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Abstract
The combination of unmanned aerial vehicles (UAVs) and mobile edge computing (MEC) technology breaks through the lim-
itations of traditional terrestrial communications. The effective line-of-sight channel provided by UAVs can greatly improve 
the communication quality between edge servers and mobile devices (MDs). To further enhance the Quality-of-Service 
(QoS) of MEC systems, a multi-UAV-enabled MEC system model is designed. In the proposed model, UAVs are regarded 
as edge servers to offer computing services for MDs, aiming to minimize the average task response time by jointly optimiz-
ing UAV deployment and computation offloading. Based on the problem definition, a two-layer joint optimization method 
(PSO-GA-G) is proposed. First, the outer layer utilizes a Particle Swarm Optimization algorithm combined with Genetic 
Algorithm operators (PSO-GA) to optimize UAV deployment. Next, the inner layer adopts a greedy algorithm to optimize 
computation offloading. The extensive simulation experiments verify the feasibility and effectiveness of the proposed PSO-
GA-G. The results show that the PSO-GA-G can achieve a lower average task response time than the other three baselines.

Keywords Mobile edge computing · Unmanned aerial vehicle deployment · Computation offloading · Particle swarm 
optimization · Genetic algorithm · Greedy algorithm

1 Introduction

With the rapid development of the Internet-of-Things (IoT) 
and the fifth-generation (5G) communication technology, 
numerous emerging mobile applications, such as unmanned 

driving, virtual reality, and face recognition, have been 
incorporated into people’s daily life [1]. Commonly, such 
computation-intensive applications are sensitive to delay, 
and thus they put high demands on the computational capac-
ity of mobile devices (MDs) during execution [2]. However, 
with the consideration of the existing hardware technology 
and device portability, the computational capacity of MDs 
is usually limited, which greatly reduces the performance of 
the above-mentioned applications when they are executed on 
MDs. In recent years, mobile edge computing (MEC) has 
been regarded as a forward-looking technology to solve this 
issue [3]. Through deploying edge servers at the network 
edge (e.g., cellular-network base stations and WiFi access 
points), MEC overcomes the problem of network congestion 
caused by the traditional cloud-based centralized processing 
[4]. Therefore, MEC can offer computing services with less 
time overhead, thereby improving the Quality-of-Service 
(QoS).

Traditional mobile communications rely on ground com-
munication infrastructures [5]. However, in some isolated 
areas (e.g., mountains and oceans) or some emergencies 
(e.g., disaster relief and military exercises), the restricted 
ground communication infrastructures may have a huge 
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impact on the efficiency of mobile communications [6]. Due 
to the high flexibility, strong mobility, and low deployment 
cost, unmanned aerial vehicles (UAVs) are gradually applied 
to the field of emergency communications [7]. UAVs can 
be regarded as mobile base stations to provide communica-
tion services for MDs on the ground, thereby building an 
integrated ground-air communication network [8]. There are 
two advantages when using UAVs as base stations (or edge 
servers). First, the effective Line-of-Sight (LOS) channel 
formed by UAVs and MDs can avoid the problems of sig-
nal attenuation and penetration loss caused by encountering 
obstacles. Second, UAVs can flexibly change their deploy-
ment positions in the network. When MD or network status 
changes, UAVs can be quickly adjusted at a lower cost.

However, there are many challenges in applying UAVs to 
MEC systems. On one hand, the deployment of edge serv-
ers in traditional MEC systems usually depends on ground 
infrastructures. When UAVs are used as edge servers, more 
flexible UAV deployment strategies are required, and thus 
the traditional deployment strategies for edge servers might 
not be applicable. The positions of UAVs directly affect the 
communication delay and energy consumption in MEC sys-
tems, and thus an effective UAV deployment strategy has 
become critical. On the other hand, the traditional computa-
tion offloading strategies usually offload all computing tasks 
from MDs to edge servers for execution. However, UAVs are 
not equipped with the equivalent computational resources as 
traditional edge servers. Therefore, UAVs may not be able 
to provide computing services for all MDs in their coverage 
area. The computation offloading strategies directly affect 
the computing efficiency of UAVs, and thus an effective 
computation offloading strategy is indispensable.

