Skip to main content

Advertisement

Log in

Cypermethrin: An Emerging Pollutant and Its Adverse Effect on Fish Health and some Preventive Approach—A Review

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pesticides are substance that are used to manage pests, such as aquatic weeds, plant diseases and insects. It has been shown that these substances are highly hazardous to fish as well as other organisms that are part of the food chain. The presence of cypermethrin in food and groundwater has raised environmental concerns, there is a need to develop economical, rapid, and reliable techniques that can be used for field applications Many studies have shown that Cypermethrin (CYP) can cause toxic effect in various animals including fishes. But the molecular mechanism behind the toxicity mediated Cypermethrin (CYP) at genome levels and proteome levels is still need to be studied. However, there is a gap in emerging and undeveloped nations to begin to use these methods and several other recently developed approaches to inhibit the negative consequences and enhance health which may be profitable. The toxicological information currently available might be used to gain a clear understanding of the possibilities of these synthetic pyrethroid insecticides causing various health hazards to environmental and provides insight for future research evaluating the toxic effects of pyrethroid insecticides. This present review article is concerned with the toxicological effects of pesticides and a brief overview of sources, classification of pesticides with an emphasis on the effects of Cypermethrin (CYP) on fish as well mode of toxicity and the mechanism of action (CYP) and toxicity signs in several fish species have been illustrated. The primary controls and appropriate preventive measures that must be adopted are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Source: http://www.fao.org/faostat/en/#data) [43]

Fig. 3

(Source: http://ppqs.gov.in/statistical database) [48]

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. FAO—Food and Agricultural Organization of United Nations (2002) Internal code of conduct on the distribution and use of pesticides, p 36. [Cited on 2018 April 7] available from http://www.fao.org/docrep/005/y5544e/y4544e00htm

  2. Prasanthi K, Muralidhara, Rajini PS (2005) Fenvalerate-induced oxidative damage in rat tissues and its attenuation by dietary sesame oil. Food Chem Toxicol 43:299–306

    CAS  Google Scholar 

  3. Oda SS, El-Maddawy ZK (2012) Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicity in male rats. Experim Toxicol Pathol 64:813–819

    CAS  Google Scholar 

  4. Coats JR, Symonik DM, Bradbury SP, Dyer SD, Timson LK, Atchison GJ (1989) Toxicology of synthetic pyrethroids in aquatic organisms: an overview. Environ Toxicol Chem 8:671–679

    CAS  Google Scholar 

  5. Sarwar S, Ahmad F, Khan J (2007) Assessment of the quality of Jehlum river water for irrigation and drinking. Sarhad J Agric 23

  6. Sabae SZ, El-Sheekh MM, Khalil MA, Elshouny WA, Badr HM (2014) Seasonal and regional variation of physicochemical and bacteriological parameters of surface water in El-Bahr El-Pherony, Menoufia, Egypt. World J Fish Mar Sci 6:328–335

    CAS  Google Scholar 

  7. Ullah S, M. Z.-A. A. V. Sci, and U (2015) Nexus_MH20141213011243, Nexusacademicpublishers.Com, vol 3, pp 40–57

  8. de Gavelle E et al (2016) Chronic dietary exposure to pesticide residues and associated risk in the French ELFE cohort of pregnant women. Environ Int 92–93:533–542

    PubMed  Google Scholar 

  9. Muenstermann S, Rinkanya FGR, Tome NR (1988) Tick control in small ruminants with a cypermethrin ‘pour-on’ in Kenya. Trop Pest Manag 34:399–401

    Google Scholar 

  10. Soderlund DM et al (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59

    CAS  PubMed  Google Scholar 

  11. World Health Organization (2014) Specifications and evaluations for public health pesticides alpha-cypermethrin long-lasting (incorporated into filaments) insecticidal net. A racemic mixture of: (S)-α-Cyano-3-phenoxybenzyl-(1R,3R)-3-(2,2-dichlorovinyl)2,2-dimethylcyclopropane-carboxylate and (R)-α-Cyano-3-phenoxybenzyl-(1S,3S)-3-(2,2-dichlorovinyl)2,2-dimethylcyclopropane-carboxylate. World Health Organization, Geneva

