
https://doi.org/10.1007/s12083-021-01245-9

Joint computation offloading and deployment optimization
in multi‑UAV‑enabled MEC systems

Zheyi Chen1 · Hongqiang Zheng2 · Jianshan Zhang2 · Xianghan Zheng2 · Chunming Rong3

Received: 3 July 2021 / Accepted: 9 September 2021
© The Author(s) 2021

Abstract
The combination of unmanned aerial vehicles (UAVs) and mobile edge computing (MEC) technology breaks through the lim-
itations of traditional terrestrial communications. The effective line-of-sight channel provided by UAVs can greatly improve
the communication quality between edge servers and mobile devices (MDs). To further enhance the Quality-of-Service
(QoS) of MEC systems, a multi-UAV-enabled MEC system model is designed. In the proposed model, UAVs are regarded
as edge servers to offer computing services for MDs, aiming to minimize the average task response time by jointly optimiz-
ing UAV deployment and computation offloading. Based on the problem definition, a two-layer joint optimization method
(PSO-GA-G) is proposed. First, the outer layer utilizes a Particle Swarm Optimization algorithm combined with Genetic
Algorithm operators (PSO-GA) to optimize UAV deployment. Next, the inner layer adopts a greedy algorithm to optimize
computation offloading. The extensive simulation experiments verify the feasibility and effectiveness of the proposed PSO-
GA-G. The results show that the PSO-GA-G can achieve a lower average task response time than the other three baselines.

Keywords Mobile edge computing · Unmanned aerial vehicle deployment · Computation offloading · Particle swarm
optimization · Genetic algorithm · Greedy algorithm

1 Introduction

With the rapid development of the Internet-of-Things (IoT)
and the fifth-generation (5G) communication technology,
numerous emerging mobile applications, such as unmanned

driving, virtual reality, and face recognition, have been
incorporated into people’s daily life [1]. Commonly, such
computation-intensive applications are sensitive to delay,
and thus they put high demands on the computational capac-
ity of mobile devices (MDs) during execution [2]. However,
with the consideration of the existing hardware technology
and device portability, the computational capacity of MDs
is usually limited, which greatly reduces the performance of
the above-mentioned applications when they are executed on
MDs. In recent years, mobile edge computing (MEC) has
been regarded as a forward-looking technology to solve this
issue [3]. Through deploying edge servers at the network
edge (e.g., cellular-network base stations and WiFi access
points), MEC overcomes the problem of network congestion
caused by the traditional cloud-based centralized processing
[4]. Therefore, MEC can offer computing services with less
time overhead, thereby improving the Quality-of-Service
(QoS).

Traditional mobile communications rely on ground com-
munication infrastructures [5]. However, in some isolated
areas (e.g., mountains and oceans) or some emergencies
(e.g., disaster relief and military exercises), the restricted
ground communication infrastructures may have a huge

 * Zheyi Chen
 zc300@exeter.ac.uk

 Hongqiang Zheng
 zhq921579984@163.com

 Jianshan Zhang
 zhangjs0512@163.com

 Xianghan Zheng
 xianghan.zheng@fzu.edu.cn

 Chunming Rong
 chunming.rong@uis.no

1 Department of Computer Science, College of Engineering,
Mathematics and Physical Sciences, University of Exeter,
Exeter EX4 4QF, United Kingdom

2 College of Mathematics and Computer Science, Fuzhou
University, Fuzhou 350116, China

3 Department of Electronic Engineering and Computer
Science, University of Stavanger, Stavanger 4036, Norway

/ Published online: 25 September 2021

Peer-to-Peer Networking and Applications (2022) 15:194–205

http://orcid.org/0000-0002-6349-068X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01245-9&domain=pdf

impact on the efficiency of mobile communications [6]. Due
to the high flexibility, strong mobility, and low deployment
cost, unmanned aerial vehicles (UAVs) are gradually applied
to the field of emergency communications [7]. UAVs can
be regarded as mobile base stations to provide communica-
tion services for MDs on the ground, thereby building an
integrated ground-air communication network [8]. There are
two advantages when using UAVs as base stations (or edge
servers). First, the effective Line-of-Sight (LOS) channel
formed by UAVs and MDs can avoid the problems of sig-
nal attenuation and penetration loss caused by encountering
obstacles. Second, UAVs can flexibly change their deploy-
ment positions in the network. When MD or network status
changes, UAVs can be quickly adjusted at a lower cost.

However, there are many challenges in applying UAVs to
MEC systems. On one hand, the deployment of edge serv-
ers in traditional MEC systems usually depends on ground
infrastructures. When UAVs are used as edge servers, more
flexible UAV deployment strategies are required, and thus
the traditional deployment strategies for edge servers might
not be applicable. The positions of UAVs directly affect the
communication delay and energy consumption in MEC sys-
tems, and thus an effective UAV deployment strategy has
become critical. On the other hand, the traditional computa-
tion offloading strategies usually offload all computing tasks
from MDs to edge servers for execution. However, UAVs are
not equipped with the equivalent computational resources as
traditional edge servers. Therefore, UAVs may not be able
to provide computing services for all MDs in their coverage
area. The computation offloading strategies directly affect
the computing efficiency of UAVs, and thus an effective
computation offloading strategy is indispensable.

To address the above challenges, we conduct research
work on the optimization problem of UAV deployment and
computation offloading in a multi-UAV-enabled MEC sys-
tem. The goal of this work is to minimize the average task
response time by optimizing the positions of UAVs and the
offloading strategy in a multi-UAV-enabled MEC system.
The main contributions of this paper are summarized as
follows.

– A multi-UAV-enabled MEC system is designed. Based
on the proposed model, the optimization problem of aver-
age task response time with service constraints is well
defined.

