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Abstract
In industrial production, personal protective equipment (PPE) protects workers from accidental injuries. However, wearing PPE is 
not strictly enforced among workers due to all kinds of reasons. To enhance the monitoring of workers and thus avoid safety 
accidents, it is essential to design an automatic detection method for PPE. In this paper, we constructed a dataset called FZU-PPE 
for our study, which contains four types of PPE (helmet, safety vest, mask, and gloves). To reduce the model size and resource 
consumption, we propose a lightweight object detection method based on deep learning for superfast detection of whether work-
ers are wearing PPE or not. We use two lightweight methods to optimize the network structure of the object detection algorithm 
to reduce the computational effort and parameters of the detection model by 32% and 25%, respectively, with minimal accuracy 
loss. We propose a channel pruning algorithm based on the BN layer scaling factor γ to further reduce the size of the detection 
model. Experiments show that the automatic detection of PPE using our lightweight object detection method takes only 9.5 ms 
to detect a single video frame and achieves a detection speed of 105 FPS. Our detection model has a minimum size of 1.82 MB 
and a model size compression rate of 86.7%, which can meet the strict requirements of memory occupation and computational 
resources for embedded and mobile devices. Our approach is a superfast detection method for green edge computing.

Keywords Superfast detection · Personal protective equipment · Model light-weighting · Green edge computing

1 Introduction

Industrial production plays a major role in the economic 
development of countries around the world, which covers 
many areas such as construction, manufacturing, and mining. 

In the construction industry, for example, US annual spend-
ing in 2019 was $1.3 trillion, or approximately 6.3% of GDP 
[1]. The construction industry has a huge demand for work-
ers, with a total of 7.2 million employees in 2019, account-
ing for about 5% of the total labor force [2]. However, while 
industrial production is the backbone of the nation’s econ-
omy, it is also one of the most dangerous sectors in which 
to work. According to the U.S. Bureau of Labor Statistics 
(BLS), 991 fatal accidents occurred in the U.S. construc-
tion industry in 2016, accounting for approximately 19% of 
all other industries [3]. Furthermore, 2017 data show that 
79,810 accidents and non-fatal illnesses occurred in the con-
struction industry during the year [3]. The main causes of 
fatalities in workplace accidents fall from heights, falling 
objects on the head, etc. In 2017, nearly 50% of construction 
workers in the U.S. construction industry died from falls and 
object impacts to the head [4].

The U.S. Occupational Safety and Health Administration 
(OSHA) require all workers in industrial manufacturing to 
wear personal protective equipment (PPE) to minimize the 
occurrence of safety incidents or to reduce injuries resulting 
from safety incidents [5]. A report by the National Institute 
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for Occupational Safety and Health (NIOSH) showed that 
between 2003 and 2010, there were 2,210 traumatic brain 
injuries (TBI) deaths across the United States, accounting 
for 25% of all deaths in the construction industry during 
that period [6]. The most common cause of TBI accidents 
in industrial processes is a worker falling from a height or an 
object falling on the worker’s head [5, 6]. Wearing a helmet 
can minimize injuries to the head. Similarly, since heavy 
equipment such as trucks, bulldozers, and graders often 
work near workers, they may hit and injure workers at night 
or when visibility is low. To prevent similar accidents from 
occurring, workers must wear safety vests. Not only that, but 
gloves are also an important PPE, and wearing gloves while 
working can effectively protect workers from injuries to their 
hands. Wearing gloves can also prevent electrocution when 
performing electricity-related work. Since the end of 2019, 
the new coronavirus (COVID-2019) has spread worldwide, 
and workers also need to wear masks to avoid the spread of 
the virus. Studies have shown that most safety incidents can 
be avoided if workers wear proper PPE, such as helmets, 
safety vests, masks, and gloves [5]. From the perspective 
of practical efficiency and benefits, the manual supervision 
and inspection approach is inefficient and cannot adequately 
meet the practical needs of safety supervisors. In recent 
years, with the development of deep learning and computer 
vision, more and more researchers are using machine vision-
based methods for object detection [7–11].

For the safety monitoring of workers wearing PPE, 
there have been many studies on the automatic detection 
of helmets, while there are fewer studies on the wearing of 
workers’ masks or safety vests, and almost no studies on the 
detection of gloves. Currently, machine vision-based PPE 
wear detection is still challenging. First, the great variability 
in the background and worker state is caused by various field 
conditions, so studies in specific scenarios are difficult to 
extend to other scenarios. Second, small targets that are far 
from the camera are difficult to distinguish from cluttered 
backgrounds and other overlapping targets. Moreover, mul-
tiple targets may exist in the same image region, partially 
occluding each other, which makes the detection of PPE 
wear difficult. In addition, deep learning network is too large 
and computationally intensive to be used directly on surveil-
lance cameras, drones, and other Internet edge devices, and 
most existing detection models are slow to detect and cannot 
meet real-time detection needs. Finally, until now there is 
no publicly available dataset containing multiple PPEs for 
evaluating PPE detection algorithms in various situations.

In this paper, to solve the problem of automated detec-
tion of PPE wear by workers in industrial production, we 
collect relevant images and build a dataset FZU-PPE con-
taining a variety of PPE. Meanwhile, we introduced deep 
learning and convolutional neural network (CNN), which 

has the powerful advantage of strong feature learning capa-
bility, using neural networks to automatically extract fea-
tures from the original data and synthesize low-level features 
into high-level features [12, 13]. Moreover, CNN has a more 
powerful performance in the field of computer vision than 
traditional image processing-based methods. For real-time 
detection of PPE in industrial production, to solve the prob-
lem of complex network models of object detection algo-
rithms, after conducting research and analysis, we proposed 
two lightweight methods to improve the network structure 
of object detection algorithms, which greatly compressed 
the model size, parameters, and computational effort of 
object detection network. In addition, to further meet the 
strict requirements of memory occupation and computa-
tional resources for Internet edge devices, we borrow the 
idea of the pruning algorithm Network Slimming, which 
trains the Batch Normalization (BN) layer scaling factor 
γ in the original model to sparse the network structure, then 
prunes the detection model by using γ as a measure of the 
importance of the convolutional channels and finally per-
forms fine-tuning training to recover the detection accuracy. 
Our proposed lightweight approach can effectively reduce 
the model computational effort and parameters, compress 
the model size, and help the detection model to be used on 
embedded and mobile devices. In addition, our lightweight 
detection model can perform ultra-fast detection of video or 
images with a detection speed of over 100 FPS.