To address the above challenges, we conduct research 
work on the optimization problem of UAV deployment and 
computation offloading in a multi-UAV-enabled MEC sys-
tem. The goal of this work is to minimize the average task 
response time by optimizing the positions of UAVs and the 
offloading strategy in a multi-UAV-enabled MEC system. 
The main contributions of this paper are summarized as 
follows.

– A multi-UAV-enabled MEC system is designed. Based 
on the proposed model, the optimization problem of aver-
age task response time with service constraints is well 
defined.

– Based on the defined optimization problem, a two-layer 
joint optimization method (PSO-GA-G) is proposed. 
First, the outer layer utilizes a Particle Swarm Optimiza-
tion algorithm combined with Genetic Algorithm opera-
tors (PSO-GA) to optimize UAV deployment. Next, the 
inner layer adopts a greedy algorithm to optimize com-
putation offloading. Finally, the optimization problem is 
well solved by the loop-iteration.

– The extensive simulation experiments are conducted to 
demonstrate the feasibility and effectiveness of the pro-
posed PSO-GA-G. The results show that the PSO-GA-
G outperforms other three baseline methods in terms of 
average task response time.

The rest of this paper is organized as follows. Section 2 
reviews the related work. Section 3 introduces the system 
model and the problem definition. Section 4 describes the 
proposed PSO-GA-G in detail. Section 5 presents the evalu-
ation results. Section 6 concludes the work of this paper.

2  Related work

In recent years, MEC has received widespread attention in 
both industry and academia. MEC can effectively reduce the 
communication delay between MDs and remote servers by 
sinking the computational resources from the remote cloud 
to the network edge, thereby improving the user experience.

Computation offloading is one of the key technologies 
of MEC. Through reasonable offloading decisions and 
resource allocation, the computing tasks running on MDs 
can be offloaded to edge servers, and then these tasks are 
completed by using sufficient computational and storage 
resources. Traditional computation offloading technology 
allows an end device to use a coarse-granularity manner to 
offload an entire computing task to an edge server [9] or 
to partition the task via a fine-granularity way and partly 
offload it to the edge server [10]. For example, Chen et al. 
[11] supported mobile applications with a novel offload-
ing capability at the granularity of objects for MEC. With 
the development of 5G networks, a cooperative offloading 
technology has also emerged by integrating MEC and D2D 
[12]. Related research shows that the computation offloading 
technology can effectively shorten the task response time 
[13], reduce the energy consumption of devices [14], and 
cut down the communication cost [15].

It is expected that the combination of UAVs and MEC 
can provide more reliable, lower-latency, and larger- 
coverage network services [16], which is regarded as a new 
trend in MEC. Current researches on UAV-enabled MEC 
systems mainly focus on the problem of computation off-
loading. Chen et al. [17] introduced a first-come-first-served 
(FCFS) queuing model, defined the optimization problem 
as an offloading game, and then designed a distributed off-
loading algorithm based on the optimal concurrent response. 
Zhang et al. [18] designed a UAV-enabled MEC system 
considering offloading decisions and resource competition 
constraints and proposed a game-theory-based solution to 
prove the existence of Nash equilibrium. Kim et al. [19] 
developed an offloading method based on machine learning 
to optimize system energy consumption and delay. By using 
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reinforcement learning (RL), Wang et al. [20] proposed an 
optimization algorithm for task offloading and UAV resource 
allocation, which showed good optimization effects in large-
scale scenarios. Seid et al. [21] designed a collaborative off-
loading and resource allocation scheme based on model-free 
deep RL, which checked the UAV status through the Jain 
fairness index (JFI).

The optimization of UAV deployment is a research hot-
spot in the UAV field. Yao et al. [22] analyzed the distribu-
tion characteristics of UAVs and proposed a random optimal 
response algorithm to solve the problem of UAV deploy-
ment, aiming to minimize the system energy consumption. 
Yang et al. [23] designed an IoT architecture based on multi-
UAV-assisted MEC and proposed a UAV deployment strat-
egy based on a differential evolutionary algorithm, which 
achieved the load balancing among multiple UAVs. Zhang 
et al. [24] developed a UAV deployment method based on 
a discrete PSO algorithm to maximize the UAV coverage. 
Huang et al. [25] adopted an evolutionary algorithm to han-
dle the problem of UAV deployment, which reduced the 
system energy consumption by optimizing the number and 
positions of UAV stops. Fu et al. [26] optimized the UAV 
deployment and transmission power consumption by using 
a dual decomposition method. Wang et al. [27] designed an 
adaptive deployment strategy for UAV-aided communication 
networks, aiming to enhance the average throughput and the 
transmission success rate.