– Based on the defined optimization problem, a two-layer
joint optimization method (PSO-GA-G) is proposed.
First, the outer layer utilizes a Particle Swarm Optimiza-
tion algorithm combined with Genetic Algorithm opera-
tors (PSO-GA) to optimize UAV deployment. Next, the
inner layer adopts a greedy algorithm to optimize com-
putation offloading. Finally, the optimization problem is
well solved by the loop-iteration.

– The extensive simulation experiments are conducted to
demonstrate the feasibility and effectiveness of the pro-
posed PSO-GA-G. The results show that the PSO-GA-
G outperforms other three baseline methods in terms of
average task response time.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 introduces the system
model and the problem definition. Section 4 describes the
proposed PSO-GA-G in detail. Section 5 presents the evalu-
ation results. Section 6 concludes the work of this paper.

2 Related work

In recent years, MEC has received widespread attention in
both industry and academia. MEC can effectively reduce the
communication delay between MDs and remote servers by
sinking the computational resources from the remote cloud
to the network edge, thereby improving the user experience.

Computation offloading is one of the key technologies
of MEC. Through reasonable offloading decisions and
resource allocation, the computing tasks running on MDs
can be offloaded to edge servers, and then these tasks are
completed by using sufficient computational and storage
resources. Traditional computation offloading technology
allows an end device to use a coarse-granularity manner to
offload an entire computing task to an edge server [9] or
to partition the task via a fine-granularity way and partly
offload it to the edge server [10]. For example, Chen et al.
[11] supported mobile applications with a novel offload-
ing capability at the granularity of objects for MEC. With
the development of 5G networks, a cooperative offloading
technology has also emerged by integrating MEC and D2D
[12]. Related research shows that the computation offloading
technology can effectively shorten the task response time
[13], reduce the energy consumption of devices [14], and
cut down the communication cost [15].

It is expected that the combination of UAVs and MEC
can provide more reliable, lower-latency, and larger-
coverage network services [16], which is regarded as a new
trend in MEC. Current researches on UAV-enabled MEC
systems mainly focus on the problem of computation off-
loading. Chen et al. [17] introduced a first-come-first-served
(FCFS) queuing model, defined the optimization problem
as an offloading game, and then designed a distributed off-
loading algorithm based on the optimal concurrent response.
Zhang et al. [18] designed a UAV-enabled MEC system
considering offloading decisions and resource competition
constraints and proposed a game-theory-based solution to
prove the existence of Nash equilibrium. Kim et al. [19]
developed an offloading method based on machine learning
to optimize system energy consumption and delay. By using

195Peer-to-Peer Networking and Applications (2022) 15:194–205

reinforcement learning (RL), Wang et al. [20] proposed an
optimization algorithm for task offloading and UAV resource
allocation, which showed good optimization effects in large-
scale scenarios. Seid et al. [21] designed a collaborative off-
loading and resource allocation scheme based on model-free
deep RL, which checked the UAV status through the Jain
fairness index (JFI).

The optimization of UAV deployment is a research hot-
spot in the UAV field. Yao et al. [22] analyzed the distribu-
tion characteristics of UAVs and proposed a random optimal
response algorithm to solve the problem of UAV deploy-
ment, aiming to minimize the system energy consumption.
Yang et al. [23] designed an IoT architecture based on multi-
UAV-assisted MEC and proposed a UAV deployment strat-
egy based on a differential evolutionary algorithm, which
achieved the load balancing among multiple UAVs. Zhang
et al. [24] developed a UAV deployment method based on
a discrete PSO algorithm to maximize the UAV coverage.
Huang et al. [25] adopted an evolutionary algorithm to han-
dle the problem of UAV deployment, which reduced the
system energy consumption by optimizing the number and
positions of UAV stops. Fu et al. [26] optimized the UAV
deployment and transmission power consumption by using
a dual decomposition method. Wang et al. [27] designed an
adaptive deployment strategy for UAV-aided communication
networks, aiming to enhance the average throughput and the
transmission success rate.

The existing researches on UAV-enabled MEC systems
mainly focused on reducing the system energy consump-
tion while rarely optimizing the system response time. For
example, Sun et al. [28] designed a learning-based coopera-
tive particle swarm optimization (LCPSO) method with a
Markov random field (MRF)-based decomposition strategy,
in order to reduce the response time of forest fire monitor-
ing in UAV-enabled MEC systems. Peng and Shen [29]
proposed a multi-agent deep deterministic policy gradient
(MADDPG)-based method to enhance delay/QoS satisfac-
tion ratios in MEC-UAV-Assisted vehicular networks. Zhang
and Ansari [30] developed an approximation algorithm to
improve the average user latency in UAV-aided MEC net-
works. Different from these researches, our work aims to
minimize the average task response time in a multi-UAV-
enabled MEC system by jointly optimizing UAV deployment
and computation offloading.

3 System model and problem definition

As shown in Fig. 1, a multi-UAV-enabled MEC system is con-
sidered. In this system, a set of MDs are unevenly distributed
on the ground, donated by M =

{
MD1,MD2, ...,MDm

}
 , and

a set of UAVs are deployed in the air for offering computing

services to MDs, donated by N =
{
UAV1,UAV2, ...,UAVn

}
 ,

where m and n indicate the number of MDs and UAVs,
respectively. Assume that MDi (1 ≤ i ≤ m) has a comput-
ing task to be performed, denoted by Taski = (Di, Si) , where
Di represents the size of the input data (bits) of Taski and Si
represents the amount of computing resources (CPU cycles)
required for processing one bit of data. Moreover, MDs and
UAVs exchange data via wireless channels and MDs can
offload all their computing tasks to UAVs for execution.

