
https://doi.org/10.1007/s12083-021-01258-4

100+ FPS detector of personal protective equipment for worker safety:
A deep learning approach for green edge computing

Xiao Ke1,2 · Wenyao Chen1,2 · Wenzhong Guo1,2

Received: 2 August 2021 / Accepted: 23 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In industrial production, personal protective equipment (PPE) protects workers from accidental injuries. However, wearing PPE is
not strictly enforced among workers due to all kinds of reasons. To enhance the monitoring of workers and thus avoid safety
accidents, it is essential to design an automatic detection method for PPE. In this paper, we constructed a dataset called FZU-PPE
for our study, which contains four types of PPE (helmet, safety vest, mask, and gloves). To reduce the model size and resource
consumption, we propose a lightweight object detection method based on deep learning for superfast detection of whether work-
ers are wearing PPE or not. We use two lightweight methods to optimize the network structure of the object detection algorithm
to reduce the computational effort and parameters of the detection model by 32% and 25%, respectively, with minimal accuracy
loss. We propose a channel pruning algorithm based on the BN layer scaling factor γ to further reduce the size of the detection
model. Experiments show that the automatic detection of PPE using our lightweight object detection method takes only 9.5 ms
to detect a single video frame and achieves a detection speed of 105 FPS. Our detection model has a minimum size of 1.82 MB
and a model size compression rate of 86.7%, which can meet the strict requirements of memory occupation and computational
resources for embedded and mobile devices. Our approach is a superfast detection method for green edge computing.

Keywords Superfast detection · Personal protective equipment · Model light-weighting · Green edge computing

1 Introduction

Industrial production plays a major role in the economic
development of countries around the world, which covers
many areas such as construction, manufacturing, and mining.

In the construction industry, for example, US annual spend-
ing in 2019 was $1.3 trillion, or approximately 6.3% of GDP
[1]. The construction industry has a huge demand for work-
ers, with a total of 7.2 million employees in 2019, account-
ing for about 5% of the total labor force [2]. However, while
industrial production is the backbone of the nation’s econ-
omy, it is also one of the most dangerous sectors in which
to work. According to the U.S. Bureau of Labor Statistics
(BLS), 991 fatal accidents occurred in the U.S. construc-
tion industry in 2016, accounting for approximately 19% of
all other industries [3]. Furthermore, 2017 data show that
79,810 accidents and non-fatal illnesses occurred in the con-
struction industry during the year [3]. The main causes of
fatalities in workplace accidents fall from heights, falling
objects on the head, etc. In 2017, nearly 50% of construction
workers in the U.S. construction industry died from falls and
object impacts to the head [4].

The U.S. Occupational Safety and Health Administration
(OSHA) require all workers in industrial manufacturing to
wear personal protective equipment (PPE) to minimize the
occurrence of safety incidents or to reduce injuries resulting
from safety incidents [5]. A report by the National Institute

This article is part of the Topical Collection: Special Issue on
Green Edge Computing

Guest Editors: Zhiyong Yu, Liming Chen, Sumi Helal, and Zhiwen
Yu

 * Wenyao Chen
 yao1079543838@gmail.com

 Xiao Ke
 kex@fzu.edu.cn

 Wenzhong Guo
 guowenzhong@fzu.edu.cn

1 Fujian Provincial Key Laboratory of Networking
Computing and Intelligent Information Processing, College
of Mathematics and Computer Science, Fuzhou University,
Fuzhou 350116, China

2 Key Laboratory of Spatial Data Mining & Information
Sharing, Ministry of Education, Fuzhou 350003, China

/ Published online: 15 November 2021

Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

http://orcid.org/0000-0002-1689-8105
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01258-4&domain=pdf

for Occupational Safety and Health (NIOSH) showed that
between 2003 and 2010, there were 2,210 traumatic brain
injuries (TBI) deaths across the United States, accounting
for 25% of all deaths in the construction industry during
that period [6]. The most common cause of TBI accidents
in industrial processes is a worker falling from a height or an
object falling on the worker’s head [5, 6]. Wearing a helmet
can minimize injuries to the head. Similarly, since heavy
equipment such as trucks, bulldozers, and graders often
work near workers, they may hit and injure workers at night
or when visibility is low. To prevent similar accidents from
occurring, workers must wear safety vests. Not only that, but
gloves are also an important PPE, and wearing gloves while
working can effectively protect workers from injuries to their
hands. Wearing gloves can also prevent electrocution when
performing electricity-related work. Since the end of 2019,
the new coronavirus (COVID-2019) has spread worldwide,
and workers also need to wear masks to avoid the spread of
the virus. Studies have shown that most safety incidents can
be avoided if workers wear proper PPE, such as helmets,
safety vests, masks, and gloves [5]. From the perspective
of practical efficiency and benefits, the manual supervision
and inspection approach is inefficient and cannot adequately
meet the practical needs of safety supervisors. In recent
years, with the development of deep learning and computer
vision, more and more researchers are using machine vision-
based methods for object detection [7–11].

For the safety monitoring of workers wearing PPE,
there have been many studies on the automatic detection
of helmets, while there are fewer studies on the wearing of
workers’ masks or safety vests, and almost no studies on the
detection of gloves. Currently, machine vision-based PPE
wear detection is still challenging. First, the great variability
in the background and worker state is caused by various field
conditions, so studies in specific scenarios are difficult to
extend to other scenarios. Second, small targets that are far
from the camera are difficult to distinguish from cluttered
backgrounds and other overlapping targets. Moreover, mul-
tiple targets may exist in the same image region, partially
occluding each other, which makes the detection of PPE
wear difficult. In addition, deep learning network is too large
and computationally intensive to be used directly on surveil-
lance cameras, drones, and other Internet edge devices, and
most existing detection models are slow to detect and cannot
meet real-time detection needs. Finally, until now there is
no publicly available dataset containing multiple PPEs for
evaluating PPE detection algorithms in various situations.

In this paper, to solve the problem of automated detec-
tion of PPE wear by workers in industrial production, we
collect relevant images and build a dataset FZU-PPE con-
taining a variety of PPE. Meanwhile, we introduced deep
learning and convolutional neural network (CNN), which

has the powerful advantage of strong feature learning capa-
bility, using neural networks to automatically extract fea-
tures from the original data and synthesize low-level features
into high-level features [12, 13]. Moreover, CNN has a more
powerful performance in the field of computer vision than
traditional image processing-based methods. For real-time
detection of PPE in industrial production, to solve the prob-
lem of complex network models of object detection algo-
rithms, after conducting research and analysis, we proposed
two lightweight methods to improve the network structure
of object detection algorithms, which greatly compressed
the model size, parameters, and computational effort of
object detection network. In addition, to further meet the
strict requirements of memory occupation and computa-
tional resources for Internet edge devices, we borrow the
idea of the pruning algorithm Network Slimming, which
trains the Batch Normalization (BN) layer scaling factor
γ in the original model to sparse the network structure, then
prunes the detection model by using γ as a measure of the
importance of the convolutional channels and finally per-
forms fine-tuning training to recover the detection accuracy.
Our proposed lightweight approach can effectively reduce
the model computational effort and parameters, compress
the model size, and help the detection model to be used on
embedded and mobile devices. In addition, our lightweight
detection model can perform ultra-fast detection of video or
images with a detection speed of over 100 FPS.

The major contributions of this work are summarized as
follows:

1. To improve the complex network model of the object detec-
tion algorithm, we halve the number of output channels
of Conv and C3 modules in the head part of the network
and use a 1 × 1 convolutional kernel instead of 3 × 3 con-
volutional kernels. These two optimization methods can
simplify the network structure of the object detection algo-
rithm and greatly reduce the model size, parameters, and
computational effort.

2. In order to meet the memory consumption and compu-
tational resource requirements of Internet edge devices,
we sparse the BN layer scaling factor γ of the detection
model to compress γ from a Gaussian distribution to a
state close to 0. Then we use channel pruning to reduce
the model size, parameters, and computational effort so
that the detection model can meet the memory consump-
tion requirements of embedded and mobile devices and
can perform superfast detection.

3. At present, most of the PPE datasets in industrial pro-
duction are only helmets or safety vests, and there is
no glove dataset. To solve this problem, this paper
produces a PPE detection dataset FZU-PPE for indus-
trial production, containing 18,767 images and nearly

951Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

97,536 instances related to various PPE such as helmets,
safety vests, masks, and gloves. These images cover dif-
ferent scenarios of PPE wear, including images of com-
plex scenarios such as cover-ups and small targets. Each
instance in the dataset is labeled with a class label and
its bounding box information.

