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Abstract
With the advancement of sensor technologies, Wireless Sensor Networks (WSN) are envisioning a rich variety of promising 
services in many fields. WSN is formed by the deployment of sensor nodes in the regions of interest using a deterministic 
or random deployment strategy. The random deployment strategy is more suitable in large monitoring areas and harsh envi-
ronments. But, in this type of deployment, coverage holes and disconnected networks can exist. Important events may get 
unnoticed reducing the reliability of the networks. Since the locations of nodes are unknown in a randomly deployed WSN, 
it is difficult to locate the holes. For this, we are proposing a localization and deployment model. The localization algorithm 
uses Arithmetic Optimization Algorithm (AOA) and the results of this algorithm are further used to develop a deployment 
model to achieve a completely connected network. This algorithm is tested in various fields. The algorithm is able to local-
ize nodes accurately and identify the coverage holes with an error rate of less than 0.27% when the Average Localization 
Error (ALE) is within 5m.

Keywords Arithmetic optimization algorithm · Deployment · Heterogeneous · Range free localization · Wireless sensor 
networks

1 Introduction

Wireless Sensor Networks (WSN) have gained popularity in 
recent years because of their utilization in numerous moni-
toring and control applications. These are simple networks 
formed by a group of sensor nodes that communicate with 
each other through wireless channels [1–3].

WSNs are used in various applications such as oil and 
gas explorations, intrusion detection, military surveillance, 
forest fire monitoring, precision agriculture, and road traf-
fic tracking [4–6]. The deployment strategy of sensor nodes 
varies depending on the application. This can be broadly 
classified as deterministic deployment and random deploy-
ment [7]. The deterministic deployment is more suitable for 

friendly environments with a limited sensor area. But, in 
applications like oil and gas explorations, military surveil-
lance, natural disasters, forest fire monitoring, sensor nodes 
need to be deployed in large areas [8]. Sometimes, the region 
of deployment is harsh and unreachable. In such cases, man-
ual placement of nodes in fixed locations is impractical [9]. 
Hence, random deployment of sensor nodes is carried out 
in the required fields of interest using an aerial vehicle. But, 
in this type of deployment, there is no guarantee of com-
plete coverage and connectivity. Sensor nodes may cluster 
in some regions leaving out coverage holes and disconnected 
networks in other regions [10]. These coverage holes and 
disconnected networks result in missing out on important 
events and hence reduces the quality of the network [11]. 
Coverage holes and disconnected networks can also exist 
because of the presence of obstacles, energy dissipation of 
nodes in certain regions, radio signal attenuation and jam-
ming [12]. The operator needs to know about such condi-
tions to take further action. Many solutions are developed 
for this purpose. To address the problem of coverage holes in 
WSN with static sensor nodes, solutions based on the prop-
erties of the Delaunay triangle, Hamilton cycle, perimeter 
coverage of sensing range, etc are reported [13–15].
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The existing deployment algorithms assume that sen-
sor nodes are aware of their locations [16]. But, in reality, 
as sensor nodes are randomly deployed, they are unaware of 
their locations. Attaching every sensor node with positioning 
devices such as Global Positioning System (GPS) receivers 
is not possible because of increased cost, higher energy con-
sumption and lower accuracy due to shadowing [17]. Hence, 
to estimate the locations of sensor nodes in random deploy-
ment, localization algorithms are used [18]. But, the locations 
obtained from localization algorithms are only estimated loca-
tions with errors [19]. These errors impact the efficiency of the 
deployment algorithms. To improve localization accuracy, we 
have reported an Arithmetic Optimization Algorithm based 
Localization (AOAL) for the localization of sensor nodes with 
minimal errors. The localization problem is formed as an opti-
mization problem and solved using Arithmetic Optimization 
Algorithm (AOA) [20]. To the best of our knowledge, AOA 
has been utilized for the first time to solve the problem of 
localization. Also, the distance measurement among nodes is 
enhanced by utilizing the communication radius of nodes. We 
have observed improved localization results compared to other 
algorithms. Further, we have proposed a deployment model 
called Coverage Hole Discovery (CHD) for static nodes using 
the localization results of the AOAL algorithm. In this deploy-
ment method, sensor nodes use the information collected for 
the localization process such as the neighbor list and their esti-
mated locations to identify the coverage holes in a distributed 
manner. The main contributions of this paper are highlighted 
as follows:

• A novel AOAL algorithm for the localization of sensor 
nodes using connectivity information.