The existing researches on UAV-enabled MEC systems 
mainly focused on reducing the system energy consump-
tion while rarely optimizing the system response time. For 
example, Sun et al. [28] designed a learning-based coopera-
tive particle swarm optimization (LCPSO) method with a 
Markov random field (MRF)-based decomposition strategy, 
in order to reduce the response time of forest fire monitor-
ing in UAV-enabled MEC systems. Peng and Shen [29] 
proposed a multi-agent deep deterministic policy gradient 
(MADDPG)-based method to enhance delay/QoS satisfac-
tion ratios in MEC-UAV-Assisted vehicular networks. Zhang 
and Ansari [30] developed an approximation algorithm to 
improve the average user latency in UAV-aided MEC net-
works. Different from these researches, our work aims to 
minimize the average task response time in a multi-UAV-
enabled MEC system by jointly optimizing UAV deployment 
and computation offloading.

3  System model and problem definition

As shown in Fig. 1, a multi-UAV-enabled MEC system is con-
sidered. In this system, a set of MDs are unevenly distributed 
on the ground, donated by M =

{
MD1,MD2, ...,MDm

}
 , and 

a set of UAVs are deployed in the air for offering computing 

services to MDs, donated by N =
{
UAV1,UAV2, ...,UAVn

}
 , 

where m and n indicate the number of MDs and UAVs, 
respectively. Assume that MDi ( 1 ≤ i ≤ m ) has a comput-
ing task to be performed, denoted by Taski = (Di, Si) , where 
Di represents the size of the input data (bits) of Taski and Si 
represents the amount of computing resources (CPU cycles) 
required for processing one bit of data. Moreover, MDs and 
UAVs exchange data via wireless channels and MDs can 
offload all their computing tasks to UAVs for execution.

3.1  Communication model

The positions of MDs and UAVs are expressed in the form 
of three-dimensional Cartesian coordinates. For example, 
the positions of MDi ( 1 ≤ i ≤ m ) and UAVj ( 1 ≤ j ≤ n ) are 
respect ively def ined as  pMD

i
= (xMD

i
, yMD

i
, 0) and 

pUAV
i

= (xUAV
j

, yUAV
j

,H) , where H represents the flying height 
of UAVs. To simplify the model, it is assumed that all UAVs 
are deployed at the same height and their positions remain 
unchanged after deployment in a certain time slot [31].

Due to the high positions of UAVs, the LOS channel loss 
of the communication link between UAVs and MDs becomes 
significant. Therefore, the wireless channel between MDi 
and UAVj can be simulated by using the free-space-path-loss 
(FSPL) model [32], where the power gain of the wireless 
channel link is calculated by

where g0 represents the channel power gain of spatial dis-
tance per unit and di,j represents the spatial distance between 
MDi and UAVj.

To reduce the transmission delay, MDi always uses its 
maximum transmission power Pi for data transmission, 
in order to improve the signal-to-noise ratio (SNR) of the 
communication link. Therefore, the data transmission rate 
between MDi and UAVj is

(1)hi,j = g0d
−2
i,j

=
g0

H2 + ||pMD
i

− pUAV
i

|| ,

Fig. 1  A multi-UAV-enabled MEC system
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where B and �2 represent the channel bandwidth and the 
white Gaussian noise (WGN) power in the communication 
link, respectively.

3.2  Computing model

Considering that all UAVs and MDs can provide comput-
ing services, the computing tasks on MDs can be offloaded 
to UAVs and also executed locally. The offloading matrix 
between MDs and UAVs is defined as

where �i,j ∈ {0, 1} . When the computing tasks are offloaded 
from MDi to UAVj for execution, �i,j = 1 ; otherwise, �i,j = 0 . 
Especially, when �i,n+1 = 1 , the computing tasks are exe-
cuted on MDi.

Therefore, there are two optional execution manners for 
the computing tasks on each MD as follows.