The major contributions of this work are summarized as 
follows:

1. To improve the complex network model of the object detec-
tion algorithm, we halve the number of output channels 
of Conv and C3 modules in the head part of the network 
and use a 1 × 1 convolutional kernel instead of 3 × 3 con-
volutional kernels. These two optimization methods can 
simplify the network structure of the object detection algo-
rithm and greatly reduce the model size, parameters, and 
computational effort.

2. In order to meet the memory consumption and compu-
tational resource requirements of Internet edge devices, 
we sparse the BN layer scaling factor γ of the detection 
model to compress γ from a Gaussian distribution to a 
state close to 0. Then we use channel pruning to reduce 
the model size, parameters, and computational effort so 
that the detection model can meet the memory consump-
tion requirements of embedded and mobile devices and 
can perform superfast detection.

3. At present, most of the PPE datasets in industrial pro-
duction are only helmets or safety vests, and there is 
no glove dataset. To solve this problem, this paper 
produces a PPE detection dataset FZU-PPE for indus-
trial production, containing 18,767 images and nearly 
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97,536 instances related to various PPE such as helmets, 
safety vests, masks, and gloves. These images cover dif-
ferent scenarios of PPE wear, including images of com-
plex scenarios such as cover-ups and small targets. Each 
instance in the dataset is labeled with a class label and 
its bounding box information.

2  Related works

Most current machine vision-based PPE wears detection 
methods focus only on identifying helmets. Conventionally, 
the methods of hardhat-wearing detection can be divided 
into two categories: sensor-based detection and vision-based 
detection. Sensor-based detection methods [14, 15] mainly 
use remote location and remote tracking technologies such 
as radio frequency identification (RFID) and wireless local 
area networks (WLANs) for detection. Zhang et al. [14] 
designed a helmet detection system based on an Internet 
of Things (IoT) architecture with an infrared beam detector 
and a thermal infrared sensor in the helmet, and used radio 
frequency identification (RFID) triggers to detect whether 
a worker is wearing a helmet. Dong et al. [15] developed 
a real-time location system (RTLS) for worker location 
tracking with a pressure sensor in the helmet to determine 
whether the helmet is worn or not by transmitting pressure 
information via Bluetooth. However, sensor-based detection 
methods are hardly satisfactory for identifying helmets at 
construction sites, and the use of sensors increases produc-
tion costs.

In recent years, with the development of deep learning, 
vision-based techniques have received increasing attention. 
Zhang et al. [16] proposed an improved weighted bi-directional 
feature pyramid network (BiFPN) to fuse multi-scale semantic 
features for helmet detection with good results. Wang et al. [17] 
employed the MobileNet model as the backbone network, pro-
posed a top-down module for enhanced feature extraction, and 
used a residual-block-based prediction module for the helmet 
detection for multi-scale features. Filatov et al. [18] designed an 
automatic helmet monitoring system for surveillance cameras 
based on MobileNet, which can meet the demand for real-time 
detection but there is still room for improvement in detection 
accuracy. Wu et al. [19] proposed a reverse progressive atten-
tion mechanism (RPA) to fuse features from different layers 
of different scales into a new feature pyramid and used the 
Single Shot Multibox Detector (SSD) framework to predict 
the detection results of safety helmets. Mneymneh et al. [20] 
detected each worker in the video and then determined whether 
any helmet was located in the top region of the worker detec-
tion frame. Wójcik et al. [21] used a novel helmet detection 
algorithm, which combined three techniques of deep learning, 
object detection and head key point localization to achieve bet-
ter detection results. Fang et al. [22] employed a Faster R-CNN 

[23] based approach to automatically detect helmet wearing 
(non-hardhat-use, NHU) of construction workers, and they 
collected a total of 81,000 images from various construction 
sites as a training dataset to train the Faster R-CNN model, but 
the model could only detect workers who were not The model 
could only detect workers who were not wearing helmets. In 
addition, the Faster R-CNN relies heavily on the information 
extracted from the upper-level features and cannot fully utilize 
the underlying feature details, which may affect the detection 
results of target objects at different scales in the images.

Recently, relatively few studies have been conducted for 
the detection of masks, safety vests, and gloves. Seong et al. 
[24] used different approaches for the detection of safety 
vests using a combination of five color spaces (RGB, nRGB, 
HSV, Lab, and YCbCr) and six classifiers (ANN, C4.5, 
KNN, LR, NB, and SVM). Yu and Zhang [25] improved the 
YOLOv4 algorithm to achieve better results in mask detec-
tion. In Ref. [26], the authors state that the combination of 
ResNet50 and SVM can achieve face mask detection with 
an accuracy of 99.64%. However, the computational cost of 
the algorithm is quite expensive and not suitable for practi-
cal applications. In addition, the combination of SSD and 
MobileNetV2 for mask detection is proposed in Ref. [27], 
but its model structure is too complex and computationally 
large.

Good algorithms are pursuing both high accuracy and 
high speed. For example, in the field of trajectory cluster-
ing, Li et al. [28] presents a multi-step trajectory clustering 
method for robust AIS trajectory clustering. Compared with 
other algorithms, the multi-step trajectory clustering method 
has higher accuracy and lower time complexity. However, To 
date, there have been few studies related to industrial pro-
duction safety inspection that use deep learning techniques 
to detect worker glove wear and the few studies that detect 
multiple PPEs simultaneously. Among the limited studies 
that detect multiple PPEs simultaneously, a commercial 
software called smartvid.io applies AI-driven algorithms to 
detect multiple PPE components (e.g., helmets, goggles, and 
steel-toed shoes) [29], but possesses good detection results 
only in simple scenarios. Ref. [30] proposed three methods 
based on YOLOv3 to detect whether workers are wearing 
helmets or safety vests correctly, and the best performing 
method mAP reached 72.3% and detection speed reached 
11 FPS. Although most deep learning-based detection 
models have better detection accuracy, they also have the 
disadvantages of complex network structure and high com-
putational effort. Most of the current research on personal 
protective equipment is pursuing higher detection accuracy 
at the expense of the equally critical detection speed. The 
ability to detect video or images better and faster is the only 
way to implement the relevant research into practical appli-
cations. To meet the memory and computational resource 
requirements of Internet edge devices, a lightweight object 
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detection model requires only a small amount of computa-
tional resources and memory space to run on mobile cloudlet 
platforms [31], embedded devices or mobile devices (e.g., 
smartphones, tablets) or even lightweight UAVs is neces-
sary [32].

