Skip to main content

Advertisement

Log in

SMARCA4 promotes benign skin malignant transformation into melanoma through Adherens junction signal transduction

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Melanoma is a malignant skin tumor, and its incidence is rising. To explore the specific differences in benign and malignant melanoma at the genetic level, we performed a series of bioinformatics analyses, including differential gene analysis, co-expression analysis, enrichment analysis, and regulatory prediction.

Methods

The microarray data of benign and malignant melanocytes were downloaded from GEO, and 1917 differential genes were obtained by differential analysis (p < 0.05). Weighted gene co-expression network analysis obtained three functional barrier modules. The essential genes of each module are SMARTA4, HECA, and C1R.

Results

The results of the enrichment analysis showed that the dysfunctional module gene was mainly associated with RNA splicing and Adherens junction. Through the pivotal analysis of ncRNA, it was found that miR-448, miR-152-3p, and miR-302b-3p essentially regulate three modules, which we consider to be critical regulators. In the pivot analysis of TF, more control modules include ARID3A, E2F1, E2F3, and E2F8.

Conclusions

We believe that the regulator (miR-448, miR-152-3p, miR-302b-3p) regulates the expression of the core gene SMARCA4, which in turn affects the signal transduction of the Adherens junction. It eventually leads to the deterioration of benign skin spasms into melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Situm M, Buljan M, Kolic M, Vucic M. Melanoma–clinical, dermatoscopical, and histopathological morphological characteristics. Acta Dermatovenerol Croat. 2014;22:1–12.

    PubMed  Google Scholar 

  2. Berger AC. Melanoma. Surg Oncol Clin N Am. 2015;24:xv–xvi.

    Article  Google Scholar 

  3. Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. Vivo. 2014;28:1005–111.

    Google Scholar 

  4. Read J, Wadt KA, Hayward NK. Melanoma genetics. J Med Genet. 2016;53:1–14.

    Article  CAS  Google Scholar 

  5. Shannan B, Perego M, Somasundaram R, Herlyn M. Heterogeneity in melanoma. Cancer Treat Res. 2016;167:1–15.

    Article  Google Scholar 

  6. Fischer GM, Vashisht Gopal YN, McQuade JL, Peng W, DeBerardinis RJ, Davies MA. Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res. 2018;31:11–30.

    Article  Google Scholar 

  7. Leachman SA, Lucero OM, Sampson JE, Cassidy P, Bruno W, Queirolo P, Ghiorzo P. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev. 2017;36:77–90.

    Article  CAS  Google Scholar 

  8. Abbas O, Miller DD, Bhawan J. Cutaneous malignant melanoma: update on diagnostic and prognostic biomarkers. Am J Dermatopathol. 2014;36:363–79.

    Article  Google Scholar 

  9. Chen X, Gao G, Liu S, Yu L, Yan D, Yao X, Sun W, Han D, Dong H. Long noncoding RNA PVT1 as a novel diagnostic biomarker and therapeutic target for melanoma. Biomed Res Int. 2017;2017:7038579.

    PubMed  PubMed Central  Google Scholar 

  10. Torabian S, Kashani-Sabet M. Biomarkers for melanoma. Curr Opin Oncol. 2005;17:167–71.

    Article  CAS  Google Scholar 

  11. Kunz M, Holzel M. The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies. Cancer Metastasis Rev. 2017;36:53–755.

    Article  CAS  Google Scholar 

  12. Leonardi GC, Falzone L, Salemi R, Zanghi A, Spandidos DA, McCubrey JA, Candido S, Libra M. Cutaneous melanoma: from pathogenesis to therapy (Review). Int J Oncol. 2018;52:1071–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bombelli FB, Webster CA, Moncrieff M, Sherwood V. The scope of nanoparticle therapies for future metastatic melanoma treatment. Lancet Oncol. 2014;15:e22–32.

    Article  CAS  Google Scholar 

  14. Tang T, Eldabaje R, Yang L. Current status of biological therapies for the treatment of metastatic melanoma. Anticancer Res. 2016;36:3229–411.

    Article  CAS  Google Scholar 

  15. Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D, Wang Y. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005;11:7234–42.

    Article  CAS  Google Scholar 

  16. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41:D991–D99595.

    Article  CAS  Google Scholar 

  17. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  Google Scholar 

  18. Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.

    Article  Google Scholar 

  19. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 3: Article3.

