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Ki67 targeted strategies for cancer therapy
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Abstract Ki67 is a well-known proliferation marker for

the evaluation of cell proliferation. Numerous studies have

indicated that Ki67 index independently predicts cancer

progression. Moreover, because Ki67 is highly expressed

in malignant cells but almost could not be detected in

normal cells, it has become a promising target for cancer

therapy. In this review, we summarize recent advances in

Ki67 targeted cancer therapy. In particular, we highlight

recent development on the exploitation of Ki67 promoter to

drive the expression of siRNAs or therapeutic genes in

cancer cells specifically. The use of Ki67 as an attractive

target opens a new avenue for cancer therapy.
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Introduction

The nuclear Ki67 protein is generally expressed only in

proliferating cells [1]. Ki67 is mainly located in the

nucleolar cortex during interphase, and is recruited to

condensed chromosomes during mitosis [2, 3]. Ki67 gene

is located on chromosome 10q25-ter and encodes two Ki67

isoforms of 345 and 395 kDa, respectively [4–6].

Ki67 expression level increases from G1 phase to

mitosis, and then rapidly decreases immediately after

mitosis. Ki67 protein is detected in the nuclei of cells at

G1, S, G2 phase and mitosis, but not in the nuclei of qui-

escent cells at G0 phase [7, 8]. Therefore, Ki67 expression

level indicates the status of cell proliferation. Indeed, Ki67

is highly overexpressed in cancer cells and has been pro-

posed as a prognostic marker of cancer [9, 10].

In this review, we first summarize recent progress

regarding the prognostic value of Ki67, and then focus on

rational design of Ki67 as a therapeutic target for cancer

therapy in preclinical and clinical studies.

Ki67 as a prognostic factor of cancer

Ki67 has been widely investigated as a potential prognostic

marker of proliferation in retrospective studies of malig-

nant diseases [11, 12]. Accumulating clinical studies have

shown the promise of Ki67 as a tool for cancer diagnosis

[13–16]. Immunostaining for Ki67 expression is the gold

standard, and a cutoff level of 10–14% positive staining is

used to judge high risk of prognosis [17–19]. Ki67 index

has become an independent prognostic factor for prostate

cancer patients [20].

To investigate clinical value of p53 and Ki67 expression

in renal cell carcinoma (RCC), a retrospective analysis of

clinical data from 1239 patients with RCC was performed

and the results indicated that the combined detection of p53

and Ki67 was superior to any single marker to improve the

accuracy of the prognosis of RCC patients [21].
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Ki67 as a therapeutic target for cancer therapy

Given the important role of Ki67 in cell proliferation, the

inhibition of Ki67 might be considered when designing

novel strategies for cancer therapy. Ki67 is proposed as an

attractive therapeutic target for cancer because it is highly

expressed in most malignant cells but is rarely detected in

normal cells [22]. Below we will discuss different

approaches for Ki67 targeted cancer therapy (Fig. 1).

Ki67-Antisense nucleotide

Systemically delivered unformulated antisense oligonu-

cleotides (ASOs) have proven to be effective as human

therapeutics in several non-oncology diseases [23–27].

Several ASOs have been used in clinical studies to cure

carcinoma [28–30]. Schlüter et al. found that Ki67 specific

antisense oligonucleotides (ASODNs) inhibited the prolif-

eration of human myeloma cells [4]. Kausch et al. reported

that Ki67 ASOs inhibited cancer cell proliferation and

tumor growth in vitro and in vivo [31]. Furthermore, Ki67

ASODNs have been used in phase I clinical study in

patients with bladder cancer [32]. Recently, we demon-

strated that methylated oligonucleotide targeting Ki67

could effectively inhibit the proliferation while induce the

apoptosis of renal carcinoma cells [33].

Anti-Ki67 peptide nucleic acid

Unfortunately, clinical application of ASOs is limited due

to several disadvantages such as low affinity, susceptibility

to nuclease degradation and non-specific binding. Peptide

nucleic acids (PNAs) are synthetic DNA analogs in which

phosphodiester backbone is substituted with unchanged

2-N-aminoethylglycine units. Importantly, PNA backbone

provides good and specific hybridization property with

complementary targets [34]. Recently, PNAs have been

developed as antisense (targeting mRNA or microRNAs)

and antigene agents (targeting genomic DNA) to regulate

gene expression [35–37]. For example, PNAs were more

efficient than analogous ASOs to inhibit human telomerase

activity [38]. Moreover, we treated human renal carcinoma

786-0 cells with the lipid-delivered PNAs against Ki67 and

Ki67 ASOs, and found that anti-Ki67 PNA had stronger

effects to inhibit the proliferation and induce the apoptosis

of renal carcinoma cells than ASO. Thus PNA against Ki67

is a promising agent for the treatment of renal cancer [39].