3  Methodologies

Industrial production areas are often complex environments 
with many objects such as workers, machinery and equip-
ment, construction materials, etc. Images collected at con-
struction sites using cameras can have many challenging 
issues such as scale variations, perspective distortion, and 
partial occlusions. Traditional detection methods using man-
ual extraction of image features are usually ineffective for 
real-time detection and guarantee generalization to various 
complex scenes, while deep learning-based methods have 
the drawbacks of excessive model size and computational 
effort, although the detection speed and detection accuracy 
are better than traditional methods. To solve this problem, 
in this paper, we propose a lightweight object detection 
method that can greatly compress the detection model size, 
while improving the model detection speed for high-speed 
detection.

3.1  Proposed PPE wearing detection framework

In computer vision, the task of object detection is to identify 
the target object in an image and locate the target object 
position with a detection frame [33]. Two-stage object detec-
tion algorithms such as Fast R-CNN [34], Faster R-CNN 
[23], Mask R-CNN [35], and CPNDet [36] have better detec-
tion accuracy, but the detection speed is very slow. While 
one-stage algorithms such as SSD (Single Shot Detector) 
[37], YOLOv4 (You-Only-Look-Once) [38], CenterNet [39] 
and YOLOF (You-Only-Look-One-Feature) [40] improve 
the detection speed at the cost of reducing the detection 
accuracy. However, the model size of one-stage methods 
still cannot meet the requirements of edge devices. In this 
paper, we design a lightweight object detection algorithm for 
Internet edge devices based on the idea of YOLOv5 object 
detection algorithm and optimize the network structure using 
two improvement methods to obtain a lightweight object 
detection network.

3.1.1  Network structure

Our object detection network uses CSPNet (Cross Stage 
Partial Networks) [41] as the Backbone and PANet (Path 
Aggregation Network) [42] as the Neck. When feature 
extraction is performed on the image, the detection network 

divides the input feature map into two parts, one part is used 
as the input feature map of the next convolution module, 
and the other part is merged with the output feature map 
of another network layer, thus realizing cross-stage feature 
fusion, which effectively alleviates the gradient disappear-
ance problem of the deep network model and the gradient 
information duplication problem of network optimization in 
the backbone. The cross-stage feature fusion in the detection 
network can reuse image features and reduce the parameters 
and FLOPS (Floating-point Operations Per Second) of the 
detection model.

The structure of our original detection network is shown 
in Fig. 1, which can be divided into two parts: backbone 
and head. The backbone is responsible for extracting image 
features, while the head processes the output feature map of 
the backbone to predict the coordinates and the class of the 
object. The standard convolutional layers (Conv) module 
consists of a Conv2d, a BN layer, and a SiLU activation 
function, while the C3 module contains three Conv and X 
Bottleneck modules. The C3 processing of the feature map 
can be divided into two parts: one part uses one standard 
convolutional layer, Conv, and multiple Bottleneck mod-
ules to process the input feature map, while the other part 
uses only one standard convolutional layer and finally 
merges the two output feature maps.

Moreover, we add the Focus module to Backbone. When 
the original image is input to the detection network, the 
Focus module is used to slice it to obtain multiple feature 
maps. That is, pixels are extracted from the high-resolution 
image and reconstructed into a low-resolution image. Com-
pared with the direct convolution of the input image to 
obtain the feature maps, the Focus module can effectively 
reduce the original information loss of the input image 
and the FLOPS of the model, and also improve the model 
inference speed.

Fig. 1  The  structure of the original detection network  and some 
important modules. The input of the network is an image of size 
640 × 640 × 3, the backbone part extracts features of the image, the neck 
part will integrate the features extracted from the backbone, form fea-
ture maps, and pass it to the head part. The head part makes predictions 
based on the feature maps, and finally generates bounding boxes and 
predict categories
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3.1.2  Loss function

Our loss function consists of the loss of the center coordinates 
of the detection frame of the target object, the loss of the width 
and height coordinates, the loss of confidence, and the loss of 
classification, as shown in Eqs. (1), (2), (3), and (4), respec-
tively. Coordinate loss, confidence loss and classification loss 
continuously update the network parameters by calculating the 
error between the model's predicted value of the target and the 
true value of the target, and the smaller the value of the loss 
function, the better the model is trained.

Our object detection network will divide the images into 
S × S grids in the prediction phase, and each grid generates 
B candidate frames, each candidate box contains 1 confi-
dence value, 4 coordinate values, and C category probabili-
ties. Where B is the number of anchor boxes in the output 
feature layer where each grid is located. And each candidate 
frame is processed by the network to get the correspond-
ing prediction frame. Therefore, when the detection net-
work detects the image, it will generate S × S × B prediction 
frames. For a picture of size S × S, the final output dimension 
is S × S × B × (4 + 1 +  + C). In the prediction, the candidate 
frame with the largest Intersection over Union (IoU) with the 
ground truth of the target object in the grid is responsible for 
predicting the object.

For the sake of illustration, we refer to the region con-
taining the target as the foreground and the region not con-
taining the target as the background. In our loss function, 
only confidence loss is calculated for the predictor frame 
in the background, and the predictor frame in the fore-
ground has classification loss and coordinate loss in addi-
tion to confidence loss. In the background, a threshold that 
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frame in the background and the labeled frame ground 
truth calculate IoU one by one to get the maximum value 
max IoU. when max IoU > ignore IoU thresh, the confi-
dence loss of the background prediction frame is ignored; 
when max IoU > ignore IoU thresh, the confidence loss of 
the background frame is added to the calculation of the 
loss function.

In the above equation, x, y,w, h are the predicted coordi-
nates of the detection network of the target object, x̂, ŷ, ŵ, ĥ 
are the true coordinates of the detection frame for that 
object, �coord, �noobj are the loss weights. The current mod-
el's ability to detect the coordinate information of the target 
object is judged by calculating the relative error between 
the predicted frame coordinates of the model and the true 
coordinates of the detected frame. The smaller the value of 
the coordinate loss function is, the better the model can 
detect the coordinate information of the target object. Iobj
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the classification probability, i.e. the probability that the 
target in the current prediction frame belongs to a certain 
category.

The division of foreground and background makes the 
training of the model more targeted. The predictions of coor-
dinates, confidence and categories are obtained by means 
of regression, which allows the overall optimization of the 
network loss function until convergence. In summary, the 
loss function of our lightweight object detection algorithm 
is shown in Eq. (5).
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[Ĉ

j

i
log(C

j

i
) + (1 − Ĉ
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3.1.3  Two optimization method for network structure

After extensive research and analysis, we concluded that 
the head part of the detection network has some redun-
dancy, so we decided to optimize for the head part and 
streamline the network structure. In this regard, we pro-
pose two optimization methods to simplify the detection 
network, reduce the model size, parameters, and compu-
tational effort, and obtain a lightweight object detection 
network, so that the detection model can meet the require-
ments of Internet edge devices in terms of model size and 
computational resource consumption.

