity of endometrial carcinoma in vitro. Mol Cell Biochem. 2011;353:225–33.

    Article  CAS  PubMed  Google Scholar 

  25. Yavari K, Taghikhani M, Maragheh MG, et al. SiRNA-mediated IGF-1R inhibition sensitizes human colon cancer SW480 cells to radiation. Acta Oncol. 2010;49:70–5.

    Article  CAS  PubMed  Google Scholar 

  26. Fathi M, Taghikhani M, Ghannadi-Maragheh M, Yavari K. Demonstration of dose dependent cytotoxic activity in SW480 colon cancer cells by 177 Lu-labeled siRNA targeting IGF-1R. Nucl Med Biol. 2013;40:529–36.

    Article  CAS  PubMed  Google Scholar 

  27. Fathi M, Yavari K, Taghikhani M, Maragheh MG. Synthesis of a stabilized 177Lu–siRNA complex and evaluation of its stability and RNAi activity. Nucl Med Commun. 2015;36:636–45.

    Article  CAS  PubMed  Google Scholar 

  28. Danafar H, Davaran S, Rostamizadeh K, Valizadeh H, Hamidi M. Biodegradable m-PEG/PCL core-shell micelles: preparation and characterization as a sustained release formulation for curcumin. Adv Pharm Bull. 2014;4:501.

    PubMed  PubMed Central  Google Scholar 

  29. Fang RH, Aryal S, Hu C-MJ, Zhang L. Quick synthesis of lipid− polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir. 2010;26:16958–62.

    Article  CAS  PubMed  Google Scholar 

  30. Filion MC, Phillips NC. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta Biomembr. 1997;1329:345–56.

    Article  CAS  Google Scholar 

  31. Li W, Szoka FC. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res. 2007;24:438–49.

    Article  PubMed  CAS  Google Scholar 

  32. Tabernero J, Shapiro GI, LoRusso PM, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3:406–17.

    Article  CAS  PubMed  Google Scholar 

  33. Inglut CT, Sorrin AJ, Kuruppu T, et al. Immunological and toxicological considerations for the design of liposomes. Nanomaterials. 2020;10:190.

    Article  CAS  PubMed Central  Google Scholar 

  34. Yang X-Z, Dou S, Wang Y-C, et al. Single-step assembly of cationic lipid–polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano. 2012;6:4955–65.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid− polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2:1696–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan S, Li X, Guo Y, Zhang Z. Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale. 2013;5:860–72.

    Article  CAS  PubMed  Google Scholar 

  37. Mandal B, Bhattacharjee H, Mittal N, et al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine. 2013;9:474–91.

    Article  CAS  PubMed  Google Scholar 

  38. Dehaini D, Fang RH, Luk BT, et al. Ultra-small lipid–polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale. 2016;8:14411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen J, Kim GJ, Leong KW. Poly (d, llactide–co-ethyl ethylene phosphate) s as new drug carriers. J Control Release. 2003;92:39–48.

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Huang X, Lee RJ, et al. Synthesis of polymer-lipid nanoparticles by microfluidic focusing for siRNA delivery. Molecules. 2016;21:1314.

    Article  PubMed Central  CAS  Google Scholar 

  41. Shi J, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. Differentially charged hollow core/shell lipid–polymer–lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl. 2011;123:7165–9.

    Article  Google Scholar 

  42. Hasan W, Chu K, Gullapalli A, et al. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 2011;12:287–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Monirinasab H, Asadi H, Rostamizadeh K, Esmaeilzadeh A, Khodaei M, Fathi M. Novel lipid-polymer hybrid nanoparticles for siRNA delivery and IGF-1R gene silencing in breast cancer cells. J Drug Deliv Sci Technol. 2018;48:96–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are hereby grateful to the deputy of research and technology, and Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.

Funding

This study was funded by a grant (No: A-12-802-7) and ethics number (ZUMS.REC.1394.08) from Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was aprooved by ethical committee of Zanjan University of Medical Sciences with a number of ZUMS.REC.1394.08.

Informed consent

Informed consent was obtained from all individuals participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaei, M., Rostamizadeh, K., Taromchi, A.H. et al. DDAB cationic lipid-mPEG, PCL copolymer hybrid nano-carrier synthesis and application for delivery of siRNA targeting IGF-1R into breast cancer cells. Clin Transl Oncol 23, 1167–1178 (2021). https://doi.org/10.1007/s12094-020-02507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02507-3

Keywords

Navigation