• A deployment model utilizing the information collected 
for localization purpose to achieve a completely con-
nected network.

• Analysis of the impact of localization errors on the devel-
oped deployment algorithm.

• Comparison of the reported method along with different 
localization algorithms.

The rest of the paper is organized as follows. In Sect. 2, the 
related localization and deployment methods are reviewed. 
The network model is discussed in Sect. 3 and the developed 
localization and deployment model is elaborated in Sect. 4. 
Simulation results are discussed in Sect. 5. Finally, Sect. 6 
provides the conclusion and proposed future work.

2  Related works

The deployment strategy determines the reliability of the 
WSN in terms of its ability to monitor, collect and trans-
mit the required data. Researchers have reported different 

deployment methods to enhance the performance of the 
WSN in various applications.

Various deterministic deployment plans are reported in 
[21–25] for the applications of precision agriculture, smart 
grid, indoor environments, structural health monitoring sys-
tems, etc. Deterministic deployment methods offer optimum 
network configuration, but they are more suitable for small 
scale WSN. Also, this type of deployment is impractical 
and impossible in large scale WSN and in inaccessible and 
harsh regions of interest. Generally, in such conditions, ran-
dom deployment is the only available option. [26] reported 
a solution to the WSN deployment problem by hybridizing 
two meta-heuristics, namely the Bees algorithm and the 
Grasshopper optimization algorithm. Here, the strength of 
Grasshopper optimization is used to enhance the exploitation 
phase of the Bees algorithm. [27] reported a sensor deploy-
ment technique based on the space between the sensor node 
and its neighboring sensors to improve the coverage area 
after a random deployment. This method capitalizes on the 
coverage of the detected area by forcing the sensor to change 
its position toward the area with a lower sensor density. But, 
these approaches are not relevant for static sensors which are 
unable to change their initial positions.

However, static sensors are widely used in real life net-
work applications to reduce costs and save energy [28]. 
To identify coverage holes after random deployment in a 
static WSN, [15] reported a method in which each sensor 
node determines if every segment of its sensing perimeter 
is covered by its neighbors. This method assumes the loca-
tions and sensing neighbors are known to the nodes. The 
algorithm is analyzed in 2D square fields. [13] reported a 
coverage hole detection method based on the properties 
of empty circles. Empty circles are the circumcircle of the 
Delaunay triangle. Coverage holes are identified by com-
paring the radius of the empty circle with the radius of the 
sensing range. [14] reported a distributed algorithm with 
only connectivity information to detect coverage holes in 
a static WSN. Here, a neighbor graph is constructed based 
on the neighbor information. Then, each node determines 
whether it can be a hole boundary or not by checking for the 
existence of the Hamilton cycle in its neighbor graph. The 
results are analyzed in 2D square fields.

Most of the coverage hole discovery algorithms for static 
WSN use location and neighbor node information. But, in 
random deployment, the locations of nodes are unknown. 
Localization algorithms are developed for this purpose. 
These algorithms use few location known reference nodes 
and localize other nodes with reference to these nodes. In 
recent years, various localization algorithms are developed 
considering the practical challenges of the deployment envi-
ronment such as 3D fields, anisotropy, effects of obstacles 
on the distance measurements, etc. [29] reported a localiza-
tion algorithm using augmented Lagrangian matrix to fill 
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and reconstruct the complete Euclidean distance matrix and 
establish a complete mathematical model. Another locali-
zation algorithm called SL-Free localization is reported 
in [30]. This method consists of three steps namely rela-
tive localization, geographical distances evaluation and 
the fine localization for the accurate positioning of nodes. 
[31] reported MDS-MAP(D) positioning algorithm based 
on steepest descent optimization method. A range free 
localization algorithm based on Harris Hawks optimization 
method is reported in [32]. A multihop range-free localiza-
tion method for anisotropic networks is reported in [33]. 
Here the distance estimation between sensor and reference 
nodes is improved using a distributed pattern-driven scheme. 
[17] reported an adaptive flower pollination algorithm with 
enhanced exploration and exploitation capabilities for the 
localization of sensor nodes in WSN. [34] reported another 
localization algorithm using the mean-shift clustering 
method for outlier detection in a shadowed environment.