The first improvement is to halve the number of out-
put channels of Head's Conv and C3 in this paper. The 
C3 module uses two different ways to extract features 
from the input feature map and finally merges the two 
intermediate feature maps in the output feature map 
with strong feature extraction capability. When the input 
image enters the detection network, the backbone part is 
responsible for abstracting the underlying features into 
higher-level features, and the neck part is responsible for 
integrating and upsampling the incoming feature maps 
from the backbone part into the head part, whose main 
role is to make predictions based on the feature maps. 
Due to the excellent feature extraction capability of the 
backbone part, it is difficult to achieve a more perfect 
result by continuing to extract features from the out-
put feature maps of the backbone part in the neck part 
and the head part. Therefore, we decided to reduce the 

number of convolutional kernels of Conv and C3 in the 
neck part and head part to half of the original one. The 
reduction in model size and computational effort comes 
at the cost of weakening the feature extraction capabil-
ity for features of lower importance. The improvement 
method is shown in Fig. 2.

PeleeNet [43] uses 1 × 1 convolution kernels in the 
head part to predict the class confidence and detection 
box offset of the detected objects. Experiments show that 
the prediction using 1 × 1 convolution kernels is almost 
as effective as using 3 × 3 convolution kernels, while the 
computational effort is reduced by 21.5%. Inspired by 
PeleeNet, our second improvement is to modify the convo-
lution kernel of the head part of Conv from 3 × 3 to 1 × 1. 
The amount of parameters of the Conv kernel is reduced to 
1/9 of the original one, while the prediction ability of the 
head part is almost no weaker. The improvement method 
is shown in Fig. 3.

3.2  Channel pruning algorithm based on scaling 
factor

A paper by Liu et al. [44] published in ICCV proposed 
a pruning algorithm called Network Slimming, which 
prunes neural networks in a simple but quite effective 
way. For VGGNet, Network Slimming gives a 20 × reduc-
tion in model size and a 5 × reduction in computing oper-
ations, with no significant accuracy degradation in the 

Fig. 2  Halve the number of output channels of Conv and C3 in the head part and neck part. With the reduced number of output channels, the 
number of parameters and the amount of computation of the model will be reduced accordingly
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pruned network model. Drawing on the idea of Network 
Slimming, we design a pruning algorithm for lightweight 
object detection networks, which prunes the convolutional 
channels in the detection network and can be directly used 
in convolutional neural network-based object detection 
networks. The model obtained after pruning does not 
require the use of specialized hardware or underlying 
libraries and can be directly used for fast detection tasks.

In a study related to model pruning, Ref. [45] sug-
gests pruning the unimportant connections after the neu-
ral network training is completed. At this point, most of 
the weights in the network are 0, so the model size can 
be reduced by storing the model in the form of a sparse 
matrix. However, this approach can only speed up model 
inference with a dedicated sparse matrix operation library 
or hardware and has a very limited reduction in running 
memory. Ref. [46] achieves high compression rates by 
imposing sparse constraints on each weight with addi-
tional gate variables and by pruning the joins with zero 
gate values. This approach achieves a better compression 
rate than [45], but again requires a dedicated sparse matrix 
operation library/or hardware to accelerate model infer-
ence. Recently, Li et al. [47] pruned the convolutional 
kernel channels with smaller weight values to achieve a 
reduced model size after the model training was completed. 
The study [48] spars the network by randomly suppressing 
the channel connections in the convolutional layers before 
training, but the accuracy of the models generated by this 
approach is not satisfactory.

The training granularity of sparse training is divided 
into weight level, channel level, and network layer level. 
As shown in Fig. 4. Sparse training at a fine granularity 
(e.g., weight level) has the highest compression rate and 
flexibility of the model, but usually requires specialized 
hardware or underlying libraries to accelerate the infer-
ence model. The Sparse granularity for the network layer 
is the coarsest; this granularity of sparsity does not require 
special hardware or underlying libraries but is less com-
pressible and flexible for the model. In addition, sparse 

training for network layers is only fully effective when 
the depth of the network model exceeds 50 layers. In con-
trast, channel-level sparse training strikes a good balance 
between flexibility and ease of implementation, and it can 
be applied to any convolutional neural network or fully 
connected network. For these reasons, our pruning algo-
rithm will perform channel-level sparse training on the 
model.

The flow of our proposed pruning algorithm is shown 
in Algorithm 1 and Fig. 5. We perform channel-level 
sparsification of the Initial network obtained from nor-
mal training. In the sparse training, we choose to apply 
a simple L1 regularization on the channel scaling factor 
γ of Batch Normalization to sparse the network at chan-
nel granularity, which achieves a good compression rate 
without the need for specialized hardware or underly-
ing libraries. For sparsification training, we train both 
the network weights and the scaling factor γ and apply 
sparse regularization to the scaling factor γ. After the 
sparse training is completed, the convolutional channels 
in the model with smaller scaling factor γ will be pruned. 
Finally, we will fine-tune the pruned model to restore 
accuracy. The objective function of sparse training is as 
follows:

where (x, y) denotes the training inputs and outputs, W 
denotes the trainable weights, the first accumulation term is 
the normal training loss of the convolutional neural network, 
g (γ) is the sparsity penalty on the scaling factor, and λ is the 
balancing factor. We choose the L1 parameterization as the 
penalty term, as shown in Eq. (7).

Batch Normalization is a very common optimization in 
convolutional neural networks, which generally acts before 
the activation layer, and it enables the network to converge 

(6)L =
∑

(x,y)

l( f (x,W), y) + �
∑

�∈Γ

g(�)

(7)g(�) = |�|

Fig. 3  3 × 3 convolution and 
1 × 1 convolution
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quickly and increases the generalization performance. The 
formula is as follows:

(8)
ẑ =

zin𝜇B√
𝜎2
B
+ 𝜀

;zout = 𝛾 ẑ + 𝛽

where B denotes the current mini-batch, zin and zout are the 
inputs and outputs of the BN layer, �B and �B are the mean 
and standard deviation of B, and γ and β are the trainable 
affine transform parameters.

We use the scaling factor γ of the BN layer as a meas-
ure of model pruning, and prune the convolutional channels 

Fig. 4  The visualization of different types of pruning. The gray parts represent pruning granularity
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whose γ is lower than the pruning threshold to reduce the 
model size, and finally fine-tune the pruned model to recover 
the accuracy to obtain a lightweight detection network.