  20. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

    Article  Google Scholar 

  21. Liu W, Li L, Ye H, Tu W. Weighted gene co-expression network analysis in biomedicine research. Sheng Wu Gong Cheng Xue Bao. 2017;33:1791–801.

    PubMed  Google Scholar 

  22. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  Google Scholar 

  23. Xu MJ, Dorsey JF, Amaravadi R, Karakousis G, Simone CB 2nd, Xu X, Xu W, Carpenter EL, Schuchter L, Kao GD. Circulating tumor cells, DNA, and mRNA: potential for clinical utility in patients with melanoma. Oncologist. 2016;21:84–94.

    Article  Google Scholar 

  24. Kappelmann M, Bosserhoff A, Kuphal S. AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. Eur J Cell Biol. 2014;93:76–81.

    Article  CAS  Google Scholar 

  25. Pei G, Chen L, Zhang W. WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol. 2017;585:135–58.

    Article  CAS  Google Scholar 

  26. Wang LX, Li Y, Chen GZ. Network-based co-expression analysis for exploring the potential diagnostic biomarkers of metastatic melanoma. PLoS ONE. 2018;13:e0190447.

    Article  Google Scholar 

  27. Journe F, Id Boufker H, Van Kempen L, Galibert MD, Wiedig M, Sales F, Theunis A, Nonclercq D, Frau A, Laurent G, Awada A, Ghanem G. TYRP1 mRNA expression in melanoma metastases correlates with clinical outcome. Br J Cancer. 2011;105:1726–32.

    Article  CAS  Google Scholar 

  28. El Hajj P, Gilot D, Migault M, Theunis A, van Kempen LC, Sales F, Fayyad-Kazan H, Badran B, Larsimont D, Awada A, Bachelot L, Galibert MD, Ghanem G, Journe F. SNPs at miR-155 binding sites of TYRP1 explain discrepancy between mRNA and protein and refine TYRP1 prognostic value in melanoma. Br J Cancer. 2015;113:91–8.

    Article  Google Scholar 

  29. Sheppard HM, Feisst V, Chen J, Print C, Dunbar PR. AHNAK is downregulated in melanoma, predicts poor outcome, and may be required for the expression of functional cadherin-1. Melanoma Res. 2016;26:108–16.

    Article  CAS  Google Scholar 

  30. Wan X, Liu R, Li Z. The prognostic value of HRAS mRNA expression in cutaneous melanoma. Biomed Res Int. 2017;2017:5356737.

    PubMed  PubMed Central  Google Scholar 

  31. Hind CK, Carter MJ, Harris CL, Chan HT, James S, Cragg MS. Role of the pro-survival molecule Bfl-1 in melanoma. Int J Biochem Cell Biol. 2015;59:94–102.

    Article  CAS  Google Scholar 

  32. Craig EA, Weber JD, Spiegelman VS. Involvement of the mRNA binding protein CRD-BP in the regulation of metastatic melanoma cell proliferation and invasion by hypoxia. J Cell Sci. 2012;125:5950–4.

    Article  CAS  Google Scholar 

  33. Park EJ, Lee YM, Oh TI, Kim BM, Lim BO, Lim JH. Vanillin suppresses cell motility by inhibiting STAT3-mediated HIF-1alpha mRNA expression in malignant melanoma cells. Int J Mol Sci. 2017;18:532.

    Article  Google Scholar 

  34. Saenger Y, Magidson J, Liaw B, de Moll E, Harcharik S, Fu Y, Wassmann K, Fisher D, Kirkwood J, Oh WK, Friedlander P. Blood mRNA expression profiling predicts survival in patients treated with tremelimumab. Clin Cancer Res. 2014;20:3310–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SL and XY are responsible for the conception or design of the work. SL, LQ, ZZ and YJ contribute the acquisition, analysis, or interpretation of data for the work. XY and LQ provide the tissue samples. ZZ helps in the follow-up of the patients. SL helps in reviewing the histopathology slides. All authors finally approved the manuscript version to be published. YJ is the guarantor of the article.

Corresponding author

Correspondence to Y.-Z. Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by Ethical Committee of The Second Hospital of Jilin University and conducted in accordance with the ethical standards.

Informed consent

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SR., Yang, X., Qi, L. et al. SMARCA4 promotes benign skin malignant transformation into melanoma through Adherens junction signal transduction. Clin Transl Oncol 23, 591–600 (2021). https://doi.org/10.1007/s12094-020-02453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02453-0

Keywords

Navigation