RNA interference (RNAi) targeting Ki67

RNAi emerges as a powerful tool for cancer therapy [40].

siRNAs could inhibit multiple targets simultaneously and

maximize antitumor efficacy [41]. Recently, we investi-

gated the effects of siRNA against Ki67 on Ki67 expres-

sion and the proliferation of human RCCs, and found that

Fig. 1 Different approaches for

Ki67 targeted cancer therapy
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siRNA-mediated knockdown of Ki67 resulted in efficient

and specific inhibition of in vitro cell proliferation com-

pared to antisense technologies [42].

To circumvent the drawback that siRNA-mediated

effects are transient, we established pSilencerKi67 con-

struct that contained short hairpin RNAs (shRNAs) against

Ki67. We demonstrated that pSilencerKi67 demonstrated

better inhibition of the proliferation and induction of the

apoptosis of 786-O human renal carcinoma cells than

synthetic siRNAs [43].

Oncolytic adenoviral mediated Ki67-siRNA

The off-target effects and immune response via the acti-

vation of toll-like receptor (TLR) have hampered preclin-

ical and clinical application of siRNAs [44–53]. To

overcome these obstacles, numerous methods including

modification of RNAs, optimization of delivery systems,

and proper in vivo administration have been exploited

intensively [54–56]. One of the promising delivery systems

is oncolytic adenovirus.

Oncolytic viruses can replicate selectively in tumor

cells, leading to intratumoral virus spread. Several clinical

trials have tested a variety of conditionally replicative

viruses such as conditionally replicative adenovirus

(CRAds), vaccinia virus, herpes simplex virus and New-

castle disease virus. To selectively target CRAds to tumor

cells, we could employ two strategies: one is to delete viral

element necessary for viral replication in normal cells but

not in tumor cells such as ONYX-015 [57, 58]; the other is

to use a tumor-specific promoter to drive the gene neces-

sary for viral replication [59].

In preclinical models and clinical trials CRAds have

shown varying degree of success [60]. In particular, CRAds

based on Ad5 have demonstrated good efficacy and safety

for cancer gene therapy [61–69]. We constructed ZD55-

Ki67 to keep lytic ability of oncolytic adenovirus and

deliver shRNA against Ki67. Silencing of Ki67 induced

apoptosis in renal cancer cells in vitro and inhibited renal

cancer growth in nude mice [70]. Our data indicate that the

armed oncolytic adenovirus ZD55–Ki67 could be used for

renal cancer gene therapy.

To further increase the safety of CRAds, it is necessary

to modify them to restrict adenovirus replication only in

tumor cells [71, 72]. We developed an oncolytic virus

G250–Ki67, in which E1A gene (essential early viral genes

for replication) was controlled by renal cancer specific

G250 promoter. Our data indicate that this vector effi-

ciently replicated in renal cancer cells only, and mediated

knockdown of Ki67 to inhibit the proliferation while

induce the apoptosis of renal cancer cells. Therefore,

G250-specific CRAds carrying Ki67-siRNA show promise

for renal clear cell cancer therapy [73].

Oncolytic adenovirus targeting both Ki67
and telomerase

Cancer is a complex disease resulting from the accumula-

tion of multiple mutations. Thus, multiple siRNAs are

frequently used to silence multiple oncogenes [74].

Telomerase is composed of an ubiquitously expressed

RNA component (hTR) and a catalytic subunit human

telomerase reverse transcriptase (hTERT) [75]. Telomerase

becomes an attractive target for cancer therapy because

telomerase activity is very high in cancer cells but is either

reduced or absent in normal cells. We recently constructed

an oncolytic adenovirus that contains Ki67 promoter to

control E1A expression, and double siRNAs to target Ki67

and hTERT. This vector effectively inhibited the growth of

renal cancer cells both in vitro and in animal models, and

provides a promising strategy by silencing different onco-

genes for renal cancer therapy [76].