In this paper, we use a simple and straightforward opti-
mization algorithm called AOA for the localization of sen-
sor nodes along with a novel distance estimation technique 
utilizing the communication range of nodes to improve the 
localization accuracy of the nodes. The results are further 
used to develop a deployment method to achieve a connected 
network.

3  Network model

A WSN of N sensor nodes is considered to be deployed ran-
domly in the required field of interest. Let R be a small frac-
tion of sensor nodes that are attached with GPS receivers. 
These nodes are aware of their locations and act as reference 
nodes in localization algorithms. After deployment, nodes 
communicate with other nodes located in their communica-
tion region and form an adhoc network.

The communication range of nodes is defined using log 
normal path loss model [18]. Let (xi, yi) be the location, 
CRNi be the communication range and SNi be the sensing 
range of node Ni . The communication range of a node can 
be obtained as,

where Pt is the transmitted power, Pth is the minimum 
threshold receiver power required by nodes, and � is the 
path loss factor. The nodes in the network start monitoring 
the events occurring in their sensing area and report them 
to the network operator through multihop communication.

Sensing model The sensing area of a sensor node Ni is the 
area in which Ni can detect the occurrence of events. In prac-
tice, because of environmental factors, the sensing area of a 

(1)CRN = 10
(
Pt−Pth

10�
)

node is of irregular shape. We have defined the sensing range 
SNi , as the lower bound of the irregular sensing area of nodes 
[13]. Here, all the events occurring within the distance SNi 
from node Ni are determined with probability 1 [15]. We 
have assumed CRNi ≥ 2 × SNi.

Heterogeneity The nodes are assumed to be heterogeneous 
with different transmission powers and sensing ranges. This 
means, CRNi and CRNj need not be same for any i, j;i ≠ j.

Problem description When the sensors are deployed ran-
domly in hostile target fields, nodes may cluster in some 
regions and leave holes in other regions. Even if care is 
taken to deploy nodes uniformly, a coverage hole can still 
appear because nodes can be destroyed, or the signal may 
be jammed. The holes can cause network disconnection. 
Important events may not get detected and thereby reducing 
the reliability of the networks. Therefore, it is important to 
detect and heal the holes in the network. Figure 1 shows few 
examples of the coverage holes.

In a randomly deployed network, nodes collect informa-
tion from neighbors and localize themselves. The nodes are 
localized with respect to the locations of reference nodes. 
When they observe any event, they report it to the opera-
tor along with location information. Accurate location of 
nodes is important to identify the location of occurrence of 
events and to take action on them. This location information 
is also important to identify coverage holes and disconnected 
networks in a randomly deployed network. Hence, we have 
reported a method where nodes can localize themselves in a 
distributed manner and then identify the holes by themselves 
and report them to the operator.

4  Details of the localization and deployment 
plan

To overcome the above mentioned challenges, in this sec-
tion, a new localization and deployment model is developed 
to achieve a completely connected network. Here, initially, 
nodes are deployed randomly. Then, nodes are localized by 
estimating their distance from reference nodes using the sum 
of communication ranges in the shortest path and evaluat-
ing the locations using AOA. Further, nodes uncover the 
coverage holes and disconnected networks by analyzing the 
distribution of neighbor nodes around them.

The steps are described here.

4.1  Initial deployment

WSN is formed by the random deployment of sensor and ref-
erence nodes. The node density should be selected carefully 
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to achieve the required level of coverage. As discussed in 
[35], the required node density to achieve k-coverage is 
given in Eq. (1).

where, r0 = Smin∕1.066 . Smin is the minimum sensing radius 
among the heterogeneous set of nodes. All the nodes are 
initialized as non-Border with a parameter Border set as 0.

4.2  Localization of nodes

After the initial deployment, nodes localize themselves 
using the AOAL method. The initial step is similar to hop 
based algorithm, but the hop counts are replaced by com-
munication ranges. This change helps in overcoming the 
impact of heterogeneity on distance estimations. Here, 
every reference node broadcasts the location information 
(x, y) and communication range CR to the neighbor nodes. 
The neighbor nodes store this information, add their CR 
value to the received CR. If this sum of CR is less than 
a predefined CRthreshold , nodes broadcast them along with 
location information of reference nodes. The CRthreshold 
helps to identify only the closer reference nodes, thus 
reducing the impact of irregular bent paths on distance 
estimations. After receiving this information, neighbor 
nodes verify if the obtained reference node information 
is already stored in their neighbor information. If it is a 
new node information, the neighbor information is updated 
with the received reference node location and sum of CR. 
If the obtained node information is already stored, the 
received sum of CR is compared with the stored value and 

(2)node density =
k

0.422 × r0
3

the minimum among these two CR values is saved with 
location information. At the end of this step, every node 
will have location information of reference nodes and the 
corresponding minimum value of the sum of CR from ref-
erence node to itself.