– Local execution. When �i,n+1 = 1 , the computing tasks 
are executed on MDi . According to the definition of 
Taski , the total number of CPU cycles required to execute 
the task is Si × Di . Thus, the time required to execute a 
task on MDi is calculated by 

where f MD
i

 indicates the CPU frequency of MDi.
– Offloading execution. When �i,j = 1 , the computing tasks 

are offloaded from MDi to UAVj for execution. Thus, the 
completion time of a task consists of three parts, includ-
ing the data transmission time (denoted by Ttran

i,j
 ), the task 

execution time (denoted by TUAV
i,j

 ), and the back time of 
results (denoted by Tback

i,j
 ). Specifically, Ttran

i,j
 and TUAV

i,j
 are 

calculated by 

where f UAV
j

 indicates the CPU frequency of UAVj . It is 
noticed that each UAV can execute multiple tasks in parallel, 

(2)Ri,j = B log2(1 +
Pihi,j

�2
),

(3)A =

⎡
⎢⎢⎢⎢⎢⎣

�1,1 ⋯ �1,j ⋯ �1,n �1,n+1

⋮ ⋱ ⋮ ⋱ ⋮ ⋮

�i,1 ⋯ �i,j ⋯ �i,n �i,n+1

⋮ ⋱ ⋮ ⋱ ⋮ ⋮

�m,1 ⋯ �m,j ⋯ �m,n �m,n+1

⎤
⎥⎥⎥⎥⎥⎦

,

(4)Tloc
i

=
Si × Di

f MD
i

,

(5)Ttran
i,j

=
Di

Ri,j

,

(6)TUAV
i,j

=
Si × Di

f UAV
j

,

and thus the computational resources of a UAV would be 
equally allocated by the offloaded tasks. When tasks are 
completed, the execution results would be sent back to the 
corresponding MDs. Since the amount of the back data is 
usually small, Tback

i,j
 is negligible. Thus, when a task is 

offloaded from MDi to UAVj for execution, the task comple-
tion time is calculated by 

3.3  Problem definition

Based on the above analysis, to minimize the average task 
response time of a multi-UAV-enabled MEC system, the 
optimization problem P1 is defined as

where ∀i ∈ {1, 2, ...,m} and ∀j ∈ {1, 2, ..., n} . C1 and C2 
indicate the deployment scope constraints of UAVs, C3 
represents offloading decisions, C4 indicates that each MD 
can only offload tasks to one UAV or execute them locally, 
and C5 means that the number of tasks that each UAV can 
execute can not exceed the maximum number of concurrent 
tasks.

4  PSO‑GA‑G based optimization for UAV 
deployment and computation offloading

4.1  Problem analysis

The proposed optimization problem is a hybrid nonlinear 
programming problem, whose objective function and the 
constraint C3 are non-convex, which makes it hard to be 
directly solved. As a swarm intelligence search algorithm, 
the PSO algorithm does not use the gradient information of 
functions. Therefore, the PSO algorithm has no requirement 
for the continuity and derivability of functions and shows 
great potentials to handle the above optimization problem. 
However, there exist the following two issues when using the 

(7)T
off

i,j
= Ttran

i,j
+ TUAV

i,j
.

(8)

P1 ∶ min
PUAV ,A

1

m

m∑
i=1

(�i,n+1T
loc
i

+

n∑
j=1

�i,jT
off

i,j
),

s.t. C1 ∶ 0 ≤ xUAV
j

≤ Xmax,

C2 ∶ 0 ≤ yUAV
j

≤ Ymax,

C3 ∶ �i,j ∈ {0, 1},

C4 ∶

n∑
j=1

�i,j = 1,

C5 ∶ 0 ≤

m∑
i=1

�i,j ≤ Nmax,
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traditional PSO algorithm to deal with the proposed optimi-
zation problem.

– The proposed optimization problem involves UAV 
deployment and computational offloading, but it is diffi-
cult for the traditional PSO algorithm to solve this multi-
parameter coupling optimization problem.

– The traditional PSO algorithm may easily fall into the 
local optimum, and thus it might not be able to get the 
optimal/near-optimal solution.

To address these issues, a two-layer joint optimization 
method (PSO-GA-G) is proposed by integrating the PSO-
GA and the greedy algorithms. In each iteration, the outer 
layer of the PSO-GA-G utilizes the PSO-GA algorithm to 
optimize the deployment positions of UAVs, while the inner 
layer of the PSO-GA-G adopts the greedy algorithm to opti-
mize offloading decisions.