Ki67 promoter controlled cancer gene therapy

To understand the mechanism that regulates Ki67 expres-

sion, we characterized Ki67 core promoter which is TATA

less and GC rich region containing putative Sp1 binding

sites. Overexpression of Sp1 enhanced Ki67 promoter

activity, while downregulation of Sp1 expression effec-

tively inhibited Ki67 transcription. Thus, Sp1 is essential to

Ki67 promoter activity [77, 78]. Furthermore, we showed

that interferon regulatory factor 1 (IRF1) repressed Ki67

transcription in human renal carcinoma cells in a dose

dependent manner, thus Ki67 is a target of IRF1 [9, 79]. In

addition, we found that p53 inhibited Ki67 promoter

activity dose dependently and identified Sp1-binding sites

responsible for p53 mediated repression of Ki67 tran-

scriptional [80].

Notably, Ki67 promoter keeps the specificity after

integration into adenovirus genome [81]. A novel double

regulated oncolytic adenovirus Ki67-ZD55-IL-24 was

constructed in which both E1A and interleukin (IL)–24

expression is driven by Ki67 promoter, and it showed

specific anti-tumor effects against melanoma [82]. Ki67-

ZD55-IL-24 also caused significant inhibition of melanoma

cell migration and invasion, and induced apoptosis effec-

tively in melanoma xenografts in nude mice [83].

572 Clin Transl Oncol (2018) 20:570–575

123



Combining CRAd therapy with chemotherapy

Several clinical studies have reported good safety and

moderate anti-tumor efficacy of Onyx-015 whether

administered systemically or locally [84–86]. However,

combination of CRAds with chemotherapy achieved much

better anti-tumor efficacy than either treatment alone,

perhaps due to synergistic or complementary effects

[87–90]. We demonstrated that Ki67-ZD55-IL-24 signifi-

cantly enhanced anti-tumor efficacy of alkylating agent

temozolomide (TMZ) against melanoma [82]. In addition,

Ki67-ZD55-IL-24 conjugated with TMZ exhibited high

efficacy to kill melanoma cells [91].

Combining CRAd therapy with radiotherapy

The regimens combining oncolytic adenoviruses with

radiotherapy have shown greater anti-tumor efficacy than

either therapy alone [92–94]. For example, Ki67-ZD55-IL-

24 significantly enhanced anti-tumor efficacy of radio-

therapy by the induction of apoptosis in renal cells, and

radiotherapy did not interfere with the replication of

CRAds. Therefore, the novel strategy of combing CRAds

with radiotherapy has the potential for effective treatment

of renal cell cancer [70].

Conclusions

Increased proliferation is a hallmark of malignant tumors,

and thus nuclear protein Ki67 has been regarded as a

valuable cancer biomarker. Clinically, Ki67 expression is

correlated to clinical stage and metastasis of tumors. In

addition, Ki67 expression is particularly high in poorly

differentiated cancer tissues. Ki67 is an attractive bio-

marker for the diagnosis and prognosis of solid tumors.

More importantly, various studies have indicated that the

strategy of inhibiting Ki67 holds promise for renal cancer

therapy. In particular, the utilization of Ki67 promoter in

the design of CRAds vectors enriches our power to spe-

cially and effectively destroy cancer cells (Fig. 2). It is

expected that Ki67 target cancer therapy will be applied in

the clinical in the near future.
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human Ki-67 gene (MK167) to 10q25-qter. Genomics. 1991;11(2):476–7.

Fig. 2 Schematic structures of

CRAd vectors. (A) Wild-type

adenovirus. (B) Recombinant

adenovirus. E1B55 KDa gene

was substituted with a shRNA

sequence cassette to knockdown

Ki67. (C) CRAd vector

containing double-cistronic

shRNA construct. (D) CRAds

armed with Ki67 promoter.

(E) CRAds armed with G250

promoter and a shRNA

sequence cassette targeting

Ki67

Clin Transl Oncol (2018) 20:570–575 573

123



6. Duchrow M, Schluter C, Wohlenberg C, Flad HD, Gerdes J. Molecular char-
acterization of the gene locus of the human cell proliferation-associated nuclear
protein defined by monoclonal antibody Ki-67. Cell Prolif. 1996;29(1):1–12.

7. Du Manoir S, Guillaud P, Camus E, Seigneurin D, Brugal G. Ki-67 labeling in
postmitotic cells defines different Ki-67 pathways within the 2c compartment.
Cytometry. 1991;12(5):455–63.

8. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle
analysis of a cell proliferation-associated human nuclear antigen defined by the
monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5.

9. Rioux-Leclercq N, Turlin B, Bansard J, Patard J, Manunta A, Moulinoux JP,
et al. Value of immunohistochemical Ki-67 and p53 determinations as predic-
tive factors of outcome in renal cell carcinoma. Urology. 2000;55(4):501–5.
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