3.1 Communication model

The positions of MDs and UAVs are expressed in the form
of three-dimensional Cartesian coordinates. For example,
the positions of MDi (1 ≤ i ≤ m) and UAVj (1 ≤ j ≤ n) are
respect ively def ined as pMD

i
= (xMD

i
, yMD

i
, 0) and

pUAV
i

= (xUAV
j

, yUAV
j

,H) , where H represents the flying height
of UAVs. To simplify the model, it is assumed that all UAVs
are deployed at the same height and their positions remain
unchanged after deployment in a certain time slot [31].

Due to the high positions of UAVs, the LOS channel loss
of the communication link between UAVs and MDs becomes
significant. Therefore, the wireless channel between MDi
and UAVj can be simulated by using the free-space-path-loss
(FSPL) model [32], where the power gain of the wireless
channel link is calculated by

where g0 represents the channel power gain of spatial dis-
tance per unit and di,j represents the spatial distance between
MDi and UAVj.

To reduce the transmission delay, MDi always uses its
maximum transmission power Pi for data transmission,
in order to improve the signal-to-noise ratio (SNR) of the
communication link. Therefore, the data transmission rate
between MDi and UAVj is

(1)hi,j = g0d
−2
i,j

=
g0

H2 + ||pMD
i

− pUAV
i

|| ,

Fig. 1 A multi-UAV-enabled MEC system

196 Peer-to-Peer Networking and Applications (2022) 15:194–205

where B and �2 represent the channel bandwidth and the
white Gaussian noise (WGN) power in the communication
link, respectively.

3.2 Computing model

Considering that all UAVs and MDs can provide comput-
ing services, the computing tasks on MDs can be offloaded
to UAVs and also executed locally. The offloading matrix
between MDs and UAVs is defined as

where �i,j ∈ {0, 1} . When the computing tasks are offloaded
from MDi to UAVj for execution, �i,j = 1 ; otherwise, �i,j = 0 .
Especially, when �i,n+1 = 1 , the computing tasks are exe-
cuted on MDi.

Therefore, there are two optional execution manners for
the computing tasks on each MD as follows.

– Local execution. When �i,n+1 = 1 , the computing tasks
are executed on MDi . According to the definition of
Taski , the total number of CPU cycles required to execute
the task is Si × Di . Thus, the time required to execute a
task on MDi is calculated by

where f MD
i

 indicates the CPU frequency of MDi.
– Offloading execution. When �i,j = 1 , the computing tasks

are offloaded from MDi to UAVj for execution. Thus, the
completion time of a task consists of three parts, includ-
ing the data transmission time (denoted by Ttran

i,j
), the task

execution time (denoted by TUAV
i,j

), and the back time of
results (denoted by Tback

i,j
). Specifically, Ttran

i,j
 and TUAV

i,j
 are

calculated by

where f UAV
j

 indicates the CPU frequency of UAVj . It is
noticed that each UAV can execute multiple tasks in parallel,

(2)Ri,j = B log2(1 +
Pihi,j

�2
),

(3)A =

⎡
⎢⎢⎢⎢⎢⎣

�1,1 ⋯ �1,j ⋯ �1,n �1,n+1

⋮ ⋱ ⋮ ⋱ ⋮ ⋮

�i,1 ⋯ �i,j ⋯ �i,n �i,n+1

⋮ ⋱ ⋮ ⋱ ⋮ ⋮

�m,1 ⋯ �m,j ⋯ �m,n �m,n+1

⎤
⎥⎥⎥⎥⎥⎦

,

(4)Tloc
i

=
Si × Di

f MD
i

,

(5)Ttran
i,j

=
Di

Ri,j

,

(6)TUAV
i,j

=
Si × Di

f UAV
j

,

and thus the computational resources of a UAV would be
equally allocated by the offloaded tasks. When tasks are
completed, the execution results would be sent back to the
corresponding MDs. Since the amount of the back data is
usually small, Tback

i,j
 is negligible. Thus, when a task is

offloaded from MDi to UAVj for execution, the task comple-
tion time is calculated by

3.3 Problem definition

Based on the above analysis, to minimize the average task
response time of a multi-UAV-enabled MEC system, the
optimization problem P1 is defined as

where ∀i ∈ {1, 2, ...,m} and ∀j ∈ {1, 2, ..., n} . C1 and C2
indicate the deployment scope constraints of UAVs, C3
represents offloading decisions, C4 indicates that each MD
can only offload tasks to one UAV or execute them locally,
and C5 means that the number of tasks that each UAV can
execute can not exceed the maximum number of concurrent
tasks.

4 PSO‑GA‑G based optimization for UAV
deployment and computation offloading

4.1 Problem analysis

The proposed optimization problem is a hybrid nonlinear
programming problem, whose objective function and the
constraint C3 are non-convex, which makes it hard to be
directly solved. As a swarm intelligence search algorithm,
the PSO algorithm does not use the gradient information of
functions. Therefore, the PSO algorithm has no requirement
for the continuity and derivability of functions and shows
great potentials to handle the above optimization problem.
However, there exist the following two issues when using the

(7)T
off

i,j
= Ttran

i,j
+ TUAV

i,j
.

(8)

P1 ∶ min
PUAV ,A

1

m

m∑
i=1

(�i,n+1T
loc
i

+

n∑
j=1

�i,jT
off

i,j
),

s.t. C1 ∶ 0 ≤ xUAV
j

≤ Xmax,

C2 ∶ 0 ≤ yUAV
j

≤ Ymax,

C3 ∶ �i,j ∈ {0, 1},

C4 ∶

n∑
j=1

�i,j = 1,

C5 ∶ 0 ≤

m∑
i=1

�i,j ≤ Nmax,

197Peer-to-Peer Networking and Applications (2022) 15:194–205

traditional PSO algorithm to deal with the proposed optimi-
zation problem.

– The proposed optimization problem involves UAV
deployment and computational offloading, but it is diffi-
cult for the traditional PSO algorithm to solve this multi-
parameter coupling optimization problem.

– The traditional PSO algorithm may easily fall into the
local optimum, and thus it might not be able to get the
optimal/near-optimal solution.