4.2  PSO‑GA based optimization for UAV 
deployment

The PSO-GA algorithm inherits the features of the tradi-
tional PSO algorithm, including easy implementation, high 
accuracy, and fast convergence. Furthermore, by using the 
update operators of the GA, the PSO-GA algorithm can 
well avoid the local optimum and obtain a more optimized 
solution.

4.2.1  Particle coding

The coding manners determine the execution efficiency 
of algorithms, but it is are difficult to use some traditional 
coding manners (e.g., binary coding and integer coding) to 
describe the feasible solutions of P1. In the proposed model, 
the deployment positions of UAVs are represented by their 
x-axis and y-axis coordinates, and thus the following mecha-
nism of particle coding is adopted: each particle indicates a 
deployment plan of all UAVs, and each quantile of the parti-
cle is encoded by a two-dimensional vector, which describes 
the horizontal deployment position of a UAV. At the t-th 
iteration, the position of the particle k is defined as

where xt
kj
= (Xt

kj
, Yt

kj
) represents the horizontal deployment 

position of UAVj . Xt
kj

 and Yt
kj

 indicate the x-axis and y-axis 
coordinates, respectively.

Figure 2 illustrates an example of particle coding. The 
particle consists of five quantiles, which describe the deploy-
ment positions of five UAVs. Each quantile is composed of 
a two-dimensional vector, which represents the horizontal 

(9)Xt
k
= (xt

k1
, xt

k2
, ..., xt

kj
, ..., xt

kn
),

coordinates of a UAV. For example, the coding of the 1st quan-
tile is (114, 517), which indicates that the deployment position 
of the 1st UAV is (114, 517, H).

4.2.2  Fitness function

The fitness function evaluates the quality of particles. When 
solving the proposed optimization problem, the objective func-
tion in Eq. (8) is regarded as the fitness function of the PSO-
GA algorithm. Therefore, by inputting UAV deployment and 
offloading plans into the objective function, the correspond-
ing values of the fitness function of particles can be obtained. 
Since our optimization goal is to minimize the average task 
response time, the particles with smaller values of the fitness 
function exhibit better performance.

4.2.3  Particle updating

In the traditional PSO algorithm, each particle moves in the 
problem search space with a certain direction and velocity. The 
particles iteratively adjust their positions and velocities in the 
problem search space according to the surrounding particles 
and their own experience. In this process, the velocity and 
position of a particle are updated as

where Vt
k
 and Xt

k
 represent the velocity and position of the k-

th particle at the t-th iteration, respectively. pBestk and gBest 
indicate the optimal position of the k-th particle in history 
and the entire population after t iterations, respectively. w is 
the inertia factor that determines the influence of the velocity 
of the last iteration on the current velocity. c1 and c2 are indi-
vidual and social learning factors, which respectively reflect 
the learning abilities for the optimal value in the individual 
and population histories. r1 and r2 are two random values in 
the interval [0, 1] that are used to supplement the random-
ness into the iterative search process.

Based on the PSO algorithm, the PSO-GA algorithm intro-
duces the mutation and crossover operators of the GA. Cor-
respondingly, the update manner of a particle is given as

(10)Vt+1
k

= wVt
k
+ c1r1(pBestk − Xt

k
) + c2r2(gBest − Xt

k
),

(11)Xt+1
k

= Vt+1
k

+ Xt
k
,

(12)Xt+1
k

= c2 ⊕ Cg(c1 ⊕ Cp(w⊕Mu(X
t
k
), pBestk), gBest),

Fig. 2  Particle coding
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where Mu() is the mutation operator. Cp() and Cg() are cross-
over operators.

Next, through combining with the mutation operator, the 
inertial part of a particle is updated by

where r1 is a random value in the interval [0, 1]. Mu(X
t−1
k

) is 
to randomly select a quantile on the particle Xt−1

k
 and per-

form the mutation operation within the pre-defined thresh-
old. Figure 3 illustrates an example of mutation operation. 
In this process, the mutation operator randomly selects a 
quantile mp1 and mutates the code on this quantile from 
(234, 885) to (292, 901).