For example, consider a WSN shown in Fig. 2. Here, 
neighbor information stored in N1 is: NSET1 = { 1. (xR1, yR1) , 
CRR1 , 2. (xR2, yR2) , CRR2 , 3. (xR3, yR3) , min (CRR3 + CRR1 , 
CRR3 + CRN2) }.

After this, reference nodes in the network measure the 
Average Communication Distance (ACD) as a ratio of 
the distance between reference nodes and the sum of CR 
between them. ACD for a reference node R1 is defined as

Fig. 1  (a) Coverage hole (b) Disconnected network in a 2D square field

N1

N2

R3

R1

R2

Fig. 2  An example of a WSN

1476 Peer-to-Peer Networking and Applications (2022) 15:1473–1485



1 3

where dR1Ri is the distance between two nodes R1 and Ri.
Reference nodes broadcast the measured ACD to other 

nodes. Sensor nodes estimate the distance to reference nodes 
as the product of received ACD and the sum of communica-
tion ranges CR. The distance between sensor node Ni and 
reference node Rj is measured as,

The obtained distances are only estimated values affected 
by errors due to irregularities in the field. Next, the location 
estimation problem is formulated as an optimization prob-
lem and solved using these distance measurements.

The optimization problem: ∀i, 1 ≤ i ≤ N  , find location 
estimation (̃xi, ỹi) as a point in the field such that the distance 
from (̃xi, ỹi) to every reference node j ∈ NSETi is equal to d̃ij.

Or equivalently,
∀ i; 1 ≤ i ≤ N , find (̃xi, ỹi) s.t. | 

√

(̃xi − xj)
2 + (̃yi − yj)

2 - d̃ij 
| is a minimum for every j ∈ NSETi.

The defined localization problem is solved using AOA. 
AOA is a population-based algorithm consisting of explora-
tion and exploitation phases. This algorithm is developed by 
considering simple arithmetic operators (i.e., Multiplication, 
Division, Subtraction, and Addition) to determine the best 
element subjected to specific criteria from a set of candidate 
alternatives [20].

This algorithm takes population size P, maximum num-
ber of iterations T, upper bound UB, lower bound LB as 
input values and searches for a best solution by measuring 
cost value.

This is implemented as follows. To localize an 
unknown node i, input parameters LB = (LBx, LBy) and 
UB = (UBx,UBy) are set as arrays of lower and upper bound-
ary values of the deployment field. AOA generates initial P 
locations randomly within the boundaries LB and UB. The 
cost of each of these P location estimations is measured as 
below:

The location with minimum cost value is saved as 
PBEST = (̃xi, ỹi).

Previously generated P location estimates are next modi-
fied in exploration and exploitation phases of AOA to con-
verge towards the actual location of node i. This is done 
using Math Optimizer Accelerator (MOA) and Math Opti-
mizer Probability (MOP) which are defined as a function of 
current iteration t as below:

(3)ACDR1 =

∑

i∈NSET1

dR1Ri

∑

i∈NSET1

CRR1Ri

(4)d̃NiRj = ACDRj × CRNiRj

(5)COST =
∑

j∈NSETi

|

√

(�xi − xj)
2 + (�yi − yj)

2 − d̃ij|

Generate random numbers r1 , r2 and r3 between 0 and 1.
If r1 < MOA, modify x̃i,k , 1 ≤ k ≤ P as

Here, ∈ is a small number set as 2.2204e − 16.
Else, if r1 ≥ MOA , modify x̃i,k , 1 ≤ k ≤ P as

Similarly, value of ỹi,k(t) is modified. This process is con-
tinued to get the best location with minimum cost in T itera-
tions. The final solution PBEST = (̃xi, ỹi) is considered as the 
location estimate of the unknown node.