To address these issues, a two-layer joint optimization
method (PSO-GA-G) is proposed by integrating the PSO-
GA and the greedy algorithms. In each iteration, the outer
layer of the PSO-GA-G utilizes the PSO-GA algorithm to
optimize the deployment positions of UAVs, while the inner
layer of the PSO-GA-G adopts the greedy algorithm to opti-
mize offloading decisions.

4.2 PSO‑GA based optimization for UAV
deployment

The PSO-GA algorithm inherits the features of the tradi-
tional PSO algorithm, including easy implementation, high
accuracy, and fast convergence. Furthermore, by using the
update operators of the GA, the PSO-GA algorithm can
well avoid the local optimum and obtain a more optimized
solution.

4.2.1 Particle coding

The coding manners determine the execution efficiency
of algorithms, but it is are difficult to use some traditional
coding manners (e.g., binary coding and integer coding) to
describe the feasible solutions of P1. In the proposed model,
the deployment positions of UAVs are represented by their
x-axis and y-axis coordinates, and thus the following mecha-
nism of particle coding is adopted: each particle indicates a
deployment plan of all UAVs, and each quantile of the parti-
cle is encoded by a two-dimensional vector, which describes
the horizontal deployment position of a UAV. At the t-th
iteration, the position of the particle k is defined as

where xt
kj
= (Xt

kj
, Yt

kj
) represents the horizontal deployment

position of UAVj . Xt
kj

 and Yt
kj

 indicate the x-axis and y-axis
coordinates, respectively.

Figure 2 illustrates an example of particle coding. The
particle consists of five quantiles, which describe the deploy-
ment positions of five UAVs. Each quantile is composed of
a two-dimensional vector, which represents the horizontal

(9)Xt
k
= (xt

k1
, xt

k2
, ..., xt

kj
, ..., xt

kn
),

coordinates of a UAV. For example, the coding of the 1st quan-
tile is (114, 517), which indicates that the deployment position
of the 1st UAV is (114, 517, H).

4.2.2 Fitness function

The fitness function evaluates the quality of particles. When
solving the proposed optimization problem, the objective func-
tion in Eq. (8) is regarded as the fitness function of the PSO-
GA algorithm. Therefore, by inputting UAV deployment and
offloading plans into the objective function, the correspond-
ing values of the fitness function of particles can be obtained.
Since our optimization goal is to minimize the average task
response time, the particles with smaller values of the fitness
function exhibit better performance.

4.2.3 Particle updating

In the traditional PSO algorithm, each particle moves in the
problem search space with a certain direction and velocity. The
particles iteratively adjust their positions and velocities in the
problem search space according to the surrounding particles
and their own experience. In this process, the velocity and
position of a particle are updated as

where Vt
k
 and Xt

k
 represent the velocity and position of the k-

th particle at the t-th iteration, respectively. pBestk and gBest
indicate the optimal position of the k-th particle in history
and the entire population after t iterations, respectively. w is
the inertia factor that determines the influence of the velocity
of the last iteration on the current velocity. c1 and c2 are indi-
vidual and social learning factors, which respectively reflect
the learning abilities for the optimal value in the individual
and population histories. r1 and r2 are two random values in
the interval [0, 1] that are used to supplement the random-
ness into the iterative search process.

Based on the PSO algorithm, the PSO-GA algorithm intro-
duces the mutation and crossover operators of the GA. Cor-
respondingly, the update manner of a particle is given as

(10)Vt+1
k

= wVt
k
+ c1r1(pBestk − Xt

k
) + c2r2(gBest − Xt

k
),

(11)Xt+1
k

= Vt+1
k

+ Xt
k
,

(12)Xt+1
k

= c2 ⊕ Cg(c1 ⊕ Cp(w⊕Mu(X
t
k
), pBestk), gBest),

Fig. 2 Particle coding

198 Peer-to-Peer Networking and Applications (2022) 15:194–205

where Mu() is the mutation operator. Cp() and Cg() are cross-
over operators.

Next, through combining with the mutation operator, the
inertial part of a particle is updated by

where r1 is a random value in the interval [0, 1]. Mu(X
t−1
k

) is
to randomly select a quantile on the particle Xt−1

k
 and per-

form the mutation operation within the pre-defined thresh-
old. Figure 3 illustrates an example of mutation operation.
In this process, the mutation operator randomly selects a
quantile mp1 and mutates the code on this quantile from
(234, 885) to (292, 901).

Moreover, through combining with the crossover opera-
tor, the parts of individual and social learning are respec-
tively updated by

where r2 and r3 are two random values in the interval [0, 1].
The crossover operator is to randomly select two quantiles
on the particle and replace the codes between these two
quantiles by using the codes between the corresponding
quantiles on pBestk or gBest. Figure 4 illustrates an exam-
ple of crossover operation. In this process, the crossover
operator randomly selects two quantiles (i.e., cp1 and cp2)
and replaces the codes between these two quantiles (i.e.,
(234, 885), (178, 667), and (482, 533)) by using the codes

(13)At
k
= w⊕Mu(X

t−1
k

) =

{
Mu(X

t−1
k

), r1 < w

Xt−1
k

, other cases
,

(14)

Bt
k
=w⊕ Cp(A

t
k
, pBestk) =

{
Cp(A

t
k
, pBestk), r2 < c1

At
k
, other cases

,

(15)

Ct
k
=w⊕ Cg(B

t
k
, gBest) =

{
Cg(B

t
k
, gBest), r3 < c2

Bt
k
, other cases

,

between the corresponding quantiles on pBestk or gBest (i.e.,
(288, 624), (167, 582), and (451, 764)).