Moreover, through combining with the crossover opera-
tor, the parts of individual and social learning are respec-
tively updated by

where r2 and r3 are two random values in the interval [0, 1]. 
The crossover operator is to randomly select two quantiles 
on the particle and replace the codes between these two 
quantiles by using the codes between the corresponding 
quantiles on pBestk or gBest. Figure 4 illustrates an exam-
ple of crossover operation. In this process, the crossover 
operator randomly selects two quantiles (i.e., cp1 and cp2 ) 
and replaces the codes between these two quantiles (i.e., 
(234, 885), (178, 667), and (482, 533)) by using the codes 

(13)At
k
= w⊕Mu(X

t−1
k

) =

{
Mu(X

t−1
k

), r1 < w

Xt−1
k

, other cases
,

(14)

Bt
k
=w⊕ Cp(A

t
k
, pBestk) =

{
Cp(A

t
k
, pBestk), r2 < c1

At
k
, other cases

,

(15)

Ct
k
=w⊕ Cg(B

t
k
, gBest) =

{
Cg(B

t
k
, gBest), r3 < c2

Bt
k
, other cases

,

between the corresponding quantiles on pBestk or gBest (i.e., 
(288, 624), (167, 582), and (451, 764)).

4.2.4  Parameter adjustment

The inertia factor w determines the convergence speed and 
search capability of the PSO-GA algorithm. When the value 
of w is large, the particles will be mutated with a greater 
probability, and thus the algorithm owns a stronger global 
search capability. On the contrary, the particles will be 
mutated with a lower probability, which leads to a better 
local search capability.

In the early stage of execution, the PSO-GA algorithm 
pays more attention to the diversity of the problem search 
space. As the search deepens, the PSO-GA algorithm will 
focus on the ability of the local search. Therefore, the value 
of w should decrease with the increasing number of itera-
tions, whose adjustment manner is defined as

where wmax and wmin are the maximum and minimum val-
ues of w. itersmax and iterscur are the maximum and current 
numbers of iterations. Thus, the value of w will decrease as 
the number of iterations increases.

Moreover, similar adjustment manners are adopted for 
the individual and social learning factors (i.e., c1 and c2 ) as 
follows.

where c1_start and c2_start are the initial values of c1 and c2 
before the iterations start. c1_end and c2_end are the final values 
of c1 and c2 when the iterations end.

4.2.5  Algorithm implementation

According to Algorithm 1, the main steps of the PSO-GA 
based optimization for UAV deployment are described as 
follows.

Step 1: (Lines 1 ∼11) Initialize the original population 
(denoted by Pop0 ), including the population size (denoted 
by size), pBest, and gBest.

Step 2: (Lines 12∼25) Execute mutation and crossover 
operations on Pop0 , calculate the values of the fitness func-
tion (denoted by Fitness), and iteratively update pBesti and 
gBest according to Fitness.

(16)w = wmax − iterscur ∗
wmax − wmin

itersmax

,

(17)c1 =c1_start − iterscur ∗
c1_start − c1_end

itersmax

,

(18)c2 =c2_start − iterscur ∗
c2_start − c2_end

itersmax

,

Fig. 3  Mutation operation

Fig. 4  Crossover operation
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Step 3: (Line 26) Complete iterations, and output 
the optimal solution (denoted by PUAV  ) and average task 
response time (denoted by Tavg).

4.3  Greedy‑based optimization for computation 
offloading

To obtain a complete solution to the optimization problem 
P1, reasonable offloading decisions should also be made 
for the computing tasks from MDs. To address this prob-
lem, a greedy algorithm is adopted to quickly realize the 
optimization of computation offloading.

Basically, the greedy algorithm always makes the current 
best choice. When the UAVs and MDs are closer, the power 
gain of the wireless channel link is greater, and thus the time 
required for offloading will become less. Therefore, the task 
response time can be effectively reduced by offloading the 
computing tasks from an MD to the nearest UAV.

However, due to the limited parallel computational 
capacity of a UAV, it can only offer offloading services 
for a certain number of MDs. Moreover, for some scattered 
MDs, even if the tasks are offloaded to the corresponding 
nearest UAV, the time overhead will be large. In response 
to these issues, a greedy-based optimization for computa-
tion offloading is proposed. According to Algorithm 2, the 
main steps are described as follows.

Step 1: (Line 1) Initialize each element (denoted by �i,j ) 
in the offloading matrix (denoted by A).

Step 2: (Lines 2 ∼11) Calculate the distance (denoted by 
di,j ) between MDi and UAVj , and record the UAV nearest to 
MDi (denoted by UAVindex).