2 Related works

Most current machine vision-based PPE wears detection
methods focus only on identifying helmets. Conventionally,
the methods of hardhat-wearing detection can be divided
into two categories: sensor-based detection and vision-based
detection. Sensor-based detection methods [14, 15] mainly
use remote location and remote tracking technologies such
as radio frequency identification (RFID) and wireless local
area networks (WLANs) for detection. Zhang et al. [14]
designed a helmet detection system based on an Internet
of Things (IoT) architecture with an infrared beam detector
and a thermal infrared sensor in the helmet, and used radio
frequency identification (RFID) triggers to detect whether
a worker is wearing a helmet. Dong et al. [15] developed
a real-time location system (RTLS) for worker location
tracking with a pressure sensor in the helmet to determine
whether the helmet is worn or not by transmitting pressure
information via Bluetooth. However, sensor-based detection
methods are hardly satisfactory for identifying helmets at
construction sites, and the use of sensors increases produc-
tion costs.

In recent years, with the development of deep learning,
vision-based techniques have received increasing attention.
Zhang et al. [16] proposed an improved weighted bi-directional
feature pyramid network (BiFPN) to fuse multi-scale semantic
features for helmet detection with good results. Wang et al. [17]
employed the MobileNet model as the backbone network, pro-
posed a top-down module for enhanced feature extraction, and
used a residual-block-based prediction module for the helmet
detection for multi-scale features. Filatov et al. [18] designed an
automatic helmet monitoring system for surveillance cameras
based on MobileNet, which can meet the demand for real-time
detection but there is still room for improvement in detection
accuracy. Wu et al. [19] proposed a reverse progressive atten-
tion mechanism (RPA) to fuse features from different layers
of different scales into a new feature pyramid and used the
Single Shot Multibox Detector (SSD) framework to predict
the detection results of safety helmets. Mneymneh et al. [20]
detected each worker in the video and then determined whether
any helmet was located in the top region of the worker detec-
tion frame. Wójcik et al. [21] used a novel helmet detection
algorithm, which combined three techniques of deep learning,
object detection and head key point localization to achieve bet-
ter detection results. Fang et al. [22] employed a Faster R-CNN

[23] based approach to automatically detect helmet wearing
(non-hardhat-use, NHU) of construction workers, and they
collected a total of 81,000 images from various construction
sites as a training dataset to train the Faster R-CNN model, but
the model could only detect workers who were not The model
could only detect workers who were not wearing helmets. In
addition, the Faster R-CNN relies heavily on the information
extracted from the upper-level features and cannot fully utilize
the underlying feature details, which may affect the detection
results of target objects at different scales in the images.

Recently, relatively few studies have been conducted for
the detection of masks, safety vests, and gloves. Seong et al.
[24] used different approaches for the detection of safety
vests using a combination of five color spaces (RGB, nRGB,
HSV, Lab, and YCbCr) and six classifiers (ANN, C4.5,
KNN, LR, NB, and SVM). Yu and Zhang [25] improved the
YOLOv4 algorithm to achieve better results in mask detec-
tion. In Ref. [26], the authors state that the combination of
ResNet50 and SVM can achieve face mask detection with
an accuracy of 99.64%. However, the computational cost of
the algorithm is quite expensive and not suitable for practi-
cal applications. In addition, the combination of SSD and
MobileNetV2 for mask detection is proposed in Ref. [27],
but its model structure is too complex and computationally
large.

Good algorithms are pursuing both high accuracy and
high speed. For example, in the field of trajectory cluster-
ing, Li et al. [28] presents a multi-step trajectory clustering
method for robust AIS trajectory clustering. Compared with
other algorithms, the multi-step trajectory clustering method
has higher accuracy and lower time complexity. However, To
date, there have been few studies related to industrial pro-
duction safety inspection that use deep learning techniques
to detect worker glove wear and the few studies that detect
multiple PPEs simultaneously. Among the limited studies
that detect multiple PPEs simultaneously, a commercial
software called smartvid.io applies AI-driven algorithms to
detect multiple PPE components (e.g., helmets, goggles, and
steel-toed shoes) [29], but possesses good detection results
only in simple scenarios. Ref. [30] proposed three methods
based on YOLOv3 to detect whether workers are wearing
helmets or safety vests correctly, and the best performing
method mAP reached 72.3% and detection speed reached
11 FPS. Although most deep learning-based detection
models have better detection accuracy, they also have the
disadvantages of complex network structure and high com-
putational effort. Most of the current research on personal
protective equipment is pursuing higher detection accuracy
at the expense of the equally critical detection speed. The
ability to detect video or images better and faster is the only
way to implement the relevant research into practical appli-
cations. To meet the memory and computational resource
requirements of Internet edge devices, a lightweight object

952 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

detection model requires only a small amount of computa-
tional resources and memory space to run on mobile cloudlet
platforms [31], embedded devices or mobile devices (e.g.,
smartphones, tablets) or even lightweight UAVs is neces-
sary [32].

3 Methodologies

Industrial production areas are often complex environments
with many objects such as workers, machinery and equip-
ment, construction materials, etc. Images collected at con-
struction sites using cameras can have many challenging
issues such as scale variations, perspective distortion, and
partial occlusions. Traditional detection methods using man-
ual extraction of image features are usually ineffective for
real-time detection and guarantee generalization to various
complex scenes, while deep learning-based methods have
the drawbacks of excessive model size and computational
effort, although the detection speed and detection accuracy
are better than traditional methods. To solve this problem,
in this paper, we propose a lightweight object detection
method that can greatly compress the detection model size,
while improving the model detection speed for high-speed
detection.

3.1 Proposed PPE wearing detection framework

In computer vision, the task of object detection is to identify
the target object in an image and locate the target object
position with a detection frame [33]. Two-stage object detec-
tion algorithms such as Fast R-CNN [34], Faster R-CNN
[23], Mask R-CNN [35], and CPNDet [36] have better detec-
tion accuracy, but the detection speed is very slow. While
one-stage algorithms such as SSD (Single Shot Detector)
[37], YOLOv4 (You-Only-Look-Once) [38], CenterNet [39]
and YOLOF (You-Only-Look-One-Feature) [40] improve
the detection speed at the cost of reducing the detection
accuracy. However, the model size of one-stage methods
still cannot meet the requirements of edge devices. In this
paper, we design a lightweight object detection algorithm for
Internet edge devices based on the idea of YOLOv5 object
detection algorithm and optimize the network structure using
two improvement methods to obtain a lightweight object
detection network.

3.1.1 Network structure

Our object detection network uses CSPNet (Cross Stage
Partial Networks) [41] as the Backbone and PANet (Path
Aggregation Network) [42] as the Neck. When feature
extraction is performed on the image, the detection network

divides the input feature map into two parts, one part is used
as the input feature map of the next convolution module,
and the other part is merged with the output feature map
of another network layer, thus realizing cross-stage feature
fusion, which effectively alleviates the gradient disappear-
ance problem of the deep network model and the gradient
information duplication problem of network optimization in
the backbone. The cross-stage feature fusion in the detection
network can reuse image features and reduce the parameters
and FLOPS (Floating-point Operations Per Second) of the
detection model.

The structure of our original detection network is shown
in Fig. 1, which can be divided into two parts: backbone
and head. The backbone is responsible for extracting image
features, while the head processes the output feature map of
the backbone to predict the coordinates and the class of the
object. The standard convolutional layers (Conv) module
consists of a Conv2d, a BN layer, and a SiLU activation
function, while the C3 module contains three Conv and X
Bottleneck modules. The C3 processing of the feature map
can be divided into two parts: one part uses one standard
convolutional layer, Conv, and multiple Bottleneck mod-
ules to process the input feature map, while the other part
uses only one standard convolutional layer and finally
merges the two output feature maps.

Moreover, we add the Focus module to Backbone. When
the original image is input to the detection network, the
Focus module is used to slice it to obtain multiple feature
maps. That is, pixels are extracted from the high-resolution
image and reconstructed into a low-resolution image. Com-
pared with the direct convolution of the input image to
obtain the feature maps, the Focus module can effectively
reduce the original information loss of the input image
and the FLOPS of the model, and also improve the model
inference speed.