  12. World Health Organization (2015) Specifications and evaluations for public health pesticides. Permethrin (25:75 Cis: Trans Isomer Ratio, Nonracemic) 3-phenoxybenzyl (1RS,3RS;1RS,3SR)-3-(2,2 dichlorovinyl) 2,2-dimethyl-cyclopropane carboxylate. World Health Organization, Geneva

  13. World Health Organization (2016) Pesticide evaluation scheme, vector ecology and management. World Health Organization, Geneva

  14. World Health Organization (2017) Deltamethrin long-lasting (coated onto filaments) insecticidal net. (s)α-Cyano-3-phenoxybenzyl (1r,3r)-3-(2,2dibromovinyl)-2,2-dimethylcyclopropane Carboxylate. World Health Organization, Geneva

  15. Central Disease Control (2017) CDC zika interim response plan, Central Disease Control. Atlanta

  16. European Union Directive (2018) 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community. 2009. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0128

  17. Jaensson A, Scott AP, Moore A, Kylin H, Olsén KH (2007) Effects of a pyrethroid pesticide on endocrine responses to female odours and reproductive behaviour in male parr of brown trout (Salmo trutta L). Aquat Toxicol 81:1–9

    CAS  PubMed  Google Scholar 

  18. Fetoui H, Makni M, Mouldi Garoui E, Zeghal N (2010) Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: involvement of oxidative stress and protective role of ascorbic acid. Exp Toxicol Pathol 62:593–599

    CAS  PubMed  Google Scholar 

  19. Tao TY, Wei LZ, Yang Y, Tao Z, Zhwo Y (2008) Effect of alpha and theta cypermethrin insecticide on transient outward potassium current in rat hippocampal CA3 neurons. Pesticide Biochem Physiol 90:1–7

    Google Scholar 

  20. Dewailly E, Forde M, Robertson L, Kaddar N, Laouan SEA, Côté S, Gaudreau E, Drescher O, Ayotte P (2014) Evaluation of pyrethroid exposures in pregnant women from 10 Caribbean countries. Environ Int 63:201–206

    CAS  PubMed  Google Scholar 

  21. Sushma N, Devasena T (2010) Aqueous extract of Trigonella foenum graecum (fenugreek) prevents cypermethrin-induced hepatotoxicity and nephrotoxicity. Hum Exp Toxicol 29:311–319

    PubMed  Google Scholar 

  22. Chen L, Xu P, Diao J, Di S, Li R, Zhou Z (2016) Distribution, metabolism and toxic effects of beta-cypermethrin in lizards (Eremias argus) following oral administration. J Hazard Mater 306:87–94

    CAS  PubMed  Google Scholar 

  23. Dawar FU, Zuberi A, Azizullah A, Khan Khattak MN (2016) Effects of cypermethrin on survival, morphological and biochemical aspects of rohu (Labeo rohita) during early development. Chemosphere 144:697–705

    CAS  PubMed  ADS  Google Scholar 

  24. Akinrotimi OA, Gabriel UU, Ariweriokuma SV (2012) Haematotoxicity of cypermethrin to African catfish Clarias gariepinus under laboratory conditions. J Env Eng Technol 1:13–19

    Google Scholar 

  25. Ahmad M, Hussain I, Khan A, Najib-ur-Rehman (2009) Deleterious effects of cypermethrin on semen characteristics and testes of dwarf goats (Capra hircus). Exp Toxicol Pathol 61:339–346

    CAS  PubMed  Google Scholar 

  26. Ansari BA, Kumar K (1988) Cypermethrin toxicity: effect on the carbohydrate metabolism of the Indian catfish, Heteropneustes fossilis. Sci Total Environ 72:161–166

    CAS  PubMed  ADS  Google Scholar 

  27. McLeesc DW, Metcalfe CD, Zitko V (1980) Lethality of permethrin, cypermethrin and fenvalerate to salmon, lobster and shrimp. Bull Environ Contam Toxicol 25:950–955