Step 3: (Lines 12∼17) Calculate the time required to 
execute a task on MDi (denoted by Tloc

i
 ) and on the nearest 

UAV (denoted by Toff

i,index
 ), and judge whether the task is 

executed on the MD or on the UAV.
Step 4: (Lines 18∼22) If the UAV has not exceeded 

its service constraints (denoted by Nmax ), it can still offer 
computing services for MDs. Otherwise, the MD with 
the farthest distance from UAVindex will execute the task 
locally.

5  Performance evaluation

In this section, we evaluate the performance of the proposed 
PSO-GA-G for optimizing UAV deployment and computa-
tion offloading and make comparisons with the other three 
baseline methods.

5.1  Experimental setup

The simulation environment is established in an area of  
1000 × 1000  m2 , which contains 100 MDs. The input data  
size of computing tasks is randomly distributed in the 

Table 1  Parameter settings Parameter Value

H 20 m
B 10 MHz
P 1 W
σ2 -1 ×  10−5  dBm
g0 -20 dB
D 100 cycle
Nmax 10
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interval [10, 20] Mbit, and the CPU frequency of an MD is 
1 GHz. In this area, 10 UAVs are deployed, where each UAV 
can offer computing services for multiple MDs in parallel. 
The CPU frequency of UAVs is randomly distributed in the 
interval [2.5, 3.5] GHz. Other parameter settings are shown 
in Table 1.

Based on the parameter settings, the following four sce-
narios are considered, where MDs are distributed via dif-
ferent manners.

Scenario 1: This is a typical scenario, and there is a local 
area (e.g., supermarkets and hospitals) where a large num-
ber of MDs are assembled. Specifically, about 90% of MDs 
are assembled in this local area, and the rest are randomly 
distributed in other areas. The distribution of MDs in this 
scenario is shown in Fig. 5a.

Scenario 2: There is also a local area where MDs are 
assembled in this scenario, but only 50% of MDs are assem-
bled in this area, and the rest are randomly distributed in 

other areas. Compared with Scenario 1, the assemble density 
of MDs in a local area is lower. The distribution of MDs in 
this scenario is shown in Fig. 5b.

Scenario 3: There are two local areas where MDs are 
assembled (e.g., two workshops in a factory) in this scenario. 
Specifically, 50% of MDs are assembled in one area, 35% of 
MDs are assembled in another one, and the rest are randomly 
distributed in other areas. The distribution of MDs in this 
scenario is shown in Fig. 5c.

Scenario 4: There is no local area where MDs are assem-
bled in this scenario, and all MDs are randomly distributed 
(e.g., parks and streets). The distribution of MDs in this sce-
nario is shown in Fig. 5d.

5.2  Baseline methods

To verify the feasibility and effectiveness of the proposed 
PSO-GA-G, we modify the following three baseline methods 

(a) (b)

(c) (d)
Fig. 5  Different scenarios with various MD distributions
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to make them fit the proposed problem and then conduct 
comparative experiments. In the experiments, when mak-
ing the comparison among various methods, the simulation 
settings (e.g., the input data size of computing tasks and the 
CPU frequency of UAVs) are kept constant in each scenario. 
Based on the above settings, a fair environment is estab-
lished for making the comparison among various methods.

Random-G. The random strategy and greedy algorithm are 
adopted to handle the optimization problem of UAV deploy-
ment and computation offloading, respectively. In the Random-
G, UAV deployment and computation offloading are regarded 
as two completely independent processes, and the impact of MD 
positions and resource demands of computing tasks on optimi-
zation results is not considered when deploying UAVs.

K-means-G. The K-means [33] and greedy algorithms 
are adopted to handle the optimization problem of UAV 
deployment and computation offloading, respectively. In the 
K-means-G, UAV deployment and computation offloading 
are regarded as two completely independent processes, and 
the impact of resource demands of computing tasks on opti-
mization results is not considered when deploying UAVs.

PSO-G. The PSO [24] and greedy algorithms are adopted 
to handle the optimization problem of UAV deployment 
and computation offloading, respectively. In the PSO-G, 
UAV deployment and computation offloading are jointly 

considered. In each iteration, the particles of UAV deploy-
ment and offloading plans are updated for continuously opti-
mizing results.

