Skip to main content

Advertisement

Log in

Antioxidant and Antibacterial Activities of Nano-probiotics Versus Free Probiotics Against Gastrointestinal Pathogenic Bacteria

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antibiotic-resistant pathogenic bacteria and the oxidative stress related to their infections are dangerous health problems. Finding new safe, effective antibacterial and antioxidant agents is an urgent global need. Probiotics are a strong candidate for possible antibacterial and antioxidant agents. The delivery of these probiotics without any effect on gastrointestinal digestion is the most important point for their application. The encapsulation of the probiotics on nanoparticles or other supports is a well-known method for the safe delivery of the probiotics. Little information is known about the effect of the probiotic encapsulation on its antibacterial and antioxidant activity. The present study tried to investigate the effect of probiotic encapsulation on nano-chitosan on its antioxidant activity and antibacterial activity against some pathogenic bacteria. We encapsulated some known probiotic species on nano-chitosan and investigated the antibacterial activity of the nano-probiotics and free probiotics against gastrointestinal pathogenic bacteria. The antioxidant characters of the free and encapsulated probiotics were investigated in terms of DPPH radicle scavenging activity, ferric ion chelating activity, hydroxyl radicle scavenging activity, superoxide anion radicle scavenging activity, and anti-lipid peroxidation activity. Results showed the superiority of the encapsulated probiotics as antibacterial and antioxidant agents over the free ones. The encapsulation improved the antibacterial activity of Sporolactobacillus laevolacticus against Bacteroides fragilis by 134% compared to the free one. Also, significantly, the encapsulation increased the hydroxyl radicle scavenging activity of Enterococcus faecium by about 180% compared to the free one. Nano-chitosan encapsulation synergistically increased the antioxidant and antibacterial activity of the studied probiotics. This can be promising for controlling pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Babady E, Mead P (2019) Chapter 13—Molecular diagnosis of gastrointestinal infections. In: Guy D, Eslick (eds) Gastrointestinal diseases and their associated infections. Elsevier, New York, pp 167–185. https://doi.org/10.1016/B978-0-323-54843-4.00013-1

  2. Alzandi AA, Taher EA, Azizi M, Al-Sagheer NA, Al-Khulaidi AW, Naguib DM (2023) Antibacterial activity of some medicinal plants in Al Baha Region, Saudi Arabia, against carcinogenic bacteria related to gastrointestinal cancers. J Gastrointest Cancer 54:51–55. https://doi.org/10.1007/s12029-021-00793-w

    Article  CAS  PubMed  Google Scholar 

  3. Belizário JE, Sircili MP (2020) Novel biotechnological approaches for monitoring and immunization against resistant to antibiotics Escherichia coli and other pathogenic bacteria. BMC Vet Res 16:420. https://doi.org/10.1186/s12917-020-02633-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Patil MS, Sudhama Jahgirdar A, Archer AC, Achar RR (2023) Antibacterial activity of probiotic bacteria from aquaculture. In: Thomas J, Amaresan N (eds) Aquaculture microbiology. Springer protocols handbooks. Humana, New York, pp 119–132

    Google Scholar 

  5. Parasuraman S, Vedam VKV, Sabesan GS (2023) Probiotics: an emerging strategy for oral health care. In: Kothari V, Kumar P, Ray S (eds) Probiotics, prebiotics, synbiotics, and postbiotics. Springer, Singapore, pp 275–306. https://doi.org/10.1007/978-981-99-1463-0_15

    Chapter  Google Scholar 

  6. Lim S-M, Lee NK, Paik HD (2020) Antibacterial and anticavity activity of probiotic Lactobacillus plantarum 200661 isolated from fermented foods against Streptococcus mutans. LWT 118:108840. https://doi.org/10.1016/j.lwt.2019.108840

    Article  CAS  Google Scholar 

  7. Pruthviraj, Naik MK, Naik RG, Naik BG, Nandish MS, Ekabote SD, Sreenivasa MY (2023) Investigation on antibacterial, probiotic and plant growth promoting attributes of Enterococcus faecium MYSBC14 from Blue Cherry. J Saudi Soc Agric Sci. https://doi.org/10.1016/j.jssas.2023.04.003