    Google Scholar 

  28. Philip GH, Reddy PM, Sridevi G (1995) Cypermethrin-induced in vivo alterations in the carbohydrate metabolism of freshwater fish, Labeo rohita. Ecotoxicol Environ Saf 31:173–178

    CAS  PubMed  Google Scholar 

  29. Stephenson RR (1982) Aquatic toxicology of cypermethrin. I. Acute toxicity to some freshwater fish and invertebrates in laboratory tests. Aquat Toxicol 2:175–185

    CAS  Google Scholar 

  30. Sharma R, Jindal R, Faggio C (2021) Cassia fistula ameliorates chronic toxicity of cypermethrin in Catla catla. Comp Biochem Physiol Part C Toxicol Pharmacol 248:109113

    CAS  Google Scholar 

  31. Maurya PK, Malik DS, Sharma A (2019) Impacts of pesticide application on aquatic environments and fish diversity Contam Agric Environ Heal Risks Remediat 111–128

  32. Arisekar U et al (2019) Accumulation of organochlorine and pyrethroid pesticide residues in fish, water, and sediments in the Thamirabarani river system of southern peninsular India. Environ Nanatechnol Monit Manag 11

  33. David M, Mushigeri SB, Shivakumar R, Philip GH (2004) Response of Cyprinus carpio (Linn) to sublethal concentration of cypermethrin: alterations in protein metabolic profiles. Chemosphere 56:347–352

    CAS  PubMed  ADS  Google Scholar 

  34. Das BK, Mukherjee SC (2003) Toxicity of cypermethrin in Labeo rohita fingerlings: biochemical, enzymatic and haematological consequences. Comp Biochem Physiol C Toxicol Pharmacol 134:109–121

    PubMed  Google Scholar 

  35. Polat H, Erkocs F, Viran R, Kocak O (2002) Investigation of acute Reticulata., toxicity of β-cypermethrin on guppies Poecilia. Chemosphere 49:39–44

    CAS  PubMed  ADS  Google Scholar 

  36. Saka WA, Akhigbe RE, Azeez OM, Babatunde TR (2011) Effects of pyrethroid insecticide exposure on haematological and haemostatic profiles in rats. Pak J Biol Sci 14:1024–1027

    CAS  PubMed  Google Scholar 

  37. Ullah S, Li Z, Zuberi A, Arifeen MZU, Baig MMFA (2019) Biomarkers of pyrethroid toxicity in fish. Environ Chem Lett 17:945–973

    CAS  Google Scholar 

  38. Huang F et al (2016) Cypermethrin induces macrophages death through cell cycle arrest and oxidative stress-mediated JNK/ERK signaling regulated apoptosis, Int J Mol Sci 17

  39. Tian YT, Liu ZW, Yao Y, Zhang T, Yang Z (2008) Effects of alpha- and theta-cypermethrin insecticide on transient outward potassium current in rat hippocampal CA3 neurons. Pestic Biochem Physiol 90:1–7

    CAS  Google Scholar 

  40. Kirby ML, Castagnoli K, Bloomquist JR (1999) In vivo effects of deltamethrin on dopamine neurochemistry and the role of augmented neurotransmitter release. Pestic Biochem Physiol 65:160–168

    CAS  Google Scholar 

  41. Narahashi T, Frey JM, Ginsburg KS, Roy ML (1992) Sodium and GABA-activated channels as the targets of pyrethroids and cyclodienes. Toxicol Lett 64:429–436

    PubMed  Google Scholar 

  42. Eells JT, Dubocovich ML (1988) Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices. J Pharmacol Exp Ther 246:514–521

    CAS  PubMed  Google Scholar 

  43. Nayak P, Solanki H (2021) Pesticides and Indian agriculture: a review, Int J Res 9(5)

  44. Alonso MB et al (2012) Pyrethroids: A new threat to marine mammals? Environ Int 47:99–106

    CAS  PubMed  Google Scholar 

  45. Kuivila KM et al (2012) Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. Metropolitan Areas. Environ Sci Technol 46:4297–4303