4.2.4 Parameter adjustment

The inertia factor w determines the convergence speed and
search capability of the PSO-GA algorithm. When the value
of w is large, the particles will be mutated with a greater
probability, and thus the algorithm owns a stronger global
search capability. On the contrary, the particles will be
mutated with a lower probability, which leads to a better
local search capability.

In the early stage of execution, the PSO-GA algorithm
pays more attention to the diversity of the problem search
space. As the search deepens, the PSO-GA algorithm will
focus on the ability of the local search. Therefore, the value
of w should decrease with the increasing number of itera-
tions, whose adjustment manner is defined as

where wmax and wmin are the maximum and minimum val-
ues of w. itersmax and iterscur are the maximum and current
numbers of iterations. Thus, the value of w will decrease as
the number of iterations increases.

Moreover, similar adjustment manners are adopted for
the individual and social learning factors (i.e., c1 and c2) as
follows.

where c1_start and c2_start are the initial values of c1 and c2
before the iterations start. c1_end and c2_end are the final values
of c1 and c2 when the iterations end.

4.2.5 Algorithm implementation

According to Algorithm 1, the main steps of the PSO-GA
based optimization for UAV deployment are described as
follows.

Step 1: (Lines 1 ∼11) Initialize the original population
(denoted by Pop0), including the population size (denoted
by size), pBest, and gBest.

Step 2: (Lines 12∼25) Execute mutation and crossover
operations on Pop0 , calculate the values of the fitness func-
tion (denoted by Fitness), and iteratively update pBesti and
gBest according to Fitness.

(16)w = wmax − iterscur ∗
wmax − wmin

itersmax

,

(17)c1 =c1_start − iterscur ∗
c1_start − c1_end

itersmax

,

(18)c2 =c2_start − iterscur ∗
c2_start − c2_end

itersmax

,

Fig. 3 Mutation operation

Fig. 4 Crossover operation

199Peer-to-Peer Networking and Applications (2022) 15:194–205

Step 3: (Line 26) Complete iterations, and output
the optimal solution (denoted by PUAV) and average task
response time (denoted by Tavg).

4.3 Greedy‑based optimization for computation
offloading

To obtain a complete solution to the optimization problem
P1, reasonable offloading decisions should also be made
for the computing tasks from MDs. To address this prob-
lem, a greedy algorithm is adopted to quickly realize the
optimization of computation offloading.

Basically, the greedy algorithm always makes the current
best choice. When the UAVs and MDs are closer, the power
gain of the wireless channel link is greater, and thus the time
required for offloading will become less. Therefore, the task
response time can be effectively reduced by offloading the
computing tasks from an MD to the nearest UAV.

However, due to the limited parallel computational
capacity of a UAV, it can only offer offloading services
for a certain number of MDs. Moreover, for some scattered
MDs, even if the tasks are offloaded to the corresponding
nearest UAV, the time overhead will be large. In response
to these issues, a greedy-based optimization for computa-
tion offloading is proposed. According to Algorithm 2, the
main steps are described as follows.

Step 1: (Line 1) Initialize each element (denoted by �i,j)
in the offloading matrix (denoted by A).

Step 2: (Lines 2 ∼11) Calculate the distance (denoted by
di,j) between MDi and UAVj , and record the UAV nearest to
MDi (denoted by UAVindex).

Step 3: (Lines 12∼17) Calculate the time required to
execute a task on MDi (denoted by Tloc

i
) and on the nearest

UAV (denoted by Toff

i,index
), and judge whether the task is

executed on the MD or on the UAV.
Step 4: (Lines 18∼22) If the UAV has not exceeded

its service constraints (denoted by Nmax), it can still offer
computing services for MDs. Otherwise, the MD with
the farthest distance from UAVindex will execute the task
locally.

5 Performance evaluation

In this section, we evaluate the performance of the proposed
PSO-GA-G for optimizing UAV deployment and computa-
tion offloading and make comparisons with the other three
baseline methods.

5.1 Experimental setup

The simulation environment is established in an area of
1000 × 1000 m2 , which contains 100 MDs. The input data
size of computing tasks is randomly distributed in the

Table 1 Parameter settings Parameter Value

H 20 m
B 10 MHz
P 1 W
σ2 -1 × 10−5 dBm
g0 -20 dB
D 100 cycle
Nmax 10

200 Peer-to-Peer Networking and Applications (2022) 15:194–205

interval [10, 20] Mbit, and the CPU frequency of an MD is
1 GHz. In this area, 10 UAVs are deployed, where each UAV
can offer computing services for multiple MDs in parallel.
The CPU frequency of UAVs is randomly distributed in the
interval [2.5, 3.5] GHz. Other parameter settings are shown
in Table 1.

Based on the parameter settings, the following four sce-
narios are considered, where MDs are distributed via dif-
ferent manners.

Scenario 1: This is a typical scenario, and there is a local
area (e.g., supermarkets and hospitals) where a large num-
ber of MDs are assembled. Specifically, about 90% of MDs
are assembled in this local area, and the rest are randomly
distributed in other areas. The distribution of MDs in this
scenario is shown in Fig. 5a.

Scenario 2: There is also a local area where MDs are
assembled in this scenario, but only 50% of MDs are assem-
bled in this area, and the rest are randomly distributed in

other areas. Compared with Scenario 1, the assemble density
of MDs in a local area is lower. The distribution of MDs in
this scenario is shown in Fig. 5b.

Scenario 3: There are two local areas where MDs are
assembled (e.g., two workshops in a factory) in this scenario.
Specifically, 50% of MDs are assembled in one area, 35% of
MDs are assembled in another one, and the rest are randomly
distributed in other areas. The distribution of MDs in this
scenario is shown in Fig. 5c.

Scenario 4: There is no local area where MDs are assem-
bled in this scenario, and all MDs are randomly distributed
(e.g., parks and streets). The distribution of MDs in this sce-
nario is shown in Fig. 5d.