4.3  Coverage hole discovery (CHD)

After localization, every node is aware of its location in the 
field. Next, this location information is used to discover cov-
erage holes. This is done by checking for uniform distribu-
tion of neighbor nodes around every node with overlapping 
sensing ranges. For this, every node identifies few points 
evenly spaced around it at a distance of SNi . The number of 
points identified can be any number greater than 1. After 
identifying the points, the nodes check if these points are 
inside the sensing range of any of the neighbor nodes stored 
in the neighbor matrix. If any one of the identified points of 
a node doesn’t reside inside the sensing range of any of its 
neighbor nodes, the node is identified as a border node with 
the Border parameter set to 1. By selecting more points, even 
coverage holes with smaller sides can be detected. But, since 
every point needs to be checked for overlapping neighbor 
nodes, this also increases the computation overhead. Hence, 
depending on the need of the application, suitable number 
of points need to be identified.

This step is explained with an example. Here, we have 
considered 8 evenly spaced points. In this case, the cover-
age holes with sides greater than (1∕8)th of the perimeter of 
the sensing area can be detected. Consider a node N1 hav-
ing N2, ...,N9 as neighbors stored in its neighbor matrix. To 
check if N1 is in the boundary of any coverage hole, it first 
identifies 8 points, P1N1 , P2N1,..., P8N1 as shown in Fig. 3. 
Next, every point is checked for an overlapping sensing 
range.

(6)MOA(t) = 0.2 + t ×
0.8

T

(7)MOP(t) = 1 −
t0.2

T0.2

(8)

�xi,k(t) =

{

�xi(t−1)

(MOP(t)+∈)
× ((UBx − LBx) × 0.5 + LBx) if r2 > 0.5

�xi(t − 1) ×MOP(t) × ((UBx − LBx) × 0.5 + LBx) otherwise

(9)
�xi,k(t) =

{

�xi(t − 1) −MOP(t) × ((UBx − LBx) × 0.5 + LBx) if r3 > 0.5

�xi(t − 1) +MOP(t) × ((UBx − LBx) × 0.5 + LBx) otherwise
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For node N1 , if there is any Ni where i = 2, 3, ..., 9 
such that d(PjN1)−Ni ≤ (SNi) ∀j = 1, ..., 8, then the node N1 
is marked as not a border node with Border=0. Here, 
d(PjN1)−Ni indicates the distance between (PjN1) and Ni. 
If any PjN1 does not find a Ni such that d(PjN1)−Ni ≤ (SNi) , 
then the node N1 is marked as a border node with Bor-
der=1. This can be a node at the border of a field or at 
the border of a coverage hole. As shown in Fig. 4, point 
P5 of node N1 is not covered by sensing region of any 

of its neighbor nodes. Hence, node N1 is identified as 
a border node.

4.4  Update the end user

When the node detects any change in its border status, it 
alerts the end user. This way, the user will know all the bor-
der nodes at the borders of coverage holes and fields. He can 
take further actions based on the requirements.

4.5  Disconnected networks

As proved in [36], if the coverage radius of a node is at 
least twice the sensing range, a completely covered net-
work will be a completely connected network. Hence, by 
ensuring complete coverage, we get a completely con-
nected network.

The pseudo-code of the reported localization and 
deployment method is shown in Algorithm 1.

Fig. 3  Points on the sensing range of node N1

Fig. 4  An example of a border 
node identification
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4.6  Computational complexity

The computational complexity of the proposed model relies 
on two factors: localization and deployment. Localization 
is achieved by AOA. The computational complexity of the 
AOA is of O(P × (2 × T + 1)) where P is the population 
size, T is the iterations. The computational complexity of 
the deployment model is O(8 × AN) where AN is the average 
number of immediate neighbors for a node in the network. 

In the next section, the proposed model is evaluated under 
various scenarios.

5  Results and analysis

In this section, the reported localization and deployment 
model is evaluated by comparing the results with the tra-
ditional Centroid [37] and the recent range-free algorithms 
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EWCL [38] and HHO-AM [32]. For this, a combination of 
isotropic and anisotropic fields are considered. These fields 
are simulated by defining the required boundary shapes 
using the MATLAB R2018a tool. Sensor and reference 
nodes are randomly deployed in these fields. This is done 
by generating locations for nodes within the boundary region 
using the built in uniform random distribution function of 
MATLAB. Sensor nodes are considered to be heterogeneous 
with sensing ranges varying from 6m to 12m and communi-
cation ranges varying from 12m to 24m. After deployment, 
nodes communicate with each other and form a network. 
The transmission of signals among nodes undergoes attenu-
ation in space, which is represented by the path loss factor 
of 4. Apart from path loss, the presence of obstacles causes 
attenuation of signals in different directions, resulting in 
irregular communication patterns. The degree of irregu-
larity in the communication field is assumed to be 0.005. 
The irregular communication patterns are generated using 
weibull random distribution as suggested in [39].