    CAS  PubMed  ADS  Google Scholar 

  46. Stara A et al (2020) Acute effects of neonicotinoid insecticides on Mytilus galloprovincialis: a case study with the active compound thiacloprid and the commercial formulation calypso 480 SC. Ecotoxicol Environ Saf 203:110980

    CAS  PubMed  Google Scholar 

  47. Stehle S, Schulz R (2015) Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci USA 112:5750–5755

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. GOI (2020) Statistical Database | Directorate of Plant Protection, Quarantine & Storage | GOI. Retrieved from http://ppqs.gov.in/statistical database

  49. Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA (2021) Pesticides: formulants, distribution pathways and effects on human health: a review. Toxicol Rep 8:1179–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Qu C et al (2018) The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: implications for sources and environmental processes. Environ Int 124:89–97

    Google Scholar 

  51. Toumi H, Burga-Perez KF, Ferard JF (2016) Acute and chronic ecotoxicity of carbaryl with a battery of aquatic bioassays. J Environ Sci Heal Part B Pestic Food Contam Agric Wastes 51:57–62

    CAS  Google Scholar 

  52. ADAS (2004) Development of a design manual for agricultural pesticide handling and washdown areas [online]. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/290649/sp2-200-tr-2-e-e.pdf

  53. Health and Safety Executive (HSE) (2016) Pesticide User Habit Survey [online]. Available at: http://www.hse.gov.uk/pesticides/resources/G/Garden_User_Habits_Survey_Report_2016.pdf

  54. Ullah S, Zuberi A, Alagawany M, Farag MR, Dadar M, Karthik K, Iqbal HM (2018) Cypermethrin induced toxicities in fish and adverse health outcomes: its prevention and control measure adaptation. J Environ Manag 206:863–871

    CAS  Google Scholar 

  55. Wielgomas B, Krechniak J (2007) Effect of α-cypermethrin and chlorpyrifos in a 28-day study on free radical parameters and cholinesterase activity in Wistar rats. Pol J Environ Stud 16:91–95

    CAS  Google Scholar 

  56. Idris SB, Ambali SF, Ayo JO (2012) Cytotoxicity of chlopyrifos and cypermethrin: the ameliorative effects of antioxidants. Afr J Biotechnol 11:16461–16467. https://doi.org/10.5897/AJB12.2675

    Article  CAS  Google Scholar 

  57. Agrawal S, Singh A, Tripathi P, Mishra M, Singh PK, Singh MP (2015) Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study. Mol Neurobiol 51:448–465

    CAS  PubMed  Google Scholar 

  58. Singh PB, Singh V (2008) Cypermethrin induced histological changes in gonadotrophic cells, liver, gonads, plasma levels of estradiol-17β and 11-ketotestosterone, and sperm motility in Heteropneustes fossilis (Bloch). Chemosphere 72:422–431

    CAS  PubMed  ADS  Google Scholar 

  59. Carriquiriborde P, Díaz J, López GC, Ronco AE, Somoza GM (2009) Effects of cypermethrin chronic exposure and water temperature on survival, growth, sex differentiation, and gonadal developmental stages of Odontesthes bonariensis (Teleostei). Chemosphere 76:374–380. https://doi.org/10.1016/j.chemosphere.2009.03.039

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Shi X, Gu A, Ji G, Li Y, Di J, Jin J, Wang X (2011) Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 85:1010–1016. https://doi.org/10.1016/j.chemosphere.2011.07.024

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Ullah R, Zuberi A, Ullah S, Ullah I, Dawar FU (2014) Cypermethrin induced behavioral and biochemical changes in mahseer, Tor putitora. J Toxicol Sci 39:829–836. https://doi.org/10.2131/jts.39.829

    Article  CAS  PubMed  Google Scholar 

  62. Taju G, Abdul Majeed S, Nambi KSN, Farook MA, Vimal S, Sahul Hameed AS (2014) In vitro cytotoxic, genotoxic and oxidative stress of cypermethrin on five fish cell lines. Pestic Biochem Physiol 113:15–24

    CAS  PubMed  Google Scholar 

  63. Khafaga AF, Naiel MAE, Dawood MAO, Abdel-Latif HMR (2020) Dietary Origanum vulgare essential oil attenuates cypermethrin-induced biochemical changes, oxidative stress, histopathological alterations, apoptosis, and reduces DNA damage in common carp (Cyprinus carpio). Aquat Toxicol 228:105624