5.2 Baseline methods

To verify the feasibility and effectiveness of the proposed
PSO-GA-G, we modify the following three baseline methods

(a) (b)

(c) (d)
Fig. 5 Different scenarios with various MD distributions

201Peer-to-Peer Networking and Applications (2022) 15:194–205

to make them fit the proposed problem and then conduct
comparative experiments. In the experiments, when mak-
ing the comparison among various methods, the simulation
settings (e.g., the input data size of computing tasks and the
CPU frequency of UAVs) are kept constant in each scenario.
Based on the above settings, a fair environment is estab-
lished for making the comparison among various methods.

Random-G. The random strategy and greedy algorithm are
adopted to handle the optimization problem of UAV deploy-
ment and computation offloading, respectively. In the Random-
G, UAV deployment and computation offloading are regarded
as two completely independent processes, and the impact of MD
positions and resource demands of computing tasks on optimi-
zation results is not considered when deploying UAVs.

K-means-G. The K-means [33] and greedy algorithms
are adopted to handle the optimization problem of UAV
deployment and computation offloading, respectively. In the
K-means-G, UAV deployment and computation offloading
are regarded as two completely independent processes, and
the impact of resource demands of computing tasks on opti-
mization results is not considered when deploying UAVs.

PSO-G. The PSO [24] and greedy algorithms are adopted
to handle the optimization problem of UAV deployment
and computation offloading, respectively. In the PSO-G,
UAV deployment and computation offloading are jointly

considered. In each iteration, the particles of UAV deploy-
ment and offloading plans are updated for continuously opti-
mizing results.

5.3 Result analysis

To evaluate the performance of the PSO-GA-G, the
Random-G, the K-means-G, and the PSO-G, we con-
duct 50 experiments on each scenario and make averages
to increase the stability of the experimental results. The
results are shown in Fig. 6. In all these four scenarios, the
proposed PSO-GA-G owns the best optimization effect in
terms of average task response time while the Random-G
performs the worst.

In Scenario 1, the PSO-GA-G is significantly better
than the other three baseline methods. The K-means-G
always first deploys UAVs according to the distribution
of MDs, and then makes offloading decisions based on
the UAV deployment results. Therefore, during the pro-
cess of deploying UAVs, the K-means-G does not consider
the impact of resource demands of computing tasks on
response time, which makes it impossible to evaluate the
UAV deployment results on time. In contrast, the PSO-G
and the PSO-GA-G jointly consider the impact of UAV

Fig. 6 Average task response
time (s) by various methods in
different scenarios

Fig. 7 Average task response
time (s) by various methods
with different numbers of UAVs

202 Peer-to-Peer Networking and Applications (2022) 15:194–205

deployment and computation offloading on optimization
results in each iteration, and thus they have better perfor-
mance. By introducing the update operators of the GA,
the PSO-GA-G avoids the local optimum and thus obtains
better results than the PSO-G.

Compared with Scenario 1, the performance gap
between the K-means-G and the PSO-GA-G becomes
smaller in Scenario 2. The K-means-G divides MDs
into clusters and deploys UAVs at their correspond-
ing centroids. However, the assemble density of MDs in
Scenario 1 is higher than in Scenario 2, the K-means-G
would still deploy UAVs in positions with scattered MDs,
which results in the serious uneven resource utilization
of UAVs in different areas. In contrast, the PSO-GA-
G avoids deploying UAVs in areas with scattered MDs,
which improves the resource utilization of UAVs. In Sce-
nario 2, since the assemble density of MDs is declined, the
UAV deployment plan obtained by the K-means-G leads to
higher resource utilization of UAVs, and thus the perfor-
mance of this method can be improved.

Compared with Scenarios 1 and 2, the average task
response time achieved by the PSO-GA-G basically
remained unchanged, while that of the PSO-G increases
greatly. This is because there are two local areas where
MDs are assembled in Scenario 1, which easily causes
the PSO-G to fall into the local optimum. The results
fully demonstrate that the PSO-GA-G, which introduces
the update operators of the GA, owns a stronger global
search capability.

In Scenario 4, all MDs are randomly distributed.
Although the performance gap between the PSO-GA-G and
the other three baseline methods is reduced, the PSO-GA-G
can still achieve the best optimization results.

Next, based on Scenario 1, we test the performance of
the proposed PSO-GA-G by changing the number of UAVs.
As shown in Fig. 7, as the number of UAVs increases, the
average task response time of all these methods decreases.
This is because, when more UAVs are deployed, computing
tasks are more likely to be offloaded from MDs to UAVs for
execution, and the distance between MDs and UAVs also
decreases. Compared to the other three methods, the PSO-
GA-G can always achieve better performance. Moreover,
the decrease of the average task response time has a non-
linear relationship with the increasing number of UAVs.
When the number of UAVs is less than 10, the computa-
tional resources of UAVs are insufficient, and thus the sys-
tem performance can be significantly improved by increas-
ing the number of UAVs. However, when the number of
UAVs is greater than 10, the computational resources of
UAVs are already sufficient, and thus the system perfor-
mance cannot be obviously improved by continuing to
increase the number of UAVs.

6 Conclusion

In multi-UAV-enabled MEC systems, the response time of
the computing tasks from MDs can be greatly reduced by
deploying UAVs to provide computation offloading ser-
vices. In this paper, we propose a two-layer joint optimiza-
tion method (PSO-GA-G) to jointly optimize UAV deploy-
ment and computation offloading. The extensive simulation
experiments are conducted to verify the feasibility and effec-
tiveness of the proposed method. The results show that the
proposed method can achieve a lower average task response
time than other three baseline methods in different scenarios.

The PSO-GA-G can effectively optimize the aver-
age task response time, but its training efficiency is not
high enough and it may fall into the local optimum when
combining the greedy algorithm. In our future work, we
will continue to improve the performance of the proposed
method according to its limitations. Moreover, we will
jointly consider response time and system energy consump-
tion to further research on the optimization problem of
resource allocation.