Fig. 1 The structure of the original detection network and some
important modules. The input of the network is an image of size
640 × 640 × 3, the backbone part extracts features of the image, the neck
part will integrate the features extracted from the backbone, form fea-
ture maps, and pass it to the head part. The head part makes predictions
based on the feature maps, and finally generates bounding boxes and
predict categories

953

1 3

Peer-to-Peer Networking and Applications (2022) 15:950–972

3.1.2 Loss function

Our loss function consists of the loss of the center coordinates
of the detection frame of the target object, the loss of the width
and height coordinates, the loss of confidence, and the loss of
classification, as shown in Eqs. (1), (2), (3), and (4), respec-
tively. Coordinate loss, confidence loss and classification loss
continuously update the network parameters by calculating the
error between the model's predicted value of the target and the
true value of the target, and the smaller the value of the loss
function, the better the model is trained.

Our object detection network will divide the images into
S × S grids in the prediction phase, and each grid generates
B candidate frames, each candidate box contains 1 confi-
dence value, 4 coordinate values, and C category probabili-
ties. Where B is the number of anchor boxes in the output
feature layer where each grid is located. And each candidate
frame is processed by the network to get the correspond-
ing prediction frame. Therefore, when the detection net-
work detects the image, it will generate S × S × B prediction
frames. For a picture of size S × S, the final output dimension
is S × S × B × (4 + 1 + + C). In the prediction, the candidate
frame with the largest Intersection over Union (IoU) with the
ground truth of the target object in the grid is responsible for
predicting the object.

For the sake of illustration, we refer to the region con-
taining the target as the foreground and the region not con-
taining the target as the background. In our loss function,
only confidence loss is calculated for the predictor frame
in the background, and the predictor frame in the fore-
ground has classification loss and coordinate loss in addi-
tion to confidence loss. In the background, a threshold that

(1)losscenter = 𝜆coord

S2∑

i=0

B∑

j=0

I
obj

ij
[(xi − x̂

j

i
)
2
+ (yi −�y

j

i
)
2
]

(2)

lossbox = 𝜆coord

S2∑

i=0

B∑

j=0

I
obj

ij
[(

√
w

j

i
−

√
ŵ

j

i
)

2

+ (

√
h
j

i
−

√
ĥ
j

i
)

2

]

(3)

lossconf =

S2∑

i=0

B∑

j=0

I
obj

ij
[Ĉ

j

i
log(C

j

i
) + (1 − Ĉ

j

i
)log(1 − C

j

i
)]

+ 𝜆noobj

S2∑

i=0

B∑

j=0

I
noobj

ij
[Ĉi

j
log(C

j

i
) + (1 − Ĉ

j

i
)log(1 − C

j

i
)]

(4)

lossclass =

S2∑

i=0

I
obj

ij

∑

c∈class

([P̂
j

i
log(P

j

i
) + (1 − P̂

j

i
)log(1 − P

j

i
)])

ignores IoU thresh is set in the network, and the prediction
frame in the background and the labeled frame ground
truth calculate IoU one by one to get the maximum value
max IoU. when max IoU > ignore IoU thresh, the confi-
dence loss of the background prediction frame is ignored;
when max IoU > ignore IoU thresh, the confidence loss of
the background frame is added to the calculation of the
loss function.

In the above equation, x, y,w, h are the predicted coordi-
nates of the detection network of the target object, x̂, ŷ, ŵ, ĥ
are the true coordinates of the detection frame for that
object, �coord, �noobj are the loss weights. The current mod-
el's ability to detect the coordinate information of the target
object is judged by calculating the relative error between
the predicted frame coordinates of the model and the true
coordinates of the detected frame. The smaller the value of
the coordinate loss function is, the better the model can
detect the coordinate information of the target object. Iobj

ij

and Cj

i
 indicate whether the j-th candidate frame of the i-th

grid is responsible for predicting the current detected
object, and are 1 if yes, and 0 otherwise. In contrast to Iobj

ij
 ,

I
noobj

ij
 is 1 when the candidate frame is not responsible for

predicting the object and 0 otherwise. In Eq. (4), Pj

i
 denotes

the classification probability, i.e. the probability that the
target in the current prediction frame belongs to a certain
category.

The division of foreground and background makes the
training of the model more targeted. The predictions of coor-
dinates, confidence and categories are obtained by means
of regression, which allows the overall optimization of the
network loss function until convergence. In summary, the
loss function of our lightweight object detection algorithm
is shown in Eq. (5).

(5)

Loss = losscenter + lossbox − lossconf − lossclass

= 𝜆coord

S2∑

i=0

B∑

j=0

I
obj

ij
[(xi − x̂

j

i
)
2
+ (yi − ŷ

j

i
)
2
]

+ 𝜆coord

S2∑

i=0

B∑

j=0

I
obj

ij
[(

√
w

j

i
−

√
ŵ

j

i
)

2

+ (

√
h
j

i
−

√
ĥ
j

i
)

2

]

−

S2∑

i=0

B∑

j=0

I
obj

ij
[Ĉ

j

i
log(C

j

i
) + (1 − Ĉ

ρ

i
)log(1 − C

j

i
)]

− 𝜆noobj

S2∑

i=0

B∑

j=0

I
noobj

ij
[Ĉi

j
log(C

j

i
) + (1 − Ĉ

j

i
)log(1 − C

j

i
)]

−

S2∑

i=0

I
obj

ij

∑

c∈class

([P̂
j

i
log(P

j

i
) + (1 − P̂

j

i
)log(1 − P

j

i
)])

954 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

3.1.3 Two optimization method for network structure

After extensive research and analysis, we concluded that
the head part of the detection network has some redun-
dancy, so we decided to optimize for the head part and
streamline the network structure. In this regard, we pro-
pose two optimization methods to simplify the detection
network, reduce the model size, parameters, and compu-
tational effort, and obtain a lightweight object detection
network, so that the detection model can meet the require-
ments of Internet edge devices in terms of model size and
computational resource consumption.

The first improvement is to halve the number of out-
put channels of Head's Conv and C3 in this paper. The
C3 module uses two different ways to extract features
from the input feature map and finally merges the two
intermediate feature maps in the output feature map
with strong feature extraction capability. When the input
image enters the detection network, the backbone part is
responsible for abstracting the underlying features into
higher-level features, and the neck part is responsible for
integrating and upsampling the incoming feature maps
from the backbone part into the head part, whose main
role is to make predictions based on the feature maps.
Due to the excellent feature extraction capability of the
backbone part, it is difficult to achieve a more perfect
result by continuing to extract features from the out-
put feature maps of the backbone part in the neck part
and the head part. Therefore, we decided to reduce the

number of convolutional kernels of Conv and C3 in the
neck part and head part to half of the original one. The
reduction in model size and computational effort comes
at the cost of weakening the feature extraction capabil-
ity for features of lower importance. The improvement
method is shown in Fig. 2.

PeleeNet [43] uses 1 × 1 convolution kernels in the
head part to predict the class confidence and detection
box offset of the detected objects. Experiments show that
the prediction using 1 × 1 convolution kernels is almost
as effective as using 3 × 3 convolution kernels, while the
computational effort is reduced by 21.5%. Inspired by
PeleeNet, our second improvement is to modify the convo-
lution kernel of the head part of Conv from 3 × 3 to 1 × 1.
The amount of parameters of the Conv kernel is reduced to
1/9 of the original one, while the prediction ability of the
head part is almost no weaker. The improvement method
is shown in Fig. 3.

3.2 Channel pruning algorithm based on scaling
factor

A paper by Liu et al. [44] published in ICCV proposed
a pruning algorithm called Network Slimming, which
prunes neural networks in a simple but quite effective
way. For VGGNet, Network Slimming gives a 20 × reduc-
tion in model size and a 5 × reduction in computing oper-
ations, with no significant accuracy degradation in the

Fig. 2 Halve the number of output channels of Conv and C3 in the head part and neck part. With the reduced number of output channels, the
number of parameters and the amount of computation of the model will be reduced accordingly

955

1 3

Peer-to-Peer Networking and Applications (2022) 15:950–972

pruned network model. Drawing on the idea of Network
Slimming, we design a pruning algorithm for lightweight
object detection networks, which prunes the convolutional
channels in the detection network and can be directly used
in convolutional neural network-based object detection
networks. The model obtained after pruning does not
require the use of specialized hardware or underlying
libraries and can be directly used for fast detection tasks.

In a study related to model pruning, Ref. [45] sug-
gests pruning the unimportant connections after the neu-
ral network training is completed. At this point, most of
the weights in the network are 0, so the model size can
be reduced by storing the model in the form of a sparse
matrix. However, this approach can only speed up model
inference with a dedicated sparse matrix operation library
or hardware and has a very limited reduction in running
memory. Ref. [46] achieves high compression rates by
imposing sparse constraints on each weight with addi-
tional gate variables and by pruning the joins with zero
gate values. This approach achieves a better compression
rate than [45], but again requires a dedicated sparse matrix
operation library/or hardware to accelerate model infer-
ence. Recently, Li et al. [47] pruned the convolutional
kernel channels with smaller weight values to achieve a
reduced model size after the model training was completed.
The study [48] spars the network by randomly suppressing
the channel connections in the convolutional layers before
training, but the accuracy of the models generated by this
approach is not satisfactory.