5.3  Result analysis

To evaluate the performance of the PSO-GA-G, the 
Random-G, the K-means-G, and the PSO-G, we con-
duct 50 experiments on each scenario and make averages 
to increase the stability of the experimental results. The 
results are shown in Fig. 6. In all these four scenarios, the 
proposed PSO-GA-G owns the best optimization effect in 
terms of average task response time while the Random-G 
performs the worst.

In Scenario 1, the PSO-GA-G is significantly better 
than the other three baseline methods. The K-means-G 
always first deploys UAVs according to the distribution 
of MDs, and then makes offloading decisions based on 
the UAV deployment results. Therefore, during the pro-
cess of deploying UAVs, the K-means-G does not consider 
the impact of resource demands of computing tasks on 
response time, which makes it impossible to evaluate the 
UAV deployment results on time. In contrast, the PSO-G 
and the PSO-GA-G jointly consider the impact of UAV 

Fig. 6  Average task response 
time (s) by various methods in 
different scenarios

Fig. 7  Average task response 
time (s) by various methods 
with different numbers of UAVs
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deployment and computation offloading on optimization 
results in each iteration, and thus they have better perfor-
mance. By introducing the update operators of the GA, 
the PSO-GA-G avoids the local optimum and thus obtains 
better results than the PSO-G.

Compared with Scenario 1, the performance gap 
between the K-means-G and the PSO-GA-G becomes 
smaller in Scenario 2. The K-means-G divides MDs 
into clusters and deploys UAVs at their correspond-
ing centroids. However, the assemble density of MDs in 
Scenario 1 is higher than in Scenario 2, the K-means-G 
would still deploy UAVs in positions with scattered MDs, 
which results in the serious uneven resource utilization 
of UAVs in different areas. In contrast, the PSO-GA-
G avoids deploying UAVs in areas with scattered MDs, 
which improves the resource utilization of UAVs. In Sce-
nario 2, since the assemble density of MDs is declined, the 
UAV deployment plan obtained by the K-means-G leads to 
higher resource utilization of UAVs, and thus the perfor-
mance of this method can be improved.

Compared with Scenarios 1 and 2, the average task 
response time achieved by the PSO-GA-G basically 
remained unchanged, while that of the PSO-G increases 
greatly. This is because there are two local areas where 
MDs are assembled in Scenario 1, which easily causes 
the PSO-G to fall into the local optimum. The results 
fully demonstrate that the PSO-GA-G, which introduces 
the update operators of the GA, owns a stronger global 
search capability.

In Scenario 4, all MDs are randomly distributed. 
Although the performance gap between the PSO-GA-G and 
the other three baseline methods is reduced, the PSO-GA-G 
can still achieve the best optimization results.

Next, based on Scenario 1, we test the performance of 
the proposed PSO-GA-G by changing the number of UAVs. 
As shown in Fig. 7, as the number of UAVs increases, the 
average task response time of all these methods decreases. 
This is because, when more UAVs are deployed, computing 
tasks are more likely to be offloaded from MDs to UAVs for 
execution, and the distance between MDs and UAVs also 
decreases. Compared to the other three methods, the PSO-
GA-G can always achieve better performance. Moreover, 
the decrease of the average task response time has a non-
linear relationship with the increasing number of UAVs. 
When the number of UAVs is less than 10, the computa-
tional resources of UAVs are insufficient, and thus the sys-
tem performance can be significantly improved by increas-
ing the number of UAVs. However, when the number of 
UAVs is greater than 10, the computational resources of 
UAVs are already sufficient, and thus the system perfor-
mance cannot be obviously improved by continuing to 
increase the number of UAVs.

6  Conclusion

In multi-UAV-enabled MEC systems, the response time of 
the computing tasks from MDs can be greatly reduced by 
deploying UAVs to provide computation offloading ser-
vices. In this paper, we propose a two-layer joint optimiza-
tion method (PSO-GA-G) to jointly optimize UAV deploy-
ment and computation offloading. The extensive simulation 
experiments are conducted to verify the feasibility and effec-
tiveness of the proposed method. The results show that the 
proposed method can achieve a lower average task response 
time than other three baseline methods in different scenarios.

The PSO-GA-G can effectively optimize the aver-
age task response time, but its training efficiency is not 
high enough and it may fall into the local optimum when 
combining the greedy algorithm. In our future work, we 
will continue to improve the performance of the proposed 
method according to its limitations. Moreover, we will 
jointly consider response time and system energy consump-
tion to further research on the optimization problem of 
resource allocation.
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