    Article  Google Scholar 

  8. Iqbal Z, Ahmed S, Tabassum N, Bhattacharya R, Bose D (2021) Role of probiotic in prevention and treatment of enteric infections: a comprehensive review. 3 Biotech 11:242–250. https://doi.org/10.1007/s13205-021-02796-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shahverdi S, Barzegari AA, Bakhshayesh RV, Nami Y (2023) In-vitro and in-vivo antibacterial activity of potential probiotic Lactobacillus paracasei against Staphylococcus aureus and Escherichia coli. Heliyon 9:e14641. https://doi.org/10.1016/j.heliyon.2023.e14641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Zhang P, Zhang X (2021) Probiotics regulate gut microbiota: an effective method to improve immunity. Molecules 26:6076. https://doi.org/10.3390/molecules26196076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choy CT, Chan UK, Siu PLK, Zhou J, Wong CH, Lee YW, Chan HW, Tsui JCC, Loo SKF, Tsui SKW (2023) A novel E3 probiotics formula restored gut dysbiosis and remodelled gut microbial network and microbiome dysbiosis index (MDI) in Southern Chinese Adult Psoriasis Patients. Int J Mol Sci 24:6571. https://doi.org/10.3390/ijms24076571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li C, Niu Z, Zou M, Liu S, Wang M, Gu X, Lu H, Tian H, Jha R (2020) Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms. J Dairy Sci 103:5816–5829. https://doi.org/10.3168/jds.2019-18003

    Article  CAS  PubMed  Google Scholar 

  13. Yu Q, Wang W, Liu X, Shen W, Gu R, Tang C (2023) The antioxidant activity and protection of probiotic bacteria in the in vitro gastrointestinal digestion of a blueberry juice and whey protein fermentation system. Fermentation 9:335. https://doi.org/10.3390/fermentation9040335

    Article  CAS  Google Scholar 

  14. Zhou Y, Gong W, Xu C, Zhu Z, Peng Y, Xie C (2022) Probiotic assessment and antioxidant characterization of Lactobacillus plantarum GXL94 isolated from fermented chili. Front Microbiol 17:1. https://doi.org/10.3389/fmicb.2022.997940

    Article  Google Scholar 

  15. Cai J, Bai J, Luo B, Ni Y, Tian F, Yan W (2022) In vitro evaluation of probiotic properties and antioxidant activities of Bifidobacterium strains from infant feces in the Uyghur population of northwestern China. Ann Microbiol 72:14. https://doi.org/10.1186/s13213-022-01670-y

    Article  CAS  Google Scholar 

  16. Rwubuzizi R, Kim H, Holzapfel WH, Todorov SD (2023) Beneficial, safety, and antioxidant properties of lactic acid bacteria: a next step in their evaluation as potential probiotics. Heliyon 9:e15610. https://doi.org/10.1016/j.heliyon.2023.e15610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abdel-Latif HMR, Chaklader MR, Shukry M, Ahmed HA, Khallaf MA (2023) A multispecies probiotic modulates growth, digestive enzymes, immunity, hepatic antioxidant activity, and disease resistance of Pangasianodon hypophthalmus fingerlings. Aquaculture 563:738948. https://doi.org/10.1016/j.aquaculture.2022.738948

    Article  CAS  Google Scholar 

  18. AL Zahrani AJ, Shori AB (2023) Viability of probiotics and antioxidant activity of soy and almond milk fermented with selected strains of probiotic Lactobacillus spp. LWT 176:114531. https://doi.org/10.1016/j.lwt.2023.114531

    Article  CAS  Google Scholar 

  19. Li B, Zhang T, Dai Y, Jiang G, Peng Y, Wang J, Song Y, Ding Z (2023) Effects of probiotics on antioxidant activity, flavor compounds and sensory evaluation of Rosa roxburghii Tratt. LWT 179:114664. https://doi.org/10.1016/j.lwt.2023.114664