The training granularity of sparse training is divided
into weight level, channel level, and network layer level.
As shown in Fig. 4. Sparse training at a fine granularity
(e.g., weight level) has the highest compression rate and
flexibility of the model, but usually requires specialized
hardware or underlying libraries to accelerate the infer-
ence model. The Sparse granularity for the network layer
is the coarsest; this granularity of sparsity does not require
special hardware or underlying libraries but is less com-
pressible and flexible for the model. In addition, sparse

training for network layers is only fully effective when
the depth of the network model exceeds 50 layers. In con-
trast, channel-level sparse training strikes a good balance
between flexibility and ease of implementation, and it can
be applied to any convolutional neural network or fully
connected network. For these reasons, our pruning algo-
rithm will perform channel-level sparse training on the
model.

The flow of our proposed pruning algorithm is shown
in Algorithm 1 and Fig. 5. We perform channel-level
sparsification of the Initial network obtained from nor-
mal training. In the sparse training, we choose to apply
a simple L1 regularization on the channel scaling factor
γ of Batch Normalization to sparse the network at chan-
nel granularity, which achieves a good compression rate
without the need for specialized hardware or underly-
ing libraries. For sparsification training, we train both
the network weights and the scaling factor γ and apply
sparse regularization to the scaling factor γ. After the
sparse training is completed, the convolutional channels
in the model with smaller scaling factor γ will be pruned.
Finally, we will fine-tune the pruned model to restore
accuracy. The objective function of sparse training is as
follows:

where (x, y) denotes the training inputs and outputs, W
denotes the trainable weights, the first accumulation term is
the normal training loss of the convolutional neural network,
g (γ) is the sparsity penalty on the scaling factor, and λ is the
balancing factor. We choose the L1 parameterization as the
penalty term, as shown in Eq. (7).

Batch Normalization is a very common optimization in
convolutional neural networks, which generally acts before
the activation layer, and it enables the network to converge

(6)L =
∑

(x,y)

l(f (x,W), y) + �
∑

�∈Γ

g(�)

(7)g(�) = |�|

Fig. 3 3 × 3 convolution and
1 × 1 convolution

956 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

quickly and increases the generalization performance. The
formula is as follows:

(8)
ẑ =

zin𝜇B√
𝜎2
B
+ 𝜀

;zout = 𝛾 ẑ + 𝛽

where B denotes the current mini-batch, zin and zout are the
inputs and outputs of the BN layer, �B and �B are the mean
and standard deviation of B, and γ and β are the trainable
affine transform parameters.

We use the scaling factor γ of the BN layer as a meas-
ure of model pruning, and prune the convolutional channels

Fig. 4 The visualization of different types of pruning. The gray parts represent pruning granularity

957

1 3

Peer-to-Peer Networking and Applications (2022) 15:950–972

whose γ is lower than the pruning threshold to reduce the
model size, and finally fine-tune the pruned model to recover
the accuracy to obtain a lightweight detection network.

4 Experiment

4.1 PPE detection dataset

After a lot of research and searching, we found that most
of the current relevant datasets on PPE detection only con-
tain one category of helmet or safety vest, and the data-
sets that contain multiple PPEs at the same time are quite
rare. Therefore, we established the PPE detection dataset
FZU-PPE, which includes four types of PPEs: helmet,
mask, safety vest, and glove, covering different scenarios
of PPE wear, and also includes examples of complex situ-
ations such as cover-up and small target. In addition to the
four PPEs, we also added the annotation of three objects,
namely fire extinguisher, flame, and grounding rod, to the
dataset in order to further improve the usefulness and prac-
tical value of the FZU-PPE dataset. The model obtained
by training with the FZU-PPE dataset can detect not only
different kinds of PPEs but also fire extinguishers, flames
and grounding rods to improve safety on construction sites.
After screening and data cleaning, there are 18,767 images
in the FZU-PPE dataset, which are obtained by shooting at
the construction site and searching the web using keywords.
We divided the FZU-PPE into a training set and test set,
where the training set contains 13,334 images and the test

set contains 5,433 images. 97,536 instances of FZU-PPE
are included in 11 categories, and each instance is labeled
with category labels and bounding boxes. The number
of instances per category and some images are shown in
Table 1 and Fig. 6.

4.2 Evaluation metrics

In this paper, the detection performance of the object detection
model is evaluated using the basic metrics of Precision, Recall,
Average Precision (AP), mean Average Precision (mAP), and
detection speed. The Precision and Recall are calculated as
follows.

where TP denotes the number of positive samples judged
correctly, FP denotes the number of positive samples
judged incorrectly, and FN denotes the number of nega-
tive samples judged incorrectly among all detected
samples.

The calculation of AP is defined as the integral of the recall
rate for each category with upper and lower limits of 1 and 0,
respectively, and is calculated as Eq. (11).

(9)Precision =
TP

TP + FP

(10)Recall =
TP

TP + FN

(11)AP = ∫
1

0

p(r)dr

(12)
mAP =

k∑
i=0

AP(i)

k

Fig. 5 The flow of the channel pruning algorithm. After sparse train-
ing, the convolutional channels with lower γ (yellow in the figure)
will be pruned. Since the network structure of the pruned model has
changed compared with the original model, but the neural network
parameters learned according to the original network structure have
not changed, the detection ability of the pruned model for objects
is weakened and the mAP of the pruned model is low. The pruned
model is fine-tuned for training, and the model can relearn the neural
network parameters based on the current network structure to recover
the detection accuracy of the model and improve the mAP

Table 1 The number of instances in the FZU-PPE dataset

Label Number

Trainval Test Total

Helmet 20850 8329 29179
No_helmet 11804 4989 16793
Face_mask 4800 2016 6816
No_face_mask 1829 557 2386
Safety_vest 5801 2290 8091
No_safety_vest 11423 4917 16340
Gloves 1876 726 2602
No_gloves 8066 3911 11977
Extinguisher 1284 509 1793
Fire 576 232 808
Groundrod 519 232 751

958 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

mAP is the mean value of AP values for all categories,
which is calculated as shown in Eq. (12), where k denotes
the number of all detection categories in the dataset, and
AP(i) denotes the AP value of category i.

The evaluation index of detection speed uses FPS in
frames/s, which indicates the number of images that the
model can detect per unit time, and is used to determine
whether the object detection model can meet the require-
ments of real-time detection.

4.3 Model hyperparameters

In the paper, the experimental running environment is
Ubuntu 16.04 and the GPU is RTX 2080 Ti. Our experi-
mental steps can be roughly divided into four steps: normal
training of the model, sparse training, model pruning, and
fine-tuning training to recover the detection accuracy of the
model. The hyperparameters we used in the four steps are
shown in Table 2.

Fig. 6 Dataset image example, including small targets, dense crowds and partial occlusion, etc

959

1 3

Peer-to-Peer Networking and Applications (2022) 15:950–972

The hyperparameter lr0 is the initial learning rate for
training. We use the OneCycleLR method to vary the learn-
ing rate. Instead of monotonically decreasing the learning
rate during training, we let the learning rate vary back and
forth between a set maximum and minimum value. Through-
out the training process, the learning rate first increases from
the initial value to the maximum value, and then decreases
from the maximum value to a size below the initial value,
with the final OneCycleLR learning rate being lr0*lrf.

Fliplr, mosaic and mixup are hyperparameters about data
enhancement, for example, during normal training, we set
fliplr to 0.5, which means 50% of the training set images will
be flipped left and right during training. When performing
sparse training, the value of the sparse rate is crucial. Too
large a sparse rate can seriously degrade the accuracy of
the model, while too small a sparse rate can affect the prun-
ing effect of the model. The sparse rate when performing
sparse training varies with different data sets. After exten-
sive experiments, we obtained a suitable sparse rate for the
FZU-PPE dataset, which is 0.0007.