    CAS  PubMed  Google Scholar 

  64. Sharma R, Jindal R (2019) Assessment of cypermethrin induced hepatic toxicity in Catla catla: a multiple biomarker approach. Environ Res 184:109359

    Google Scholar 

  65. Jindal R, Sharma R (2019) Neurotoxic responses in brain of Catla catla exposed to cypermethrin: a semiquantitative multibiomarker evaluation. Ecol Indic 106:105485

    CAS  Google Scholar 

  66. Atamanalp M, Sait Kele M, Ýbrahim Halýlolu H, Stk Aras M (2002) The effects of cypermethrin (a synthetic pyrethroid) on some biochemical parameters (ca, P, na and TP) of rainbow trout (Oncorhynchus mykiss). Turkish J Vet Anim Sci 26:1157–1160

    Google Scholar 

  67. Cakmak MN (2003) Toxic effect of a synthetic pyrethroid insecticide (cypermethrin) on blood cells of Rainbow Trout (Oncorhynchus mykiss, Walbaum). J Biol Sci 3:694–698. https://doi.org/10.3923/jbs.2003.694.698

    Article  Google Scholar 

  68. Adhikari S, Sarkar B, Chatterjee A, Mahapatra CT, Ayyappan S (2004) Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicol Environ Saf 58:220–226

    CAS  PubMed  Google Scholar 

  69. Prashanth MS, David M (2006) Changes in nitrogen metabolism of the freshwater fish Cirrhinus mkigala following exposure to Cypermethrin. J Basic Clin Physiol Pharmacol 17:63–70

    CAS  PubMed  Google Scholar 

  70. Prashanth MS (2007) Cypermethrin induced protein metabolism in the freshwater fish Cirrhinus mrigala (Hamaliton). J Basic Clin Physiol Pharmacol 18:49–64

    CAS  PubMed  Google Scholar 

  71. Parma MJ, Loteste A, Campana M, Bacchetta C (2007) Changes of hematological parameters in Prochilodus lineatus (Pisces, Prochilodontidae) exposed to sublethal concentration of cypermethrin. J Environ Biol 28:147–149

    CAS  PubMed  Google Scholar 

  72. Borges A et al (2007) Changes in hematological and serum biochemical values in jundiá Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere 69:920–926

    CAS  PubMed  ADS  Google Scholar 

  73. Ayoola SO, Ajani EK (2008) Histopathological effect of cypermethrin on juvenile African catfish (Clarias gariepinus). World J Biol Res 1:1–14

    Google Scholar 

  74. Begum G (2009) Enzymes as biomarkers of cypermethrin toxicity: response of Clarias batrachus tissues ATPase and glycogen phosphorylase as a function of exposure and recovery at sublethal level. Toxicol Mech Methods 19:29–39

    CAS  PubMed  Google Scholar 

  75. Korkmaz N, Cengiz EI, Unlu E, Uysal E, Yanar M (2009) Cypermethrin-induced histopathological and biochemical changes in nile tilapia (Oreochromis niloticus), and the protective and recuperative effect of ascorbic acid. Environ Toxicol Pharmacol 28:198–205

    CAS  PubMed  Google Scholar 

  76. Sarikaya R (2009) Investigation of acute toxicity of alpha-cypermethrin on adult nile tilapia (Oreochromis niloticus L). Turkish J Fish Aquat Sci 9:85–89

    Google Scholar 

  77. Marigoudar SR, Ahmed RN, David M (2009) Cypermethrin induced: in vivo inhibition of the acetylcholinesterase activity in functionally different tissues of the freshwater teleost, Labeo rohita (Hamilton). Toxicol Environ Chem 91:1175–1182

    CAS  Google Scholar 

  78. Ansari RA, Rahman S, Kaur M, Anjum S, Raisuddin S (2011) In vivo cytogenetic and oxidative stress-inducing effects of cypermethrin in freshwater fish, Channa punctata Bloch. Ecotoxicol Environ Saf 74:150–156