4  Experiment

4.1  PPE detection dataset

After a lot of research and searching, we found that most 
of the current relevant datasets on PPE detection only con-
tain one category of helmet or safety vest, and the data-
sets that contain multiple PPEs at the same time are quite 
rare. Therefore, we established the PPE detection dataset 
FZU-PPE, which includes four types of PPEs: helmet, 
mask, safety vest, and glove, covering different scenarios 
of PPE wear, and also includes examples of complex situ-
ations such as cover-up and small target. In addition to the 
four PPEs, we also added the annotation of three objects, 
namely fire extinguisher, flame, and grounding rod, to the 
dataset in order to further improve the usefulness and prac-
tical value of the FZU-PPE dataset. The model obtained 
by training with the FZU-PPE dataset can detect not only 
different kinds of PPEs but also fire extinguishers, flames 
and grounding rods to improve safety on construction sites. 
After screening and data cleaning, there are 18,767 images 
in the FZU-PPE dataset, which are obtained by shooting at 
the construction site and searching the web using keywords. 
We divided the FZU-PPE into a training set and test set, 
where the training set contains 13,334 images and the test 

set contains 5,433 images. 97,536 instances of FZU-PPE 
are included in 11 categories, and each instance is labeled 
with category labels and bounding boxes. The number 
of instances per category and some images are shown in 
Table 1 and Fig. 6.

4.2  Evaluation metrics

In this paper, the detection performance of the object detection 
model is evaluated using the basic metrics of Precision, Recall, 
Average Precision (AP), mean Average Precision (mAP), and 
detection speed. The Precision and Recall are calculated as 
follows.

where TP denotes the number of positive samples judged 
correctly, FP denotes the number of positive samples 
judged incorrectly, and FN denotes the number of nega-
tive samples judged incorrectly among all detected 
samples.

The calculation of AP is defined as the integral of the recall 
rate for each category with upper and lower limits of 1 and 0, 
respectively, and is calculated as Eq. (11).

(9)Precision =
TP

TP + FP

(10)Recall =
TP

TP + FN

(11)AP = ∫
1

0

p(r)dr

(12)
mAP =

k∑
i=0

AP(i)

k

Fig. 5  The flow of the channel pruning algorithm. After sparse train-
ing, the convolutional channels with lower γ (yellow in the figure) 
will be pruned. Since the network structure of the pruned model has 
changed compared with the original model, but the neural network 
parameters learned according to the original network structure have 
not changed, the detection ability of the pruned model for objects 
is weakened and the mAP of the pruned model is low. The pruned 
model is fine-tuned for training, and the model can relearn the neural 
network parameters based on the current network structure to recover 
the detection accuracy of the model and improve the mAP

Table 1  The number of instances in the FZU-PPE dataset

Label Number

Trainval Test Total

Helmet 20850 8329 29179
No_helmet 11804 4989 16793
Face_mask 4800 2016 6816
No_face_mask 1829 557 2386
Safety_vest 5801 2290 8091
No_safety_vest 11423 4917 16340
Gloves 1876 726 2602
No_gloves 8066 3911 11977
Extinguisher 1284 509 1793
Fire 576 232 808
Groundrod 519 232 751
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mAP is the mean value of AP values for all categories, 
which is calculated as shown in Eq. (12), where k denotes 
the number of all detection categories in the dataset, and 
AP(i) denotes the AP value of category i.

The evaluation index of detection speed uses FPS in 
frames/s, which indicates the number of images that the 
model can detect per unit time, and is used to determine 
whether the object detection model can meet the require-
ments of real-time detection.

4.3  Model hyperparameters

In the paper, the experimental running environment is 
Ubuntu 16.04 and the GPU is RTX 2080 Ti. Our experi-
mental steps can be roughly divided into four steps: normal 
training of the model, sparse training, model pruning, and 
fine-tuning training to recover the detection accuracy of the 
model. The hyperparameters we used in the four steps are 
shown in Table 2.

Fig. 6  Dataset image example, including small targets, dense crowds and partial occlusion, etc
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The hyperparameter lr0 is the initial learning rate for 
training. We use the OneCycleLR method to vary the learn-
ing rate. Instead of monotonically decreasing the learning 
rate during training, we let the learning rate vary back and 
forth between a set maximum and minimum value. Through-
out the training process, the learning rate first increases from 
the initial value to the maximum value, and then decreases 
from the maximum value to a size below the initial value, 
with the final OneCycleLR learning rate being lr0*lrf.

Fliplr, mosaic and mixup are hyperparameters about data 
enhancement, for example, during normal training, we set 
fliplr to 0.5, which means 50% of the training set images will 
be flipped left and right during training. When performing 
sparse training, the value of the sparse rate is crucial. Too 
large a sparse rate can seriously degrade the accuracy of 
the model, while too small a sparse rate can affect the prun-
ing effect of the model. The sparse rate when performing 
sparse training varies with different data sets. After exten-
sive experiments, we obtained a suitable sparse rate for the 
FZU-PPE dataset, which is 0.0007.

When pruning, we use two key hyperparameters: global_
percent and layer_keep. Hyperparameter global_percent 
is the ratio of the number of channels pruned to the total 
number of channels in the model. In order to prevent all 
the channels of some network layers from being deleted, 
we add the hyperparameter layer_keep. When all the chan-
nels of a certain network layer will be deleted, we will keep 
some channels of the network layer, and the hyperparameter 
layer_keep is the ratio of the number of reserved channels 
to the total number of channels in the network layer. In our 
experiments, we set the hyperparameter global_percent to 
0.9, and 90% of the convolutional channels will be removed 
during pruning. Meanwhile, we set the values of hyperpa-
rameter layer_keep to 0.3, 0.4, 0.5 and 0.6 to obtain four 

pruning models, YOLOE-P3, YOLOE-P4, YOLOE-P5 and 
YOLOE-P6, respectively.

4.4  Results and comparisons

4.4.1  Results of PPE wearing detection framework

In Sect.  3.1, we design a lightweight object detection 
algorithm for edge devices by borrowing ideas from the 
YOLOv5 object detection algorithm and optimize the net-
work using two improvement methods to obtain a light-
weight object detection network. We reduce the number 
of output channels of Conv and C3 in the head part of the 
detection network to half of the original one, which greatly 
reduces the parameters and computational effort of the 
model. At the same time, inspired by PeleeNet, we change 
the convolutional kernel size, of the last two Conv mod-
ules in the head part from 3 × 3 to 1 × 1. We call the initial 
network PPENet and add the improved method to PPENet 
for ablation experiments, and the experimental results are 
shown in Table 3.

