Skip to main content

Advertisement

Log in

Bioremediation of a Sewage-Contaminated Tropical Swamp Through Bioaugmentation with a Microalgae-Predominant Microbial Consortium

  • Short communications
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bioaugmentation has many applications as a bioremediation technique. It is usually performed by bacteria but microalgal consortia also have great potential for bioremediation. This study evaluated the ability of a microbial consortium with predominance of microalgae (MCPM) to decontaminate the water of the Mallorquín tropical swamp. The Mallorquín Swamp is a natural water reservoir, essential for the ecological and hydric balance of the region, as well as for the fishermen, but has received sewage for more than 20 years. Microalgae for bioremediation purposes were isolated from the swamp, selected, cultured in bioreactors, and poured back into the Mallorquín waters. After bioaugmentation, there was a significant reduction in the BOD5 (98%), nitrates (58%), enterococci (92%), and total coliforms (100%). Notably, despite the MCPM bioaugmentation, the original richness and abundance of phytoplankton in the Mallorquín swamp was not disrupted. These results confirm the benefits of phycoremediation as an effective tool for on-site bioremediation of natural water bodies and show an effective phycoremediation at a large scale without altering the autochthonous microalgae community. This constitutes the first report of a successful MCPM intervention performed at this scale in a natural swamp in Colombia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J. Biolog. Sci 19:257–275. https://doi.org/10.1016/j.sjbs.2012.04.005

    Article  CAS  Google Scholar 

  2. Gonçalves AL, Pires JCM, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415. https://doi.org/10.1016/j.algal.2016.11.008

    Article  Google Scholar 

  3. Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosoph Trans. Royal Soc. B: Biolog. Sci. 367:493–507. https://doi.org/10.1098/rstb.2011.0212

    Article  CAS  Google Scholar 

  4. Phang S, Chu W, Rabiei R (2015) The Algae World. https://doi.org/10.1007/978-94-017-7321-8

  5. Liu J, Wu Y, Wu C, Muylaert K, Vyverman W, Yu HQ, Rittmann B (2017) Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Biores Technol 241:1127–1137. https://doi.org/10.1016/j.biortech.2017.06.054

    Article  CAS  Google Scholar 

  6. Farooq W, Lee Y-C, Ryu B-G, Kim B-H, Kim H-S, Choi Y-E, Yang J-W (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Biores Technol 132:230–238. https://doi.org/10.1016/J.BIORTECH.2013.01.034

    Article  CAS  Google Scholar 

  7. Mata TM, Melo AC, Simões M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. In Biores. Technol. 107:151–158. https://doi.org/10.1016/j.biortech.2011.12.109

    Article  CAS  Google Scholar 

  8. Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D (2016) Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol. Rep. 11:18–26. https://doi.org/10.1016/j.btre.2016.04.003

    Article  Google Scholar 

  9. Meng J, Li J, Li J, Antwi P, Deng K, Wang C, Buelna G (2015) Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an upflow microaerobic sludge reactor. Biores Technol 198:884–890. https://doi.org/10.1016/j.biortech.2015.09.023

    Article  CAS  Google Scholar 

  10. Whitton R, Le Mével A, Pidou M, Ometto F, Villa R, Jefferson B (2016) Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res 91:371–378. https://doi.org/10.1016/j.watres.2015.12.054

    Article  CAS  PubMed  Google Scholar 

  11. García D, Posadas E, Blanco S, Acién G, García-Encina P, Bolado S, Muñoz R (2017) Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors. Biores Technol. https://doi.org/10.1016/j.biortech.2017.06.079

    Article  Google Scholar 

  12. Luo Y, Le-Clech P, Henderson RK (2017) Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: a review. Algal Res 24:425–437. https://doi.org/10.1016/j.algal.2016.10.026

    Article  Google Scholar 

  13. Luo S, Berges JA, He Z, Young EB (2017) Algal-microbial community collaboration for energy recovery and nutrient remediation from wastewater in integrated photobioelectrochemical systems. Algal Res 24:527–539. https://doi.org/10.1016/j.algal.2016.10.00

    Article  Google Scholar 

  14. Ma X, Zhou W, Fu Z, Cheng Y, Min M, Liu Y, Ruan R (2014) Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Biores Technol 167:8–13. https://doi.org/10.1016/j.biortech.2014.05.087

    Article  CAS  Google Scholar 

  15. Unnithan VV, Unc A, Smith GB (2014) Mini-review: a priori consideration for microbial-algal interactions in biofuel algal systems receiving municipal wastewaters. Algal Res 4:35–40

    Article  Google Scholar 

  16. Sivasubramanian V (2016) Phycoremediation and Business Prospects. Elsevier Inc., Bioremediation and Bioeconomy. https://doi.org/10.1016/B978-0-12-802830-8.00017-4

    Book  Google Scholar 

  17. Páez C (2015) Análisis de las dimensiones del desarrollo sostenible en la ciénaga de Mallorquin. Módulo de Arquitectura CUC 14:63–84

    Article  Google Scholar 

  18. Martínez de Bascarán G (1976) El Índice de calidad del agua. In Ingeniería Química. 45–49

  19. Raymond Sunday, E. (2018). Phycoremediation an eco solution to environmental protection and sustainable remediation. J. Chem. Environm. Biolog. Eng. https://doi.org/10.11648/j.jcebe.20180201.12

  20. Olguín EJ, Sánchez-Galván G (2011) Phycoremediation. In Compreh Biotechnol. https://doi.org/10.1016/b978-0-08-088504-9.00405-0

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the Corporación Autónoma Regional del Río Grande de la Magdalena – CORMAGDALENA- for financing the project. Authors thank The Corporación Regional Autónoma del Atlántico – CAR- for their technical support during the execution of fieldwork activities. Authors thank The Universidad Simón Bolívar, sede Barranquilla, for their administrative support to carry out the work. School of Sciences, Universidad de Los Andes (proyecto semilla INV-2018-33-1314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime E. Gutiérrez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, J.E., Gutiérrez-Hoyos, N., Gutiérrez, J.S. et al. Bioremediation of a Sewage-Contaminated Tropical Swamp Through Bioaugmentation with a Microalgae-Predominant Microbial Consortium. Indian J Microbiol 62, 307–311 (2022). https://doi.org/10.1007/s12088-021-00990-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00990-y

Keywords

Navigation