When pruning, we use two key hyperparameters: global_
percent and layer_keep. Hyperparameter global_percent
is the ratio of the number of channels pruned to the total
number of channels in the model. In order to prevent all
the channels of some network layers from being deleted,
we add the hyperparameter layer_keep. When all the chan-
nels of a certain network layer will be deleted, we will keep
some channels of the network layer, and the hyperparameter
layer_keep is the ratio of the number of reserved channels
to the total number of channels in the network layer. In our
experiments, we set the hyperparameter global_percent to
0.9, and 90% of the convolutional channels will be removed
during pruning. Meanwhile, we set the values of hyperpa-
rameter layer_keep to 0.3, 0.4, 0.5 and 0.6 to obtain four

pruning models, YOLOE-P3, YOLOE-P4, YOLOE-P5 and
YOLOE-P6, respectively.

4.4 Results and comparisons

4.4.1 Results of PPE wearing detection framework

In Sect. 3.1, we design a lightweight object detection
algorithm for edge devices by borrowing ideas from the
YOLOv5 object detection algorithm and optimize the net-
work using two improvement methods to obtain a light-
weight object detection network. We reduce the number
of output channels of Conv and C3 in the head part of the
detection network to half of the original one, which greatly
reduces the parameters and computational effort of the
model. At the same time, inspired by PeleeNet, we change
the convolutional kernel size, of the last two Conv mod-
ules in the head part from 3 × 3 to 1 × 1. We call the initial
network PPENet and add the improved method to PPENet
for ablation experiments, and the experimental results are
shown in Table 3.

As can be seen in Table 3, both of our improvement meth-
ods for PPENet achieve better results. The first improved
method is to reduce the number of convolutional kernels

Table 2 The hyperparameters used in the four steps of our experiment

Hyperparameter Meaning Normal training Sparse training Model pruning Fine-tuning

lr0 initial learning rate 0.01 0.01 - 0.032
lrf final OneCycleLR learning rate 0.2 0.2 - 0.12
momentum SGD momentum/Adam beta1 0.937 0.937 - 0.843
weight_decay optimizer weight decay 0.0005 0.0005 - 0.00036
warmup_epochs warmup epochs 3.0 3.0 - 2.0
warmup_momentum warmup initial momentum 0.8 0.8 - 0.5
warmup_bias_lr warmup initial bias lr 0.1 0.1 - 0.05
fliplr image flip left-right 0.5 0.5 - 0.5
mosaic image mosaic 1.0 1.0 - 1.0
mixup image mixup 0.5 0.5 - 0.243
s scale sparse rate - 0.0007 - -
global_percent global channel prune percent - - 0.9 -
layer_keep channel keep percent per layer - - 0.6 -

Table 3 Results of ablation experiments using different improved
methods

Method mAP Model Size Parameter GFLOPS

PPENet 87.1 13.7 MB 7,080,880 16.4
PPENet + Half 86.1 9.75 MB 4,990,832 12.5
PPENet + 1 × 1 87.0 12.5 MB 6,425,520 15.6
PPENet + Half + 1 × 1 85.8 9.43 MB 4,826,992 12.2

960 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

of Conv and C3 in the Head section to half of the original
one. This method reduces the model size and the param-
eters to 12.5 MB and 4,990,832 at the cost of a 1% reduc-
tion in mAP, which is 71% and 75% of the original size,
respectively. The second improvement is to change the size
of the convolutional kernels of the last two Conv modules
in the head part from 3 × 3 to 1 × 1. This method reduces
the mAP by only 0.1%, while the model size is reduced
from 13.7 MB to 12.5 MB, 91% of the original size, and
the parameters and computational effort are reduced by 9%
and 5%, respectively, resulting in a better light-weighting
result at very small cost. After combining the two methods,
the mAP is reduced by 1.3%, and the model size is reduced
from 13.7 MB to 9.43 MB.

It can be seen from Table 3 that the second improved
method has the least impact on mAP, reducing the model
size and the parameter amount by nearly 10% while the
detection accuracy is almost unchanged. In contrast, the
effect of the first improved method is more obvious, the
model size, parameter amount, and computational effort
are reduced by nearly 30%, and the impact on mAP is
also greater than that of the first improved method, from
87.1% to 86.1%, a decrease of 1%. However, considering

the significance of the lightweight effect, such a decline
is acceptable. Figure 7 shows the comparison of various
indicators between the original model PPENet and the
improved model. The three metrics of model size, param-
eters, and GFLOPS (Gigaflops Per Second, computational
effort of model) are benchmarked against the data from
PPENet, and the data from the other methods are per-
centages relative to PPENet. Figure 7 visually shows the
changes in various data of the improved model. It can be
clearly seen that the two improved methods we proposed
have almost no effect on mAP, while the values of the
three indicators of model size, parameter amount, and
GFLOPS are significantly reduced. Figure 8 shows the
comparison between the AP value of each category of
the PPENet + Half + 1 × 1 model and the original PPENet
model. The AP value of most categories has decreased
by 1% to 2%.

For the PPENet network model, the two improved
methods proposed in this paper can effectively reduce
the model size, parameters, and the GFLOPS. The model
size and parameters of PPENet + Half + 1 × 1 are 68% of
the PPENet model and the GFLOPS is 74%. We call the
improved PPENet + Half + 1 × 1 network YOLOE.

PPENet PPENet+1×1
PPENet+Half PPENet+Half+1×1

mAP

0.7

0.75

0.8

0.85

0.9

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Model Size parameter GFLOPS

PPENet PPENet+1 1 PPENet+Half PPENet+Half+1 1 mAP

Fig. 7 Comparison of the results of the two improvement methods

961

1 3

Peer-to-Peer Networking and Applications (2022) 15:950–972

4.4.2 Results of sparse training

The YOLOE model obtained in Sect. 4.4.1 is pruned
using the Network Slimming-based pruning algorithm.
The sparsification training is performed first, and the
sparsification scale factor is obtained while training the
network, which is used as a measure for the network
pruning to trim the convolutional channels. The sparse
training requires setting the sparse rate. If the sparse rate
is set too large, it will speed up the process of model
sparse, and the compression of the model is higher after
sparse training, but at the same time, it will lead to a
significant decrease in the detection accuracy of the
model after the sparse training is completed and cannot
be recovered. On the contrary, if a smaller sparse rate is
set, the sparse process is slower, but the accuracy of the
model decreases less after the sparse training. The sparse
process is a game process, we don't only want a high
compression degree, but also want to recover enough
accuracy after sparse, and the final sparse results are
different when setting different sparse rates, and it often
takes a high time cost to find a suitable sparse rate. After
repeated experiments and tests, we finally set the sparse
rate to 0.0007, and the change of mAP when the model
is tested on the validation set during sparse training is
shown in Fig. 9, and the change of BN layer scaling

factor γ during normal training and sparse training is
shown in Figs. 10 and 11, respectively.

According to Fig. 10, the scaling factor γ of the BN
layer converges from a scattered, irregular distribution
to a Gaussian distribution centered at 1 as the training
epoch increases during the normal training of the model.
From Figs. 9 and 11, we can see that the accuracy of
the model decreases, and the value of γ is continuously
compressed in the first 20 epochs after the sparse train-
ing starts. By the 20th epoch of sparse training, most of
the γ values are compressed to close to 0, and the mAP
of the model for the validation set drops to about 70% at
this time. After the 20th epoch, the mAP of the model
on the validation set starts to recover gradually. By the
110th epoch of sparse training, the mAP converges to
84%, and the sparse training is completed, by which time
γ has been fully compressed, and the accuracy of the com-
pressed model returns to the normal level. The value of
the scaling factor γ is close to 0, which means that the
importance of the convolution channel to the whole model
is very low, so the channel can be directly cut off during
pruning and will not have a large impact on the accuracy
of the model.

The BN layer scaling factor γ obtained after sparse train-
ing will be used as a measure to prune the model. The
algorithm will rank the individual convolution channels

0
10
20
30
40
50
60
70
80
90

100

He
lm
et

No
_h
elm

et

Fa
ce
_m
ask

No
_fa
ce
_m
ask

Sa
fet
y_
ve
st

No
_sa
fet
y_
ve
st

Glo
ve
s

No
_g
lov
es

Ex

sh
er Fir

e

Gr
ou
nd
rod

PPENet PPENet+Half+1 1

Fig. 8 Comparison of the AP of PPENet and PPENet + Half + 1 × 1 for each category

962 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

according to the magnitude of γ and then determine the
number of convolution channels to be removed from the
entire network model based on the set pruning rate. If the
BN layer scaling factor γ of all convolutional channels in
a particular convolutional layer is very low, it will result
in the deletion of the entire convolutional layer. Compared
with deleting some of the convolutional channels in a

convolutional layer, deleting the whole convolutional layer
may have a larger impact on the model accuracy. Therefore,
in this experiment, to prevent the entire layer of a convo-
lutional layer from being deleted, we set the layer_keep
hyperparameter to protect the convolutional layer. When
all channels of a convolutional layer need to be deleted, we
keep some channels with the highest importance according

Fig. 9 Variation of mAP of the model for the validation set during sparse training

Fig. 10 Variation of scaling factor γ with the epoch during normal training. The vertical coordinate represents the epoch and the horizontal coor-
dinate represents the value γ

963

1 3

Peer-to-Peer Networking and Applications (2022) 15:950–972

to the layer_keep hyperparameter. This prevents the whole
convolutional layer from being deleted by the pruning
algorithm.