As can be seen in Table 3, both of our improvement meth-
ods for PPENet achieve better results. The first improved 
method is to reduce the number of convolutional kernels 

Table 2  The hyperparameters used in the four steps of our experiment

Hyperparameter Meaning Normal training Sparse training Model pruning Fine-tuning

lr0 initial learning rate 0.01 0.01 - 0.032
lrf final OneCycleLR learning rate 0.2 0.2 - 0.12
momentum SGD momentum/Adam beta1 0.937 0.937 - 0.843
weight_decay optimizer weight decay 0.0005 0.0005 - 0.00036
warmup_epochs warmup epochs 3.0 3.0 - 2.0
warmup_momentum warmup initial momentum 0.8 0.8 - 0.5
warmup_bias_lr warmup initial bias lr 0.1 0.1 - 0.05
fliplr image flip left-right 0.5 0.5 - 0.5
mosaic image mosaic 1.0 1.0 - 1.0
mixup image mixup 0.5 0.5 - 0.243
s scale sparse rate - 0.0007 - -
global_percent global channel prune percent - - 0.9 -
layer_keep channel keep percent per layer - - 0.6 -

Table 3  Results of ablation experiments using different improved 
methods

Method mAP Model Size Parameter GFLOPS

PPENet 87.1 13.7 MB 7,080,880 16.4
PPENet + Half 86.1 9.75 MB 4,990,832 12.5
PPENet + 1 × 1 87.0 12.5 MB 6,425,520 15.6
PPENet + Half + 1 × 1 85.8 9.43 MB 4,826,992 12.2
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of Conv and C3 in the Head section to half of the original 
one. This method reduces the model size and the param-
eters to 12.5 MB and 4,990,832 at the cost of a 1% reduc-
tion in mAP, which is 71% and 75% of the original size, 
respectively. The second improvement is to change the size 
of the convolutional kernels of the last two Conv modules 
in the head part from 3 × 3 to 1 × 1. This method reduces 
the mAP by only 0.1%, while the model size is reduced 
from 13.7 MB to 12.5 MB, 91% of the original size, and 
the parameters and computational effort are reduced by 9% 
and 5%, respectively, resulting in a better light-weighting 
result at very small cost. After combining the two methods, 
the mAP is reduced by 1.3%, and the model size is reduced 
from 13.7 MB to 9.43 MB.

It can be seen from Table 3 that the second improved 
method has the least impact on mAP, reducing the model 
size and the parameter amount by nearly 10% while the 
detection accuracy is almost unchanged. In contrast, the 
effect of the first improved method is more obvious, the 
model size, parameter amount, and computational effort 
are reduced by nearly 30%, and the impact on mAP is 
also greater than that of the first improved method, from 
87.1% to 86.1%, a decrease of 1%. However, considering 

the significance of the lightweight effect, such a decline 
is acceptable. Figure 7 shows the comparison of various 
indicators between the original model PPENet and the 
improved model. The three metrics of model size, param-
eters, and GFLOPS (Gigaflops Per Second, computational 
effort of model) are benchmarked against the data from 
PPENet, and the data from the other methods are per-
centages relative to PPENet. Figure 7 visually shows the 
changes in various data of the improved model. It can be 
clearly seen that the two improved methods we proposed 
have almost no effect on mAP, while the values of the 
three indicators of model size, parameter amount, and 
GFLOPS are significantly reduced. Figure 8 shows the 
comparison between the AP value of each category of 
the PPENet + Half + 1 × 1 model and the original PPENet 
model. The AP value of most categories has decreased 
by 1% to 2%.

For the PPENet network model, the two improved 
methods proposed in this paper can effectively reduce 
the model size, parameters, and the GFLOPS. The model 
size and parameters of PPENet + Half + 1 × 1 are 68% of 
the PPENet model and the GFLOPS is 74%. We call the 
improved PPENet + Half + 1 × 1 network YOLOE.

PPENet PPENet+1×1
PPENet+Half PPENet+Half+1×1

mAP
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Fig. 7  Comparison of the results of the two improvement methods
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4.4.2  Results of sparse training

The YOLOE model obtained in Sect. 4.4.1 is pruned 
using the Network Slimming-based pruning algorithm. 
The sparsification training is performed first, and the 
sparsification scale factor is obtained while training the 
network, which is used as a measure for the network 
pruning to trim the convolutional channels. The sparse 
training requires setting the sparse rate. If the sparse rate 
is set too large, it will speed up the process of model 
sparse, and the compression of the model is higher after 
sparse training, but at the same time, it will lead to a 
significant decrease in the detection accuracy of the 
model after the sparse training is completed and cannot 
be recovered. On the contrary, if a smaller sparse rate is 
set, the sparse process is slower, but the accuracy of the 
model decreases less after the sparse training. The sparse 
process is a game process, we don't only want a high 
compression degree, but also want to recover enough 
accuracy after sparse, and the final sparse results are 
different when setting different sparse rates, and it often 
takes a high time cost to find a suitable sparse rate. After 
repeated experiments and tests, we finally set the sparse 
rate to 0.0007, and the change of mAP when the model 
is tested on the validation set during sparse training is 
shown in Fig.  9, and the change of BN layer scaling 

factor γ during normal training and sparse training is 
shown in Figs. 10 and 11, respectively.

According to Fig. 10, the scaling factor γ of the BN 
layer converges from a scattered, irregular distribution 
to a Gaussian distribution centered at 1 as the training 
epoch increases during the normal training of the model. 
From Figs. 9 and 11, we can see that the accuracy of 
the model decreases, and the value of γ is continuously 
compressed in the first 20 epochs after the sparse train-
ing starts. By the 20th epoch of sparse training, most of 
the γ values are compressed to close to 0, and the mAP 
of the model for the validation set drops to about 70% at 
this time. After the 20th epoch, the mAP of the model 
on the validation set starts to recover gradually. By the 
110th epoch of sparse training, the mAP converges to 
84%, and the sparse training is completed, by which time 
γ has been fully compressed, and the accuracy of the com-
pressed model returns to the normal level. The value of 
the scaling factor γ is close to 0, which means that the 
importance of the convolution channel to the whole model 
is very low, so the channel can be directly cut off during 
pruning and will not have a large impact on the accuracy 
of the model.