After deployment, localization algorithms are used to esti-
mate the locations of sensor nodes by considering the actual 
locations of reference nodes. The localization algorithms are 
then evaluated by comparing the actual locations of sensor nodes 
with their estimated locations. This is done using the parameter 
Average Localization Error (ALE) [40] which is defined as,

where (xi, yi, zi) is the actual node location, (̃xi, ỹi, z̃i) is the 
measured node location and n is the number of localized 
nodes.

After localization, nodes identify themselves as border 
or non-border nodes using the reported method. The effi-
ciency of this is evaluated by analyzing the percentage of 
non-border nodes erroneously reporting as border nodes. 
The deployment error is measured as,

5.1  Evaluation of AOAL

The reported AOAL is evaluated under various scenarios.

5.1.1  Influence of node density

Here, the performance of the reported algorithm is evaluated 
under various node densities. For this, sensor and reference 
nodes are deployed in a square shaped field. The count of 

(10)
ALE =

n
∑

i=1

√

(̃xi − xi)
2 + (̃yi − yi)

2 + (̃zi − zi)
2

n

(11)

Deployment error (%)

=
Count of erroneously reported border nodes

Nodes in the network
× 100

nodes is increased from 500 to 2000. Reference node density 
is maintained at 20% . The ALE at node densities varying 
from 0.01∕m2 to 0.04∕m2 is compared with other localization 
algorithms. Comparison of localization results for different 
algorithms is shown in Fig. 5.

From Fig. 5, it can be observed that the localization error 
of the Centroid algorithm is very high at lower node densi-
ties whereas AOAL has shown the least localization error. 
With an increase in node density, the performance of locali-
zation algorithms improves. AOAL has shown an overall 
improvement of 24% in ALE compared to HHO-AM.

5.1.2  Influence of reference node density

The localization algorithm is evaluated at different reference 
node ratios. Node density is fixed at 0.03∕m2 and reference 
node density is varied from 10% to 40% . The localization 
errors from different algorithms are shown in Fig. 6.

While the error rate was very high for other localization 
algorithms at lower reference node densities, AOAL has 
performed well. It has shown an overall improvement of 
24 − 41% when compared with Centroid, EWCL, and HHO-
AM localization algorithms.

0
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A
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Centroid
EWCL
HHO-AM
AOAL

Fig. 5  Comparison of localization error at varying node densities
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Fig. 6  Comparison of localization error at varying reference node 
densities
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5.1.3  Influence of heterogeneity

Here, the behavior of the localization algorithms at various 
heterogeneous conditions is analyzed. For this, sensor nodes 
of different transmission powers are considered. The deviation 
in transmission powers of nodes is varied from 0 to 15dBm 

and the localization errors are observed in these situations. 
Figure 7 shows the localization errors in these conditions.

The increase in heterogeneity deteriorated the perfor-
mance of Centroid and EWCL. But, HHO-AM and AOAL 
showed more stable performance in heterogeneous condi-
tions. The localization accuracy of AOAL is improved by 
28% compared to the HHO-AM algorithm.

5.1.4  Computational time

In this section, the complexity of the localization algorithm 
is evaluated in terms of computational time. The average 
computational time for localization of a node is compared 
with other localization algorithms and the results are pro-
vided in Fig. 8.

The computational time of Centroid algorithm is the least 
as it considers only immediate neighbor nodes for location 
analysis. The EWCL and HHO-AM localization algorithms 
consider reference nodes within a threshold distance, their 
computational time is higher than Centroid algorithm. But, 
computational time of AOAL algorithm is observed to be 
higher than HHO-AM and EWCL.

5.2  Evaluation of the deployment model

After localization, nodes identify the coverage holes and 
disconnected networks using the reported deployment 
model.