    Article  CAS  Google Scholar 

  20. Łepecka A, Szymański P, Okoń A, Zielińska D (2023) Antioxidant activity of environmental lactic acid bacteria strains isolated from organic raw fermented meat products. LWT 174:114440. https://doi.org/10.1016/j.lwt.2023.114440

    Article  CAS  Google Scholar 

  21. Kim S, Lee JY, Jeong Y, Kang C-H (2022) Antioxidant activity and probiotic properties of lactic acid bacteria. Fermentation 8:29. https://doi.org/10.3390/fermentation8010029

    Article  CAS  Google Scholar 

  22. Ricke SC, Wythe LA, Olson EG, Scheaffer A (2023) Prospects for prebiotic and postbiotic applications in poultry. In: Callaway TR, Ricke SC (eds) Direct-fed microbials and prebiotics for animals. Springer, Cham. https://doi.org/10.1007/978-3-031-40512-9_6

    Chapter  Google Scholar 

  23. Khangwal I, Shukla P (2019) Prospecting prebiotics, innovative evaluation methods, and their health applications: a review. 3 Biotech 9:187. https://doi.org/10.1007/s13205-019-1716-6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M (2023) Recent innovations in non-dairy prebiotics and probiotics: physiological potential, applications, and characterization. Probiot Antimicro Prot 15:239–263. https://doi.org/10.1007/s12602-022-09983-9

    Article  Google Scholar 

  25. Walhe R, Alim H, Kumari S (2022) From probiotics to postbiotics: key to microbiome and health. In: Sayyed RZ, Khan M (eds) Microbiome-gut-brain axis. Springer, Singapore. https://doi.org/10.1007/978-981-16-1626-6_18

    Chapter  Google Scholar 

  26. González-Bosch C, Boorman E, Zunszain PA, Mann GE (2021) Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol 47:102165. https://doi.org/10.1016/j.redox.2021.102165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Campos-Perez W, Martinez-Lopez E (2021) Effects of short chain fatty acids on metabolic and inflammatory processes in human health. Biochim Biophys Acta (BBA) Mol Cell Biol Lipid 1866:158900. https://doi.org/10.1016/j.bbalip.2021.158900

    Article  CAS  Google Scholar 

  28. Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne) 11:25. https://doi.org/10.3389/fendo.2020.00025

    Article  PubMed  Google Scholar 

  29. Moțățăianu A, Șerban G, Andone S (2023) The role of short-chain fatty acids in microbiota–gut–brain cross-talk with a focus on amyotrophic lateral sclerosis: a systematic review. Int J Mol Sci 24:15094. https://doi.org/10.3390/ijms242015094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E (2022) The role of bile acids in carcinogenesis. Cell Mol Life Sci 79:243. https://doi.org/10.1007/s00018-022-04278-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun R, Xu C, Feng B, Gao X, Liu Z (2021) Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol 2021:14. https://doi.org/10.1177/17562848211018098

    Article  CAS  Google Scholar 

  32. Zhang D, Jian YP, Zhang YN, Li Y, Gu L-T, Sun H-H, Liu M-D, Zhou H-L, Wang Y-S, Xu Z-X (2023) Short-chain fatty acids in diseases. Cell Commun Signal 21:212. https://doi.org/10.1186/s12964-023-01219-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. El Sayed HS, Mabrouk AM (2023) Encapsulation of probiotics using mixed sodium alginate and rice flour to enhance their survivability in simulated gastric conditions and in UF-Kariesh cheese. Biocat Agric Biotech 50:102738. https://doi.org/10.1016/j.bcab.2023.102738

    Article  CAS  Google Scholar 

  34. Sekhavatizadeh SS, Afrasiabi F, Montaseri Z (2023) Encapsulation of probiotic Lactobacillus acidophilus ATCC 4356 in alginate–galbanum (Ferula Gummosa Boiss) gum microspheres and evaluation of the survival in simulated gastrointestinal conditions in probiotic Tahini halva. Braz J Microbiol 54:1589–1601. https://doi.org/10.1007/s42770-023-01074-3