The BN layer scaling factor γ obtained after sparse train-
ing will be used as a measure to prune the model. The 
algorithm will rank the individual convolution channels 
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according to the magnitude of γ and then determine the 
number of convolution channels to be removed from the 
entire network model based on the set pruning rate. If the 
BN layer scaling factor γ of all convolutional channels in 
a particular convolutional layer is very low, it will result 
in the deletion of the entire convolutional layer. Compared 
with deleting some of the convolutional channels in a 

convolutional layer, deleting the whole convolutional layer 
may have a larger impact on the model accuracy. Therefore, 
in this experiment, to prevent the entire layer of a convo-
lutional layer from being deleted, we set the layer_keep 
hyperparameter to protect the convolutional layer. When 
all channels of a convolutional layer need to be deleted, we 
keep some channels with the highest importance according 

Fig. 9  Variation of mAP of the model for the validation set during sparse training

Fig. 10  Variation of scaling factor γ with the epoch during normal training. The vertical coordinate represents the epoch and the horizontal coor-
dinate represents the value γ 
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to the layer_keep hyperparameter. This prevents the whole 
convolutional layer from being deleted by the pruning 
algorithm.

4.4.3  Results of channel pruning algorithm based 
on scaling factor

When pruning the sparsely trained model, we set the prun-
ing rate to 0.9, which means that 90% of the convolutional 
channels in the whole model will be pruned when pruning. 
In addition, for a pruning rate of 0. 9, we set four differ-
ent hyperparameter layer_keep thresholds for the number 
of channels per layer, 0.3, 0.4, 0.5, and 0.6, representing 
that if all convolutional channels in a convolutional layer 
are to be removed, then 30%, 40%, 50%, or 60% of the 
convolutional channels in each convolutional layer will be 
retained. Finally, four different sizes of detection models 
YOLOE-P3, YOLOE-P4, YOLOE-P5, and YOLOE-P6 
are obtained. The pruned models need to be fine-tuned 
to recover the detection accuracy, and the data of the four 
models after fine-tuning are shown in Table 4.

As can be seen from Table 4, when the pruning rate is 
0.9, if the reservation threshold of the number of channels 
per layer is 0.3, the model size, parameters and GFLOPS 
of YOLOE-P3 are the smallest, 1.82 MB, 850,144, and 
4.3, respectively, which are 81%, 82%, and 65% less than 
the model YOLOE before pruning, and the pruning effect 
is quite remarkable. Such a model can fully meet the 

requirements of various embedded or mobile devices that 
are very sensitive to memory consumption. Of course, the 
higher the pruning degree is, the more the accuracy of the 
model is affected after pruning. With the dramatic increase 
of model lightness, the mAP decreases from 85.8% to 
80.0%, a reduction of 5.8%. If the number of channels 
per layer retention threshold is increased, the model size, 
parameters, and GFLOPS of YOLOE-P4 are reduced by 
73%, 74%, and 57%, respectively, when the threshold is 
0.4, and the mAP value decreases by 5.1%. At a thresh-
old of 0.5, the model size, parameters, and GFLOPS for 
YOLOE-P5 are reduced by 65%, 67%, and 53%, respec-
tively, and the mAP value decreases by 3.2%. At a thresh-
old of 0.6, the YOLOE-P6 model size, parameters, and 
calculation amount were reduced by 53%, 54%, and 42%, 
respectively, and the mAP value decreased by 1.6%.

The comparison of each datum of PPENet, YOLOE and 
the four pruning models is shown in Fig. 12, and each data 

Fig. 11  Variation of scaling factor γ with epoch during sparse training

Table 4  Comparison of the results of the pruned model and the origi-
nal model

Model mAP Model Size Parameter GFLOPS

PPENet 87.1 13.7 MB 7,080,880 16.4
YOLOE 85.8 9.43 MB 4,826,992 12.2
YOLOE-P6 84.2 4.47 MB 2,234,736 7.1
YOLOE-P5 82.6 3.28 MB 1,610,756 5.7
YOLOE-P4 80.7 2.59 MB 1,250,200 5.2
YOLOE-P3 80.0 1.82 MB 850,144 4.3
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of PPENet is 100% for the four types of metrics. Among the 
four pruning models, YOLOE-P3 has the highest degree of 
pruning, but also the highest decrease in accuracy, while 
YOLOE-P6 has the largest model size but only a 1.6% 
decrease in detection accuracy. Therefore, if the device is 
very sensitive to memory occupation, you can choose to use 
YOLOE-P3 for PPE real-time detection in your own device, 
and if you have higher requirements for detection accuracy, 
you can choose YOLOE-P6. YOLOE-P4 and YOLOE-P5, 
on the other hand, strike a better balance between model 
size and detection accuracy, and we consider them to be the 
best models among the four models.

4.4.4  Comparisons

To verify the effectiveness of the object detection algo-
rithm for green edge computing proposed in this paper, 
YOLOv3, YOLOv4, Scaled-YOLOv4 [49], CenterNet 
and YOLOX [50], the most popular object detection 
algorithms, are used to compare with our proposed 
YOLOE-P6, and the results are shown in Table 5. In 
terms of model size, both YOLOv4 and YOLOv3 have 
a model size of over 230 MB, which is nearly 50 times 
larger than that of YOLOE-P6. Scaled-YOLOv4, Center-
Net and YOLOX have a model size of 100 MB, 77 MB 

and 68 MB, respectively, which are much smaller than 
YOLOv3 and YOLOv4. However, Scaled-YOLOv4, 
CenterNet and YOLOX still cannot meet the storage 
space requirements of the edge devices, which are 22 
times, 17 times and 15 times larger than the model 
size of YOLOE-P6, respectively. It can be seen that 
the YOLOE-P6 model has a great advantage in model 
size after network improvement and pruning, which can 
fully meet the demanding requirements of embedded and 
mobile devices for deep learning model memory con-
sumption. In terms of detection accuracy and detection 

Fig. 12  Visualization of the 
pruned model compared to the 
original model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mAP Model Size Parameter GFLOPS

PPENet YOLOE YOLOE-P6 YOLOE-P5 YOLOE-P4 YOLOE-P3

Table 5  Comparison of the results of our lightweight detection model 
with several of the most popular detection models

Method mAP Model Size FPS

YOLOv3 79.1 235 MB 38
YOLOv4 83.3 244 MB 35
Scaled-YOLOv4 86.3 100 MB 43
CenterNet 82.4 77 MB 36
YOLOX 81.9 68 MB 69
YOLOE-P6 84.2 4.47 MB 105

Table 6  The number of instances in the PASCAL VOC dataset

Label Number

Trainval Test Total

Aeroplane 1333 311 1644
Bicycle 1255 389 1644
Bird 1870 576 2446
Boat 1457 393 1850
Bottle 2195 657 2852
Bus 957 254 1211
Car 4136 1541 5677
Cat 1666 370 2036
Chair 4488 1374 5862
Cow 1127 329 1456
Diningtable 1110 299 1409
Dog 2136 530 2666
Dorse 1209 395 1604
Motorbike 1191 369 1560
Person 22,848 5227 28,075
Pottedplant 1827 592 2419
Sheep 1437 311 1748
Sofa 1266 396 1662
Train 1032 302 1334
Tvmonitor 1260 361 1621
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speed, Scaled-YOLOv4 has the highest detection accu-
racy of 86.3% mAP, but the detection speed is only 43 
FPS, much slower than YOLOE-P6. Among the five 
models we have listed for comparison, YOLOX has the 
fastest detection speed of 68 FPS. However, in terms 
of both speed and accuracy, YOLOX is far inferior to 
YOLOE-P6. With an mAP of 84.2% and FPS of 105, 
YOLOE-P6 has a detection accuracy just below Scaled-
YOLOv4, while the detection speed is far faster than the 
remaining five comparison models, allowing for ultra-
fast object detection.