Acknowledgements This work was partly supported by the Key-Area
Research and Development Program of Guangdong Province under
Grant No. 2020B0101090005.

Author contributions Zheyi Chen and Hongqiang Zheng developed
the model and performed experiments. Zheyi Chen wrote the main
part of the manuscript, while Hongqiang Zheng provided the support
for writing materials. Zheyi Chen and Xianghan Zheng reviewed the
manuscript. All the authors read and approved the final manuscript.

Declarations

Ethics approval This work does not contain any studies with human
participants or animals performed by any of the authors.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

203Peer-to-Peer Networking and Applications (2022) 15:194–205

http://creativecommons.org/licenses/by/4.0/

References

 1. Chettri L, Bera R (2019) A comprehensive survey on Internet of
Things (IoT) toward 5G wireless systems. IEEE Internet Things J
7(1):16–32

 2. Liu X, Yu M, Ma Y et al (2018) i-Jacob: An internetware-oriented
approach to optimizing computation-intensive mobile web brows-
ing. ACM Trans Internet Technol 18(2):1–23

 3. Mao Y, You C, Zhang J et al (2017) A survey on mobile edge
computing: The communication perspective. IEEE Commun Surv
Tutorials 19(4):2322–2358

 4. Chen Z, Hu J, Min G et al (2020) Towards accurate prediction for
high-dimensional and highly-variable cloud workloads with deep
learning. IEEE Trans Parallel Distrib Syst 31(4):923–934

 5. Wu H, Wen Y, Zhang J et al (2020) Energy-efficient and secure
air-to-ground communication with jittering UAV. IEEE Trans Veh
Technol 69(4):3954–396

 6. Mu X, Liu Y, Guo L et al (2020) Non-orthogonal multiple
access for air-to-ground communication. IEEE Trans Commun
68(5):2934–2949

 7. Lin Y, Wang T, Wang S (2019) UAV-assisted emergency com-
munications: An extended multi-armed bandit perspective. IEEE
Commun Lett 23(5):938–941

 8. Cheng N, Quan W, Shi W et al (2020) A comprehensive simula-
tion platform for space-air-ground integrated network. IEEE Wirel
Commun 27(1):178–185

 9. Bi S, Zhang Y (2018) Computation rate maximization for wire-
less powered mobile-edge computing with binary computation
offloading. IEEE Wirel Commun 17(6):4177–4190

 10. Ning Z, Dong P, Kong X et al (2018) A cooperative partial com-
putation offloading scheme for mobile edge computing enabled
Internet of Things. IEEE Internet Things J 6(3):4804–4814

 11. Chen X, Chen S, Ma Y et al (2019) An adaptive offloading frame-
work for Android applications in mobile edge computing. Sci
China Inf Sci 62(8):82102

 12. Saleem U, Liu Y, Jangsher S et al (2020) Latency minimization
for D2D-enabled partial computation offloading in mobile edge
computing. IEEE Trans Veh Technol 69(4):4472–4486

 13. Ren J, Yu G, Cai Y et al (2018) Latency optimization for resource
allocation in mobile-edge computation offloading. IEEE Trans
Wirel Commun 17(8):5506–5519

 14. Guo S, Liu J, Yang Y et al (2018) Energy-efficient dynamic com-
putation offloading and cooperative task scheduling in mobile
cloud computing. IEEE Trans Mob Comput 5(4):18(2):319–333

 15. Chen MH, Liang B, Dong M (2017) Joint offloading and resource
allocation for computation and communication in mobile cloud
with computing access point. IEEE Conf Comput Commun pp 1–9

 16. Zhou F, Wu Y, Hu RQ et al (2018) Computation rate maximiza-
tion in UAV-enabled wireless-powered mobile-edge computing
systems. IEEE Journal on Selected Areas in Communications
36(9):1927–1941

 17. Chen R, Cui L, Zhang Y et al (2020) Delay optimization with
FCFS queuing model in mobile edge computing-assisted UAV
swarms: a game-theoretic learning approach. IEEE Int Conf Wirel
Commun Signal Process. pp 245–250

 18. Zhang K, Gui X, Ren D et al (2020) Energy-latency tradeoff for
computation offloading in UAV-assisted multi-access edge com-
puting system. IEEE Internet Things J 8(8):6709–6719

 19. Kim K, Park YM, Hong CS (2020) Machine learning based edge-
assisted UAV computation offloading for data analyzing. IEEE Int
Conf Inf Netw. pp 117–120

 20. Wang L, Huang P, Wang K et al (2019) RL-based user association
and resource allocation for multi-UAV enabled MEC. IEEE Int
Wirel Commun Mob Comput Conf. pp 741–746

 21. Seid AM, Boateng GO, Anokye S et al (2021) Collaborative com-
putation offloading and resource allocation in multi-UAV assisted
IoT networks: A deep reinforcement learning approach. IEEE
Internet Things J (Early Access)

 22. Yao K, Xu Y, Chen J et al (2020) Distributed joint optimization
of deployment, computation offloading and resource allocation
in coalition-based UAV swarms. IEEE Int Conf Wirel Commun
Signal Process. pp 207–212

 23. Yang L, Yao H, Wang J et al (2020) Multi-UAV-enabled load-
balance mobile-edge computing for IoT networks. IEEE Internet
of Things Journal 7(8):6898–6908

 24. Zhang Y, Zhang L, Liu C (2019) 3-D deployment optimization of
UAVs based on particle swarm algorithm. IEEE Int Conf Com-
mun Technol. pp 954–957

 25. Huang P, Wang Y, Wang K et al (2019) Differential evolution
with a variable population size for deployment optimization in a
UAV-assisted IoT data collection system. IEEE Trans Emerg Top
Comput Intell 4(3):324–335