    Article  CAS  PubMed  Google Scholar 

  35. Barajas-Álvarez P, Haro-González JN, González-Ávila M, Espinosa-Andrews H (2023) Gum arabic/chitosan coacervates for encapsulation and protection of Lacticaseibacillus rhamnosus in storage and gastrointestinal environments. Probiotics Antimicro Prot. https://doi.org/10.1007/s12602-023-10152-9

    Article  Google Scholar 

  36. Chen Y, Wang W, Zhang W, Lan D, Wang Y (2023) Co-encapsulation of probiotics with acylglycerols in gelatin-gum arabic complex coacervates: stability evaluation under adverse conditions. Int J Biol Macromol 242:124913. https://doi.org/10.1016/j.ijbiomac.2023.124913

    Article  CAS  PubMed  Google Scholar 

  37. Xu C, Ban Q, Wang W, Hou J, Jiang Z (2022) Novel nano-encapsulated probiotic agents: encapsulate materials, delivery, and encapsulation systems. J Control Rel 349:184–205. https://doi.org/10.1016/j.jconrel.2022.06.061

    Article  CAS  Google Scholar 

  38. Gu Q, Yin Y, Yan X, Liu X, Liu F, McClements DJ (2022) Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: a review. Adv Colloid Inter Sci 309:102781. https://doi.org/10.1016/j.cis.2022.102781

    Article  CAS  Google Scholar 

  39. Rajam R, Subramanian P (2022) Encapsulation of probiotics: past, present and future. Beni-Suef Univ J Basic Appl Sci 11:46. https://doi.org/10.1186/s43088-022-00228-w

    Article  Google Scholar 

  40. Sun C, Wang S, Yang L, Song H (2023) Advances in probiotic encapsulation methods to improve bioactivity. Food Biosci 52:102476. https://doi.org/10.1016/j.fbio.2023.102476

    Article  CAS  Google Scholar 

  41. Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z (2023) Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: a review on carrier types and encapsulation techniques. Int J Biol Macromol 242:124784. https://doi.org/10.1016/j.ijbiomac.2023.124784

    Article  CAS  PubMed  Google Scholar 

  42. Shaim C, Moorthi PV, Kutty SN (2016) In vitro anticancer activity of 5’ fluorouracil coated chitosan nanoparticle. Int J Curr Pharmaceut Res 8:6–8. https://doi.org/10.22159/ijcpr.2016v8i4.15267

    Article  CAS  Google Scholar 

  43. Duz M, Dogan YN, Dogan I (2020) Antioxidant activity of Lactobacillus plantarum, Lactobacillus sake and Lactobacillus curvatus strains isolated from fermented Turkish Sucuk. An Acad Bras Cienc 92:e20200105. https://doi.org/10.1590/0001-3765202020200105

    Article  CAS  PubMed  Google Scholar 

  44. Decker EA, Welch B (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38:674–677. https://doi.org/10.1021/jf00093a019

    Article  CAS  Google Scholar 

  45. Wang J, Zhao X, Yang Y, Zhao A, Yang Z (2015) Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol 74:119–126. https://doi.org/10.1016/j.ijbiomac.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  46. Wu JQ, Kosten TR, Zhang XY (2013) Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 46:200–206. https://doi.org/10.1016/j.pnpbp.2013.02.015

    Article  CAS  Google Scholar 

  47. Hsu CK, Chiang BH, Chen YS, Yang JH, Liu CL (2008) Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water. Food Chem 108:633–641. https://doi.org/10.1016/j.foodchem.2007.11.028

    Article  CAS  PubMed  Google Scholar 

  48. Karimi S, Azizi F, Nayeb-Aghaee M, Mahmoodnia L (2018) The antimicrobial activity of probiotic bacteria Escherichia coli isolated from different natural sources against hemorrhagic E. coli O157:H7. Electron Physician 10:6548–6553. https://doi.org/10.19082/6548