4.4.3 Results of channel pruning algorithm based
on scaling factor

When pruning the sparsely trained model, we set the prun-
ing rate to 0.9, which means that 90% of the convolutional
channels in the whole model will be pruned when pruning.
In addition, for a pruning rate of 0. 9, we set four differ-
ent hyperparameter layer_keep thresholds for the number
of channels per layer, 0.3, 0.4, 0.5, and 0.6, representing
that if all convolutional channels in a convolutional layer
are to be removed, then 30%, 40%, 50%, or 60% of the
convolutional channels in each convolutional layer will be
retained. Finally, four different sizes of detection models
YOLOE-P3, YOLOE-P4, YOLOE-P5, and YOLOE-P6
are obtained. The pruned models need to be fine-tuned
to recover the detection accuracy, and the data of the four
models after fine-tuning are shown in Table 4.

As can be seen from Table 4, when the pruning rate is
0.9, if the reservation threshold of the number of channels
per layer is 0.3, the model size, parameters and GFLOPS
of YOLOE-P3 are the smallest, 1.82 MB, 850,144, and
4.3, respectively, which are 81%, 82%, and 65% less than
the model YOLOE before pruning, and the pruning effect
is quite remarkable. Such a model can fully meet the

requirements of various embedded or mobile devices that
are very sensitive to memory consumption. Of course, the
higher the pruning degree is, the more the accuracy of the
model is affected after pruning. With the dramatic increase
of model lightness, the mAP decreases from 85.8% to
80.0%, a reduction of 5.8%. If the number of channels
per layer retention threshold is increased, the model size,
parameters, and GFLOPS of YOLOE-P4 are reduced by
73%, 74%, and 57%, respectively, when the threshold is
0.4, and the mAP value decreases by 5.1%. At a thresh-
old of 0.5, the model size, parameters, and GFLOPS for
YOLOE-P5 are reduced by 65%, 67%, and 53%, respec-
tively, and the mAP value decreases by 3.2%. At a thresh-
old of 0.6, the YOLOE-P6 model size, parameters, and
calculation amount were reduced by 53%, 54%, and 42%,
respectively, and the mAP value decreased by 1.6%.

The comparison of each datum of PPENet, YOLOE and
the four pruning models is shown in Fig. 12, and each data

Fig. 11 Variation of scaling factor γ with epoch during sparse training

Table 4 Comparison of the results of the pruned model and the origi-
nal model

Model mAP Model Size Parameter GFLOPS

PPENet 87.1 13.7 MB 7,080,880 16.4
YOLOE 85.8 9.43 MB 4,826,992 12.2
YOLOE-P6 84.2 4.47 MB 2,234,736 7.1
YOLOE-P5 82.6 3.28 MB 1,610,756 5.7
YOLOE-P4 80.7 2.59 MB 1,250,200 5.2
YOLOE-P3 80.0 1.82 MB 850,144 4.3

964 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

of PPENet is 100% for the four types of metrics. Among the
four pruning models, YOLOE-P3 has the highest degree of
pruning, but also the highest decrease in accuracy, while
YOLOE-P6 has the largest model size but only a 1.6%
decrease in detection accuracy. Therefore, if the device is
very sensitive to memory occupation, you can choose to use
YOLOE-P3 for PPE real-time detection in your own device,
and if you have higher requirements for detection accuracy,
you can choose YOLOE-P6. YOLOE-P4 and YOLOE-P5,
on the other hand, strike a better balance between model
size and detection accuracy, and we consider them to be the
best models among the four models.

4.4.4 Comparisons

To verify the effectiveness of the object detection algo-
rithm for green edge computing proposed in this paper,
YOLOv3, YOLOv4, Scaled-YOLOv4 [49], CenterNet
and YOLOX [50], the most popular object detection
algorithms, are used to compare with our proposed
YOLOE-P6, and the results are shown in Table 5. In
terms of model size, both YOLOv4 and YOLOv3 have
a model size of over 230 MB, which is nearly 50 times
larger than that of YOLOE-P6. Scaled-YOLOv4, Center-
Net and YOLOX have a model size of 100 MB, 77 MB

and 68 MB, respectively, which are much smaller than
YOLOv3 and YOLOv4. However, Scaled-YOLOv4,
CenterNet and YOLOX still cannot meet the storage
space requirements of the edge devices, which are 22
times, 17 times and 15 times larger than the model
size of YOLOE-P6, respectively. It can be seen that
the YOLOE-P6 model has a great advantage in model
size after network improvement and pruning, which can
fully meet the demanding requirements of embedded and
mobile devices for deep learning model memory con-
sumption. In terms of detection accuracy and detection

Fig. 12 Visualization of the
pruned model compared to the
original model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mAP Model Size Parameter GFLOPS

PPENet YOLOE YOLOE-P6 YOLOE-P5 YOLOE-P4 YOLOE-P3

Table 5 Comparison of the results of our lightweight detection model
with several of the most popular detection models

Method mAP Model Size FPS

YOLOv3 79.1 235 MB 38
YOLOv4 83.3 244 MB 35
Scaled-YOLOv4 86.3 100 MB 43
CenterNet 82.4 77 MB 36
YOLOX 81.9 68 MB 69
YOLOE-P6 84.2 4.47 MB 105

Table 6 The number of instances in the PASCAL VOC dataset

Label Number

Trainval Test Total

Aeroplane 1333 311 1644
Bicycle 1255 389 1644
Bird 1870 576 2446
Boat 1457 393 1850
Bottle 2195 657 2852
Bus 957 254 1211
Car 4136 1541 5677
Cat 1666 370 2036
Chair 4488 1374 5862
Cow 1127 329 1456
Diningtable 1110 299 1409
Dog 2136 530 2666
Dorse 1209 395 1604
Motorbike 1191 369 1560
Person 22,848 5227 28,075
Pottedplant 1827 592 2419
Sheep 1437 311 1748
Sofa 1266 396 1662
Train 1032 302 1334
Tvmonitor 1260 361 1621

965

1 3

Peer-to-Peer Networking and Applications (2022) 15:950–972

speed, Scaled-YOLOv4 has the highest detection accu-
racy of 86.3% mAP, but the detection speed is only 43
FPS, much slower than YOLOE-P6. Among the five
models we have listed for comparison, YOLOX has the
fastest detection speed of 68 FPS. However, in terms
of both speed and accuracy, YOLOX is far inferior to
YOLOE-P6. With an mAP of 84.2% and FPS of 105,
YOLOE-P6 has a detection accuracy just below Scaled-
YOLOv4, while the detection speed is far faster than the
remaining five comparison models, allowing for ultra-
fast object detection.

To validate the generalization of our designed light-
weight object detection algorithm for green edge comput-
ing, we also conducted experiments on two open datasets,
PASCAL VOC, GDUT-HWD, and a private dataset, FZU-
CND. FZU-CND is a small dataset for bank card number
recognition with 136 images, 109 images in the training
set, and 27 images in the test set.

The PASCAL VOC dataset, a public dataset introduced
by the PASCAL VOC Challenge, contains 20 different tar-
get classes such as person, cat, bus, etc. It is one of the most

used public datasets in the field of target detection today.
In the target detection task, almost all SOTA methods need
to use the PASCAL VOC dataset to prove the accuracy
and effectiveness of their models. In our experiments, the
PASCAL VOC dataset contains 22,077 images, of which
17,125 images are used in the training and validation sets
and 4952 images are used in the test set. The number of
instances and some images for each category are shown in
Table 6 and Fig. 13.

GDUT-HWD is a public dataset for helmet detecting
proposed by Wu et al. in 2019. Wu et al. collected a
large number of images about helmet wearing to form

Fig. 13 Example of some images from the PASCAL VOC dataset

Table 7 The number of
instances in the GDUT-HWD
dataset

Label Number

Trainval Test Total

Blue 1234 1378 2612
Yellow 1953 1945 3898
White 1963 1818 3781
Red 2301 1930 4231
None 2123 2248 4371

966 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

the GDUT-HWD dataset and classified helmets into five
categories based on different colors: red, blue, white,
yellow, and non-helmet. GDUT-HWD contains a total of
3174 images, of which 1588 images are used as the train-
ing and validation set and another 1586 images are used
as the test set. The number of instances and some images
for each category are shown in Table 7 and Fig. 14.