5.3  Field anisotropy

To evaluate the effectiveness of the reported deployment 
method on various types of fields, a combination of sensor 
and reference nodes are randomly deployed in a square field 
with a disconnected network and a C shaped field with a hole 
as shown in Figs. 9a and 10a. Node density is maintained at 
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Fig. 7  Comparison of localization error at varying transmission powers
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Fig. 8  Comparison of computational time

Fig. 9  Square field: (a) Random deployment, (b) Localization results and (c) Coverage hole discovery
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0.03∕m2 . After the initial random deployment, sensor nodes 
localize themselves using a localization algorithm. Here, we 
have used the AOAL localization algorithm. The results of the 
localization algorithm are shown in Figs. 9b and 10b. After 
localization, sensor nodes use their estimated locations and 
their neighbor nodes to identify holes. The results of the cover-
age hole discovery method are shown in Figs. 9c and 10c. The 
nodes identified as border nodes are marked in red color and 
non-border nodes are marked in green color. We can observe 
that using the proposed method, nodes were able to identify the 
coverage holes and disconnected networks effectively.

5.4  Influence of node density and localization 
errors

To study the influence of node density on the reported deploy-
ment algorithm, initial random deployment is carried out by var-
ying the node density from 0.01∕m2 to 0.04∕m2 . Then, the nodes 
are localized using different localization algorithms namely Cen-
troid, EWCL, HHO-AM, and AOAL. The results of ALE and 
deployment error at various node densities in two different fields 
are shown in table 1. Figure 11 shows the measured deployment 

error in a square field when the nodes are localized using Cen-
troid, EWCL, HHO-AM, and AOAL localization algorithms. 
Border node detection errors of sensor nodes are in the range of 
2 − 10% at 0.01∕m2 node density. This is because the number 
of neighbor nodes available for node localization is small which 
causes higher localization errors. Higher localization errors 
resulted in higher errors in border node identification. With an 
increase in node density, the ALE of localization algorithms is 
reduced and hence node discovery errors are also reduced.

Fig. 10  C shaped field: (a) Random deployment, (b) Localization results and (c) Coverage hole discovery
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Fig. 11  Influence of node density on deployment error in a square 
field

Table 1  Comparison of 
deployment error with ALE

Centroid EWCL HHO-AM AOAL

Field type Node ALE Error ALE Error ALE Error ALE Error
density in(m) in (%) in(m) in (%) in(m) in (%) in(m) in (%)

2D square 0.01 10.47 10.19 9.86 8.24 9.72 4.12 6.05 1.52
field with 0.02 5.98 1.83 8.28 1.51 5.69 0.43 4.16 0.22
disconnected 0.03 5.0207 0.57 6.79 0.00 4.80 0.07 3.73 0.07
network 0.04 4.49 0.05 6.81 0.00 4.10 0.00 3.55 0.00
2D C field 0.01 14.13 8.02 10.36 3.90 8.08 0.86 6.96 1.73
with a hole 0.02 6.08 2.48 6.82 0.75 6.32 0.21 5.03 0.21

0.03 5.10 1.01 5.76 0.50 4.28 0.14 4.76 0.00
0.04 4.94 0.27 6.01 0.00 3.91 0.00 4.52 0.00
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Similar results are observed when the tests are repeated 
in a C shaped field with a coverage hole. The results are 
shown in Fig. 12. When the node density is increased from 
0.01% to 0.04% , the average ALE from four localization 
algorithms is reduced from 10m to 5m. This reduced the 
average deployment errors from 3.6% to 0.07%.

6  Conclusions

WSNs have recently attracted considerable research inter-
est by providing unprecedented opportunities for monitor-
ing and controlling applications. WSN can be formed by 
following deterministic or random deployment strategies. 
When sensor nodes are deployed using a random deploy-
ment strategy, sensor nodes may cluster in some regions 
leaving out coverage holes and disconnected networks in 
other regions. But, since in random deployment, the user is 
not aware of the locations of the deployed nodes, it is not 
possible to identify the holes. To overcome this problem, we 
have reported a localization and deployment plan to help the 
end user in identifying the coverage holes and disconnected 
networks in a distributed manner. The reported method uses 
AOA to identify the locations of the nodes. The localized 
nodes then use their neighbor information collected for 
localization purposes to identify missing coverage regions. 
This method is tested in various fields for different node 
densities. AOAL showed an improvement of 24% to 45% 
in ALE compared to other methods. It is also observed that 
by reducing the average localization errors from 10m to 
5m, the average deployment errors were also reduced from 
5% to 0.04% . In the future, the algorithm will be enhanced 
to reduce deployment errors even in lower node densities.
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