 26. Fu S, Tang Y, Zhang N et al (2020) Joint unmanned aerial vehi-
cle (UAV) deployment and power control for Internet of Things
networks. IEEE Trans Veh Technol 69(4):4367–4378

 27. Wang Z, Duan L, Zhang R (2019) Adaptive deployment for UAV-
aided communication networks. IEEE Trans Wirel Commun
18(9):4531–4543

 28. Sun L, Wan L, Wang X (2020) Learning-based resource allocation
strategy for industrial IoT in UAV-enabled MEC systems. IEEE
Trans Ind Inf 17(7):5031–5040

 29. Peng H, Shen X (2020) Multi-agent reinforcement learning based
resource management in MEC-and UAV-assisted vehicular net-
works. IEEE J Sel Areas Commun 39(1):131–141

 30. Zhang L, Ansari N (2020) Latency-aware IoT service provisioning
in UAV-aided mobile-edge computing networks. IEEE Internet
Things J 7(10):10573–10580

 31. Zhang X, Zhang J, Xiong J et al (2020) Energy-efficient multi-
UAV-enabled multiaccess edge computing incorporating NOMA.
IEEE Internet Things J 7(6):5613–5627

 32. Xu J, Zeng Y, Zhang R (2018) UAV-enabled wireless power trans-
fer: Trajectory design and energy optimization. IEEE Trans Wirel
Commun 17(8):5092–5106

 33. Qu H, Zhang W, Zhao J et al (2020) Rapid deployment of UAVs
based on bandwidth resources in emergency scenarios. IEEE Inf
Commun Technol Conf pp 86–90

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

204 Peer-to-Peer Networking and Applications (2022) 15:194–205

Zheyi Chen is currently a Ph.D.
candidate in Computer Science at
the University of Exeter, United
Kingdom. He received his M.Sc.
degree in Computer Science from
Tsinghua University, China, in
2017, and B.Sc. degree in Com-
puter Science from Shanxi Uni-
versity, China, in 2014. His
research interests include cloud
computing, mobile edge comput-
ing, deep learning, reinforcement
l e a r n i n g , a n d r e s o u r c e
optimization.

Hongqiang Zheng is currently
working toward the M.S. degree
in Computer Software and The-
ory in the College of Mathemat-
ics and Computer Science at the
Fuzhou University. He received
the B.S. degree in Mechanical
Engineering from University of
Science and Technology Beijing,
Beijing, China, in 2017. His cur-
rent research interests include
system software, edge computing,
and cloud computing.

Jianshan Zhang received his
M.S. degree in Materials Engi-
neering from Fujian Normal Uni-
versity, China, in 2018. He is cur-
rently working toward the Ph.D.
degree at the College of Mathe-
matics and Computer Science,
Fuzhou University. He has also
been a part of the Fujian Key
Laboratory of Network Comput-
ing and Intelligent Information
Processing at Fuzhou University
since September 2019. His current
research interests include edge
computing, computational intel-
ligence and cloud computing.

Xianghan Zheng is currently a
Professor with the College of
Mathematics and Computer Sci-
ences, Fuzhou University, China.
He received the M.Sc. degree in
distributed system and the Ph.D.
degree in information communi-
cation technology from the Uni-
versity of Agder, Norway, in 2007
and 2011, respectively. His cur-
rent research interests include
new generation network with a
special focus on cloud computing
services and applications, and big
data processing and security.

Chunming Rong is a Professor
and the head of the Center for IP-
based Service Innovation (CIPSI)
at the University of Stavanger
(UiS), Norway. He is the chair of
IEEE Cloud Computing and an
executive member of Technical
Consortium on High Performance
Computing (TCHPC) and the
chair of STC on Blockchain in
IEEE Computer Society, and
served as global co-chair of IEEE
Blockchain in 2018. Prof. Rong is
alsoadvisor of the StandICT.EU
to support European scandaliza-
tion activities in ICT. He is also

co-founder of two start-ups bitYoga and Dataunitor in Norway, both
received EU Seal of Excellence Award in 2018. He was adjunct Senior
Scientist leading Big-Data Initiative at NORCE (2016-2019), the vice
president of CSA Norway Chapter (2016-2017). His research work
focuses on cloud computing, data analytics, cyber security and
blockchain.

Prof. Rong is an IEEE senior member and is honoured as mem-
ber of the Norwegian Academy of Technological Sciences (NTVA)
since 2011. He has extensive contact network and projects in both the
industry and academic. He is also founder and Steering Chair of IEEE
CloudCom conference and workshop series. He is co-Editors-in-Chief
of the Journal of Cloud Computing (ISSN: 2192-113X) by Springer,
has served as the steering chair (2016-2019), steering member and
associate editor of the IEEE Transactions on Cloud Computing (TCC)
since 2016. Prof. Rong has supervised 26 PhDs, 9 PostDocs and more
than 60 master projects. He has extensive experience in managing
large-scale R&D projects, both in Norway and EU.

205Peer-to-Peer Networking and Applications (2022) 15:194–205

	Joint computation offloading and deployment optimization in multi-UAV-enabled MEC systems
	Abstract
	1 Introduction
	2 Related work
	3 System model and problem definition
	3.1 Communication model
	3.2 Computing model
	3.3 Problem definition

	4 PSO-GA-G based optimization for UAV deployment and computation offloading
	4.1 Problem analysis
	4.2 PSO-GA based optimization for UAV deployment
	4.2.1 Particle coding
	4.2.2 Fitness function
	4.2.3 Particle updating
	4.2.4 Parameter adjustment
	4.2.5 Algorithm implementation

	4.3 Greedy-based optimization for computation offloading

	5 Performance evaluation
	5.1 Experimental setup
	5.2 Baseline methods
	5.3 Result analysis

	6 Conclusion
	Acknowledgements
	References