The experimental results of the three datasets are
shown in Table 8. In GDUT-HWD and FZU-CND, the
model size of YOLOE-P2 is 1.16 MB and 1.66 MB,
respectively, compared to PPENet, which is 92% and
88% reduction respectively, while the mAP is almost
unchanged. In the PASCAL VOC, the model size of
YOLOE is 70% of the initial model PPENet, and the mAP

Fig. 14 Example of some images from the GDUT-HWD dataset

Table 8 Comparison of the
results of pruned model and
original model on different
datasets

Model GDUT-HWD FZU-CND PASCAL VOC

mAP PPENet 88.7 99.5 82.0
YOLOE 88.5 99.5 80.6
YOLOE-P2 86.3 99.5 71.8

Mode Size PPENet 13.7 MB 13.7 MB 13.8 MB
YOLOE 9.46 MB 9.45 MB 9.46 MB
YOLOE-P2 1.16 MB 1.66 MB 1.79 MB

Parameter PPENet 7,064,698 7,078,183 7,105,153
YOLOE 4,818,874 4,825,639 4,839,169
YOLOE-P2 507,378 764,587 834,461

GFLOPS PPENet 16.4 16.4 16.5
YOLOE 12.2 12.2 12.3
YOLOE-P2 3.3 3.8 4.5

967

1 3

Peer-to-Peer Networking and Applications (2022) 15:950–972

Fig. 15 Pruning model results for the four PPEs, both worn and unworn

968 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

is reduced by only 1.4%. The experiments demonstrate
that our lightweight target detection algorithm works on
different datasets.

We find that on the difficult datasets PASCAL VOC
and FZU-PPE, which contain various complex scenes and
a large number of images, the mAP decreases sharply
when the model size is compressed to 90%. In contrast,
for the simpler datasets GDUT-HWD and FZU-CND with
fewer images, our lightweight object detection algorithm
can compress the model size to 90% with almost no accu-
racy loss.

4.5 Visualization

In Figs. 15 and 16, we show some detection examples using
the YOLOE-P6 model on the FZU-PPE dataset. These
examples cover a wide range of scenarios that may affect
detection accuracy, such as visual range, light changes,
human pose, and occlusion. These examples show that our
proposed lightweight detection model has good detection
performance with good generalization and robustness to dif-
ferent scenarios and can be extended to different industries
in the industrial production field.

Fig. 16 Samples include both worn and unworn detection results of the same image

969

1 3

Peer-to-Peer Networking and Applications (2022) 15:950–972

5 Conclusion and discussion

Enhancing on-site individuals’ safety is an essential require-
ment for developing intelligent industrial production. The
use of a deep learning-based PPE intelligent detection system
provides an effective means of reducing the risk of safety
accidents occurring in industrial production activities.

In this paper, we propose a lightweight object detection
algorithm for green edge computing that can detect whether
workers are wearing PPEs in industrial scenarios. First,
we construct a dataset containing four PPEs, FZU-PPE. In
this paper, extensive experiments on the FZU-PPE dataset
validate the effectiveness of our proposed lightweight PPE
object detection algorithm. Second, to reduce the model
size and GFLOPS, we optimize the network structure of the
algorithm by two methods: reducing the number of output
channels of the Conv and C3 modules in the head part of the
detection network and using a 1 × 1 convolution kernel to
predict the detection results. The model size and GFLOPS of
the optimized network PPENet are reduced by nearly 30%.
Third, to address the limitations of embedded and mobile
devices in terms of memory occupation as well as compu-
tational resources, we propose a channel pruning algorithm
based on the BN layer scaling factor γ. The minimum model
size after pruning is only 1.82 MB, and the detection speed
exceeds 100 FPS. Finally, we conduct experiments on open
datasets PASCAL VOC, GDUT-HWD, and a private data-
set FZU-CND, all of which achieve good results and prove
that our lightweight target detection algorithm has good
generalizability.

In future research, we will further improve our FZU-PPE
dataset by adding relevant images and marking data about
gloves and masks, and adding more real data images of differ-
ent site scenarios to improve generalization. In addition, we will
improve the model pruning algorithm to improve the detection
accuracy of the model under the condition that the model size
and GFLOPS meet the requirements of Internet edge devices.

Acknowledgements This work was supported in part by the National
Natural Science Foundation of China under Grant 61972097 and
U1705262, in part by the Natural Science Foundation of Fujian Prov-
ince under Grant 2021J01612, 2020J01494 and 2018J07005, in part by
the Major Project of Fujian Province under Grant 2021HZ022007, in
part by the Industry-Academy Cooperation Project of Fujian Province
under Grant 2018H6010, in part by the University Production Project
of Fujian Province under 2017H6008, in part by the Fujian Collabora-
tive Innovation Center for Big Data Application in Governments, and
in part by the Fujian Engineering Research Center of Big Data Analysis
and Processing. The authors also gratefully acknowledge the helpful
comments and suggestions of the reviewers.

Declarations

Conflict of interest All authors in this work declare that they have no
conflict of interest.

References

 1. United States Census Bureau. Construction spending. https://
www. census. gov/ const ructi on/ c30/ prpdf. html. Accessed 1 Jul
2021

 2. Bureau of Labor Statistics. Industries at a glance: Construction.
https:// www. bls. gov/ iag/ tgs/ iag23. htm. Accessed 1 Jul 2021

 3. Bureau of Labor Statistics. Fatal occupational injuries counts
and rates by selected industries. https:// www. bls. gov/ news.
relea se/ cfoi. t04. htm. Accessed 1 Jul 2021

 4. OSHA. Commonly used statistics. https:// www. osha. gov/ oshst ats/
commo nstats. html. Accessed 1 Jul 2021

 5. OSHA. Worker safety series: construction. https:// www. osha. gov/
Publi catio ns/ OSHA3 252/ 3252. html. Accessed 1 Jul 2021

 6. Centers for Disease Control and Prevention. Traumatic brain
injuries in construction. https:// blogs. cdc. gov/ niosh- scien ce- blog/
2016/ 03/ 21/ const ructi ontbi/. Accessed 1 Jul 2021

 7. Kim J, Mesmakhosroshahi M (2015) Stereo-based region of inter-
est generation for real-time pedestrian detection. Peer-to-Peer
Netw Appl 8(2):181–188

 8. Sudha M (2021) Traffic sign detection and recognition using
RGSM and a novel feature extraction method. Peer-to-Peer Netw
Appl 1–12

 9. Jin S, Gao Y, Chen L (2020) Improved deep distance learning
for visual loop closure detection in smart city. Peer-to-Peer Netw
Appl 13(4):1260–1271

 10. Sun Z, Tang S, Huang H et al (2017) SOS: Real-time and accurate
physical assault detection using smartphone. Peer-to-Peer Netw
Appl 10(2):395–410

 11. Yang F, Li F, Zhang K et al (2021) Influencing factors analysis in
pear disease recognition using deep learning. Peer-to-Peer Netw
Appl 14(3):1816–1828

 12. Meng T, Wolter K, Wu H et al (2018) A secure and cost-efficient
offloading policy for mobile cloud computing against timing
attacks. Pervasive Mob Comput 45:4–18

 13. Lu Y, Yi S, Zeng N et al (2017) Identification of rice diseases
using deep convolutional neural networks. Neurocomputing
267:378–384

 14. Zhang H, Yan X, Li H et al (2019) Real-time alarming, monitor-
ing, and locating for non-hard-hat use in construction. J Constr
Eng Manag 145(3):04019006

 15. Dong S, He Q, Li H et al (2015) Automated PPE misuse identi-
fication and assessment for safety performance enhancement. In
ICCREM 2015 204–214

 16. Zhang C, Tian Z, Song J et al (2021) Construction worker hardhat-
wearing detection based on an improved BiFPN. 2020 25th
International Conference on Pattern Recognition (ICPR), IEEE,
p 8600–8607

 17. Wang L, Xie L, Yang P et al (2020) Hardhat-wearing detection
based on a lightweight convolutional neural network with multi-
scale features and a top-down module. Sensors 20(7):1868

 18. Filatov N, Maltseva N, Bakhshiev A (2020) Development of hard
hat wearing monitoring system using deep neural networks with
high inference speed. International Russian Automation Confer-
ence (RusAutoCon), IEEE, p 459–463