To validate the generalization of our designed light-
weight object detection algorithm for green edge comput-
ing, we also conducted experiments on two open datasets, 
PASCAL VOC, GDUT-HWD, and a private dataset, FZU-
CND. FZU-CND is a small dataset for bank card number 
recognition with 136 images, 109 images in the training 
set, and 27 images in the test set.

The PASCAL VOC dataset, a public dataset introduced 
by the PASCAL VOC Challenge, contains 20 different tar-
get classes such as person, cat, bus, etc. It is one of the most 

used public datasets in the field of target detection today. 
In the target detection task, almost all SOTA methods need 
to use the PASCAL VOC dataset to prove the accuracy 
and effectiveness of their models. In our experiments, the 
PASCAL VOC dataset contains 22,077 images, of which 
17,125 images are used in the training and validation sets 
and 4952 images are used in the test set. The number of 
instances and some images for each category are shown in 
Table 6 and Fig. 13.

GDUT-HWD is a public dataset for helmet detecting 
proposed by Wu et  al. in 2019. Wu et  al. collected a 
large number of images about helmet wearing to form 

Fig. 13  Example of some images from the PASCAL VOC dataset

Table 7  The number of 
instances in the GDUT-HWD 
dataset

Label Number

Trainval Test Total

Blue 1234 1378 2612
Yellow 1953 1945 3898
White 1963 1818 3781
Red 2301 1930 4231
None 2123 2248 4371
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the GDUT-HWD dataset and classified helmets into five 
categories based on different colors: red, blue, white, 
yellow, and non-helmet. GDUT-HWD contains a total of 
3174 images, of which 1588 images are used as the train-
ing and validation set and another 1586 images are used 
as the test set. The number of instances and some images 
for each category are shown in Table 7 and Fig. 14.

The experimental results of the three datasets are 
shown in Table 8. In GDUT-HWD and FZU-CND, the 
model size of YOLOE-P2 is 1.16  MB and 1.66  MB, 
respectively, compared to PPENet, which is 92% and 
88% reduction respectively, while the mAP is almost 
unchanged. In the PASCAL VOC, the model size of 
YOLOE is 70% of the initial model PPENet, and the mAP 

Fig. 14  Example of some images from the GDUT-HWD dataset

Table 8  Comparison of the 
results of pruned model and 
original model on different 
datasets

Model GDUT-HWD FZU-CND PASCAL VOC

mAP PPENet 88.7 99.5 82.0
YOLOE 88.5 99.5 80.6
YOLOE-P2 86.3 99.5 71.8

Mode Size PPENet 13.7 MB 13.7 MB 13.8 MB
YOLOE 9.46 MB 9.45 MB 9.46 MB
YOLOE-P2 1.16 MB 1.66 MB 1.79 MB

Parameter PPENet 7,064,698 7,078,183 7,105,153
YOLOE 4,818,874 4,825,639 4,839,169
YOLOE-P2 507,378 764,587 834,461

GFLOPS PPENet 16.4 16.4 16.5
YOLOE 12.2 12.2 12.3
YOLOE-P2 3.3 3.8 4.5
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Fig. 15  Pruning model results for the four PPEs, both worn and unworn
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is reduced by only 1.4%. The experiments demonstrate 
that our lightweight target detection algorithm works on 
different datasets.

We find that on the difficult datasets PASCAL VOC 
and FZU-PPE, which contain various complex scenes and 
a large number of images, the mAP decreases sharply 
when the model size is compressed to 90%. In contrast, 
for the simpler datasets GDUT-HWD and FZU-CND with 
fewer images, our lightweight object detection algorithm 
can compress the model size to 90% with almost no accu-
racy loss.

4.5  Visualization

In Figs. 15 and 16, we show some detection examples using 
the YOLOE-P6 model on the FZU-PPE dataset. These 
examples cover a wide range of scenarios that may affect 
detection accuracy, such as visual range, light changes, 
human pose, and occlusion. These examples show that our 
proposed lightweight detection model has good detection 
performance with good generalization and robustness to dif-
ferent scenarios and can be extended to different industries 
in the industrial production field.

Fig. 16  Samples include both worn and unworn detection results of the same image
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5  Conclusion and discussion

Enhancing on-site individuals’ safety is an essential require-
ment for developing intelligent industrial production. The 
use of a deep learning-based PPE intelligent detection system 
provides an effective means of reducing the risk of safety 
accidents occurring in industrial production activities.

In this paper, we propose a lightweight object detection 
algorithm for green edge computing that can detect whether 
workers are wearing PPEs in industrial scenarios. First, 
we construct a dataset containing four PPEs, FZU-PPE. In 
this paper, extensive experiments on the FZU-PPE dataset 
validate the effectiveness of our proposed lightweight PPE 
object detection algorithm. Second, to reduce the model 
size and GFLOPS, we optimize the network structure of the 
algorithm by two methods: reducing the number of output 
channels of the Conv and C3 modules in the head part of the 
detection network and using a 1 × 1 convolution kernel to 
predict the detection results. The model size and GFLOPS of 
the optimized network PPENet are reduced by nearly 30%. 
Third, to address the limitations of embedded and mobile 
devices in terms of memory occupation as well as compu-
tational resources, we propose a channel pruning algorithm 
based on the BN layer scaling factor γ. The minimum model 
size after pruning is only 1.82 MB, and the detection speed 
exceeds 100 FPS. Finally, we conduct experiments on open 
datasets PASCAL VOC, GDUT-HWD, and a private data-
set FZU-CND, all of which achieve good results and prove 
that our lightweight target detection algorithm has good 
generalizability.

In future research, we will further improve our FZU-PPE 
dataset by adding relevant images and marking data about 
gloves and masks, and adding more real data images of differ-
ent site scenarios to improve generalization. In addition, we will 
improve the model pruning algorithm to improve the detection 
accuracy of the model under the condition that the model size 
and GFLOPS meet the requirements of Internet edge devices.
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