    CAS  PubMed  Google Scholar 

  79. Kannan M, Muthusamy P, Venkatachalam U (2014) Response of synthetic pyrethroid cypermethrin (10% EC) induced stress in biochemical and hematological parameters of Indian major carp Catla catla (Hamilton, 1822). World J Pharm Res 3:1976–1996

    Google Scholar 

  80. Kumar A, Sharma B, Pandey RS (2014) λ-Cyhalothrin and cypermethrin induce stress in the freshwater muddy fish, Clarias batrachus. Toxicol Environ Chem 96:136–149

    CAS  Google Scholar 

  81. Rose O, Chika IB, Chris I (1997) Gill damage in Clarias gariepinus exposed to cypermethrin. Adv Life Sci Technol 38:75–79

    Google Scholar 

  82. Bonansea RI, Wunderlin DA, Amé MV (2016) Behavioral swimming effects and acetylcholinesterase activity changes in Jenynsia multidentata exposed to chlorpyrifos and cypermethrin individually and in mixtures. Ecotoxicol Environ Saf 129:311–319

    CAS  PubMed  Google Scholar 

  83. Velmurugan B, Cengiz EI, Senthilkumaar P, Uysal E, Satar A (2016) Hematological parameters of freshwater fish Anabas testudineus after sublethal exposure to cypermethrin. Environ Pollut Prot 1:32–39

    Google Scholar 

  84. Xu C et al (2018) Early life exposure of zebrafish (Danio rerio) to synthetic pyrethroids and their metabolites: a comparison of phenotypic and behavioral indicators and gene expression involved in the HPT axis and innate immune system. Environ Sci Pollut Res 25:12992–13003

    CAS  Google Scholar 

  85. Sulthana RN (2021) Impact of the sublethal concentrations of cypermethrin toxicity on nitrogen metabolism in fresh water fish Heteropneustes fossilis. Int J Biol Sci 12:8–12

    Google Scholar 

  86. Dubey S, Sharma HN (2022) Assessment of genotoxicity in gill tissue of Channa punctatus under stress of pyrethroid cypermethrin. 05:1–4

  87. Ghosh S, Saha NC, Bhattacharya R, Medda S, Pal S (2022) Alkyl benzene sulfonate induced acute toxicity and potential alteration of growth, hematological, biochemical, enzymological and stress biomarkers in Oreochromis mossambicus (Peters, 1852). Sch Acad J Biosci 10:233–256

    Google Scholar 

  88. Sharma R, Jindal R (2022) In vivo genotoxic effects of commercial grade cypermethrin on fish peripheral erythrocytes. Environ Mol Mutagen 63:204–214

    CAS  PubMed  Google Scholar 

  89. Uddin MH, Ali MH, Sumon KA, Shahjahan M, Rashid H (2022) Effects of pyrethroid pesticide cypermethrin on the gonad and hemato-biochemical parameters of female gangetic mystus (Mystus cavasius), Aquac Stud 22

  90. Douglas MR, Tooker JF (2015) Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops. Environ Sci Technol 49:5088–5097

    CAS  PubMed  ADS  Google Scholar 

  91. Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int 75:11–20

    CAS  PubMed  Google Scholar 

  92. Mariyono J (2008) Direct and indirect impacts of integrated pest management on pesticide use: a case of rice agriculture in Java, Indonesia. Pest Manag Sci 64:1069–1073. https://doi.org/10.1002/ps.1602

    Article  CAS  PubMed  Google Scholar 

  93. Singh A et al (2020) Advances in controlled release pesticide formulations: prospects to safer integrated pest management and sustainable agriculture. J Hazard Mater 385:121525

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishakha Sinha.

Ethics declarations

Conflict of interest

The authors declare present work has no conflict interest with any other work. No financial assistance was required for this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, V., Shrivastava, S. Cypermethrin: An Emerging Pollutant and Its Adverse Effect on Fish Health and some Preventive Approach—A Review. Indian J Microbiol 64, 48–58 (2024). https://doi.org/10.1007/s12088-023-01153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01153-x

Keywords

Navigation