    Article  PubMed  PubMed Central  Google Scholar 

  49. Levesque R (2007) SPSS programming and data management: guide for SPSS and SAS users. Fourth ed. Chicago: SPSS Inc. ISBN-13: 978-1-56827-390-7, ISBN-10: 1-56827-390-8

  50. Kanwugu ON, Glukhareva TV (2023) Activation of Nrf2 pathway as a protective mechanism against oxidative stress-induced diseases: potential of astaxanthin. Arch Biochem Biophys 741:109601. https://doi.org/10.1016/j.abb.2023.109601

    Article  CAS  PubMed  Google Scholar 

  51. Blazheva D, Mihaylova D, Averina OV, Slavchev A, Brazkova M, Poluektova EU, Danilenko VN, Krastanov A (2022) Antioxidant potential of probiotics and postbiotics: a biotechnological approach to improving their stability. Russ J Genet 58:1036–1050. https://doi.org/10.1134/S1022795422090058

    Article  CAS  Google Scholar 

  52. Takatsuka M, Goto S, Kobayashi K, Otsuka Y, Shimada Y (2022) Evaluation of pure antioxidative capacity of antioxidants: ESR spectroscopy of stable radicals by DPPH and ABTS assays with singular value decomposition. Food Biosci 48:101714. https://doi.org/10.1016/j.fbio.2022.101714

    Article  CAS  Google Scholar 

  53. Hoffmann A, Kleniewska P, Pawliczak R (2021) Antioxidative activity of probiotics. Arch Med Sci 17:792–804. https://doi.org/10.5114/aoms.2019.89894

    Article  CAS  PubMed  Google Scholar 

  54. Hoffmann A, Kleniewska P, Pawliczak R (2019) Antioxidative activity of probiotics. Arch Med Sci 17:792–804. https://doi.org/10.5114/aoms.2019.89894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kell DB, Heyden EL, Pretorius E (2020) The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front Immunol 11:1221. https://doi.org/10.3389/fimmu.2020.01221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finkel T, Forman HJ, Janssen-Heininger Y, Gems D, Kagan VE, Kalyanaraman B, Larsson N-G, Milne GL, Nyström T, Poulsen HE, Radi R, Remmen HV, Schumacker PT, Thornalley PJ, Toyokuni S, Winterbourn CC, Yin H, Halliwell B (2022) Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 4:651–662. https://doi.org/10.1038/s42255-022-00591-z

    Article  PubMed  PubMed Central  Google Scholar 

  57. Feng T, Wang J (2020) Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes 12:1801944. https://doi.org/10.1080/19490976.2020.1801944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramana KV, Srivastava S, Singhal SS (2019) Lipid peroxidation products in human health and disease 2019. Oxid Med Cell Long 2019:7147235. https://doi.org/10.1155/2019/7147235

    Article  CAS  Google Scholar 

  59. Abdoli M, Mohammadi G, Mansouri K, Khaledian S, Taran M, Martinez F (2022) A review on anticancer, antibacterial and photocatalytic activity of various nanoparticles synthesized by probiotics. J Biotech 354:63–71. https://doi.org/10.1016/j.jbiotec.2022.06.005

    Article  CAS  Google Scholar 

  60. Fijan S (2023) Probiotics and their antimicrobial effect. Microorganism 11:528. https://doi.org/10.3390/microorganisms11020528

    Article  Google Scholar 

  61. Acharjee M, Hasan F, Islam T, Nur IT, Begum N, Mazumder C, Lubna ML, Zerin N, Shahriar A, Mahmud R (2022) In-vitro antibacterial activity of commercially available probiotics on food-borne pathogens along with their synergistic effects with synthetic drugs. Metabol Open 14:100187. https://doi.org/10.1016/j.metop.2022.100187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Keeratikunakorn K, Kaewchomphunuch T, Kaeoket K, Ngamwongsatit N (2023) Antimicrobial activity of cell-free supernatants from probiotics inhibits against pathogenic bacteria isolated from fresh boar semen. Sci Rep 13:5995. https://doi.org/10.1038/s41598-023-33062-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Lee JE, Lee NK, Paik HD (2021) Antimicrobial and anti-biofilm effects of probiotic Lactobacillus plantarum KU200656 isolated from kimchi. Food Sci Biotechnol 30:97–106. https://doi.org/10.1007/s10068-020-00837-0