 19. Wu J, Cai N, Chen W et al (2019) Automatic detection of hardhats
worn by construction personnel: A deep learning approach and
benchmark dataset. Autom Constr 106:102894

 20. Mneymneh BE, Abbas M, Khoury H (2019) Vision-based frame-
work for intelligent monitoring of hardhat wearing on construction
sites. J Comput Civ Eng 33(2):04018066

 21. Wójcik B, Żarski M, Książek K et al (2021) Hard hat wear-
ing detection based on head keypoint localization. arXiv
preprint: arXiv:2106.10944

970 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

https://www.census.gov/construction/c30/prpdf.html
https://www.census.gov/construction/c30/prpdf.html
https://www.bls.gov/iag/tgs/iag23.htm
https://www.bls.gov/news.release/cfoi.t04.htm
https://www.bls.gov/news.release/cfoi.t04.htm
https://www.osha.gov/oshstats/commonstats.html
https://www.osha.gov/oshstats/commonstats.html
https://www.osha.gov/Publications/OSHA3252/3252.html
https://www.osha.gov/Publications/OSHA3252/3252.html
https://blogs.cdc.gov/niosh-science-blog/2016/03/21/constructiontbi/
https://blogs.cdc.gov/niosh-science-blog/2016/03/21/constructiontbi/

 22. Fang Q, Li H, Luo X et al (2018) Detecting non-hardhat-use by a
deep learning method from far-field surveillance videos. Autom
Constr 85:1–9

 23. Ren S, He K, Girshick R et al (2015) Faster r-cnn: Towards real-
time object detection with region proposal networks. Adv Neural
Inf Process Syst 28:91–99

 24. Seong H, Son H, Kim C (2018) A comparative study of machine
learning classification for color-based safety vest detection on
construction-site images. KSCE J Civ Eng 22(11):4254–4262

 25. Yu J, Zhang W (2021) Face mask wearing detection algorithm
based on improved YOLO-v4. Sensors 21(9):3263

 26. Loey M, Manogaran G, Taha MHN et al (2021) A hybrid deep
transfer learning model with machine learning methods for face
mask detection in the era of the COVID-19 pandemic. Measure-
ment 167:108288

 27. Nagrath P, Jain R, Madan A et al (2021) SSDMNV2: A real
time DNN-based face mask detection system using single
shot multibox detector and MobileNetV2. Sustain Cities Soc
66:102692

 28. Li H, Liu J, Liu RW, Xiong N, Wu K, Kim T (2017) A dimen-
sionality reduction-based multi-step clustering method for
robust vessel trajectory analysis. Sensors 17(8):1792

 29. Smartvid.io, Inc. Smartvid.io. https:// www. smart vid. io.
Accessed 1 Jul 2021

 30. Nath ND, Behzadan AH, Paal SG (2020) Deep learning for site
safety: Real-time detection of personal protective equipment.
Autom Constr 112:103085

 31. Fang W, Yao X, Zhao X, Yin J, Xiong N (2016) A stochastic
control approach to maximize profit on service provisioning for
mobile cloudlet platforms. IEEE Trans Syst Man Cybern Syst
48(4):522–534

 32. Kyrkou C, Plastiras G, Theocharides T et al (2018) DroNet:
Efficient convolutional neural network detector for real-time
UAV applications. 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE, p 967–972

 33. Szegedy C, Toshev A, Erhan D (2013) Deep neural networks
for object detection

 34. Girshick R (2015) Fast r-cnn. Proceedings of the IEEE interna-
tional conference on computer vision, p 1440–1448

 35. He K, Gkioxari G, Dollár P et al (2017) Mask r-cnn. Proceed-
ings of the IEEE international conference on computer vision,
p 2961–2969

 36. Duan K, Xie L, Qi H et al (2020) Corner proposal network
for anchor-free, two-stage object detection. Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part III 16, Springer International
Publishing, p 399–416

 37. Liu W, Anguelov D, Erhan D et al (2016) Ssd: Single shot
multibox detector. European conference on computer vision,
Springer, Cham, p 21–37

 38. Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4:
Optimal speed and accuracy of object detection. arXiv
preprint: arXiv:2004.10934

 39. Duan K, Bai S, Xie L et al (2019) Centernet: Keypoint triplets
for object detection. Proceedings of the IEEE/CVF International
Conference on Computer Vision, p 6569–6578

 40. Chen Q, Wang Y, Yang T et al (2021) You only look one-level
feature. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, p 13039–13048

 41. Wang CY, Liao HYM, Wu YH et al (2020) CSPNet: A new
backbone that can enhance learning capability of CNN. Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, p 390–391

 42. Liu S, Qi L, Qin H et al (2018) Path aggregation network for
instance segmentation. Proceedings of the IEEE conference on
computer vision and pattern recognition, p 8759–8768

 43. Wang RJ, Li X, Ling CX (2018) Pelee: A real-time object detec-
tion system on mobile devices. arXiv preprint: arXiv:1804.06882

 44. Liu Z, Li J, Shen Z et al (2017) Learning efficient convolutional
networks through network slimming. Proceedings of the IEEE
international conference on computer vision, p 2736–2744

 45. Han S, Pool J, Tran J et al (2015) Learning both weights
and connections for efficient neural networks. arXiv
preprint: arXiv:1506.02626

 46. Srinivas S, Subramanya A, Venkatesh Babu R (2017) Training
sparse neural networks. Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, p 138–145

 47. Li H, Kadav A, Durdanovic I et al (2016) Pruning filters for effi-
cient convnets. arXiv preprint: arXiv:1608.08710

 48. Changpinyo S, Sandler M, Zhmoginov A (2017) The
power of sparsity in convolutional neural network. arXiv
preprint: arXiv:1702.06257

 49. Wang CY, Bochkovskiy A, Liao HYM (2021) Scaled-yolov4:
Scaling cross stage partial network. Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition, p
13029–13038

 50. Ge Z, Liu S, Wang F et al (2021) Yolox: Exceeding yolo series in
2021. arXiv preprint: arXiv:2107.08430

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

971

1 3

Peer-to-Peer Networking and Applications (2022) 15:950–972

https://www.smartvid.io

Xiao Ke received the Ph.D. degree
in Artificial Intelligence from
Xiamen University, Xiamen,
China, in 2011. He is currently an
associate professor with the Col-
lege of Mathematics and Com-
puter Science at Fuzhou Univer-
sity. His research interests include
computer vision, pattern recogni-
tion, machine learning, and artifi-
cial intelligence. He has pub-
lished 60+ papers in journal and
conferences like: IEEE Transac-
tion on Multimedia, IEEE Trans-
actions on Intelligent Transporta-
tion Systems, IEEE Transactions

on Circuits and Systems for Vedio Technology, Pattern Recognition,
Neurocomputing, et al.

Wenyao Chen is currently pursuing
the M.S. degree with the college of
mathematics and computer science,
Fuzhou University. His research
interests relate to computer vision,
deep learning, model compression
in edge computing and their rela-
tions with innovative technology.

Wenzhong Guo received the B.S.
and M.S. degrees in Computer
Science from Fuzhou University,
Fuzhou, China, in 2000 and 2003,
respectively, and the Ph.D degree
in Communication and Informa-
tions System from Fuzhou Univer-
sity in 2010. He is currently a full
professor with the College of
Mathematics and Computer Sci-
ence at Fuzhou University. His
research interests include intelli-
gent information processing, sen-
sor networks, network computing,
and network performance evalua-
tion. Currently, he leads the Net-

work Computing & Intelligent Information Processing Lab, which is a
key Lab of Fujian Province, China. He is a member of ACM, a senior
member of China Computer Federation(CCF).

972 Peer-to-Peer Networking and Applications (2022) 15:950–972

1 3

	100+ FPS detector of personal protective equipment for worker safety: A deep learning approach for green edge computing
	Abstract
	1 Introduction
	2 Related works
	3 Methodologies
	3.1 Proposed PPE wearing detection framework
	3.1.1 Network structure
	3.1.2 Loss function
	3.1.3 Two optimization method for network structure

	3.2 Channel pruning algorithm based on scaling factor

	4 Experiment
	4.1 PPE detection dataset
	4.2 Evaluation metrics
	4.3 Model hyperparameters
	4.4 Results and comparisons
	4.4.1 Results of PPE wearing detection framework
	4.4.2 Results of sparse training
	4.4.3 Results of channel pruning algorithm based on scaling factor
	4.4.4 Comparisons

	4.5 Visualization

	5 Conclusion and discussion
	Acknowledgements
	References