    Article  CAS  PubMed  Google Scholar 

  64. Wang X, Wang W, Lv H, Zhang H, Liu Y, Zhang M, Wang Y, Tan Z (2021) Probiotic potential and wide-spectrum antimicrobial activity of lactic acid bacteria isolated from infant feces. Probiot Antimicro Prot 13:90–101. https://doi.org/10.1007/s12602-020-09658-3

    Article  CAS  Google Scholar 

  65. Machado I, Silva LR, Giaouris ED, Melo LF, Simões M (2020) Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res Inter 127:108754. https://doi.org/10.1016/j.foodres.2019.108754

    Article  CAS  Google Scholar 

  66. Martín I, Rodríguez A, Delgado J, Córdoba JJ (2022) Strategies for biocontrol of listeria monocytogenes using lactic acid bacteria and their metabolites in ready-to-eat meat- and dairy-ripened products. Foods 11:542

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wu M, Dong Q, Ma Y, Yang S, Aslam MZ, Liu Y, Li Z (2022) Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: a review. Food Res Inter 160:111733. https://doi.org/10.1016/j.foodres.2022.111733

    Article  CAS  Google Scholar 

  68. González-Ferrero C, Irache JM, Marín-Calvo B, Ortiz-Romero L, Virto-Resano R, González-Navarro CJ (2020) Encapsulation of probiotics in soybean protein-based microparticles preserves viable cell concentration in foods all along the production and storage processes. J Microencapsul 37:242–253. https://doi.org/10.1080/02652048.2020.1724203

    Article  CAS  PubMed  Google Scholar 

  69. Abdel-Hakeem MA, Abdel Maksoud AI, Aladhadh MA, Almuryif KA, Elsanhoty RM, Elebeedy D (2022) Gentamicin-ascorbic acid encapsulated in chitosan nanoparticles improved in vitro antimicrobial activity and minimized cytotoxicity. Antibiotics 11:1530. https://doi.org/10.3390/antibiotics11111530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hou W, Li J, Cao Z, Lin S, Pan C, Pang Y, Liu J (2021) Decorating bacteria with a therapeutic nanocoating for synergistically enhanced biotherapy. Small 17:2101810. https://doi.org/10.1002/smll.202101810

    Article  CAS  Google Scholar 

  71. Zhao C, Zhu Y, Kong B, Huang Y, Yan D, Tan H, Shang L (2020) Dual-core prebiotic microcapsule encapsulating probiotics for metabolic syndrome. ACS Appl Mater Interfaces 12:42586–42594. https://doi.org/10.1021/acsami.0c13518

    Article  CAS  PubMed  Google Scholar 

  72. Alehosseini A, del Pulgar EMG, Fabra MJ, Gómez-Mascaraque LG, Benítez-Páez A, Sarabi-Jamab M, Ghorani B, Lopez-Rubio A (2019) Agarose-based freeze-dried capsules prepared by the oil-induced biphasic hydrogel particle formation approach for the protection of sensitive probiotic bacteria. Food Hydrocoll 87:487–496. https://doi.org/10.1016/j.foodhyd.2018.08.032

    Article  CAS  Google Scholar 

  73. Zaeim D, Sarabi-Jamab M, Ghorani B, Kadkhodaee R (2019) Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization. LWT Food Sci Technol 110:102–109. https://doi.org/10.1016/j.lwt.2019.04.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number: IFP22UQU4281337DSR042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyala M. Naguib.

Ethics declarations

Conflict of interest

We declare that we have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 317 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hazmi, N.E., Naguib, D.M. Antioxidant and Antibacterial Activities of Nano-probiotics Versus Free Probiotics Against Gastrointestinal Pathogenic Bacteria. Indian J Microbiol 64, 141–152 (2024). https://doi.org/10.1007/s12088-023-01140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01140-2

Keywords

Navigation