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Abstract
The number of users approaching the world of cryptocurrencies exploded in the last years, and consequently the daily
interactions on their underlying distributed ledgers have intensified. In this paper, we analyze the flow of these digital
transactions in a certain period of time, trying to discover important insights on the typical use of these technologies by
studying, through complex network theory, the patterns of interactions in four prominent and different Distributed Ledger
Technologies (DLTs), namely Bitcoin, DogeCoin, Ethereum, Ripple. In particular, we describe the Distributed Ledger
Network Analyzer (DiLeNA), a software tool for the investigation of the transactions network recorded in DLTs. We show
that studying the network characteristics and peculiarities is of paramount importance, in order to understand how users
interact in the DLT. For instance, our analyses reveal that all transaction graphs exhibit small world properties.

Keywords Distributed ledger technologies · Blockchain · Network analysis · Complex networks · Cryptocurrencies

1 Introduction

Cryptocurrencies have been a disruptive innovation in the
world of economic transactions. Based on cryptography
and on the decentralization of the information, these
virtual tokens are thought to offer an alternative to the
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traditional fiat currencies. Unlike fiat currencies, however,
cryptocurrencies base their value exclusively on the trust
of the investors: except those implementations that base
their value on traditional financial assets (i.e. stablecoins
like Tether or Security Token Offerings), no central
banks and monetary reserves can influence the supply
of money and, as such, indirectly control inflation. Also
for these motivations, often the economical value of the
cryptocurrencies is subject to high fluctuations.

Bitcoin, launched in 2009, was the ancestor of all
the other cryptocurrencies and it is even now by far the
most popular and the most used one [29]. In view of
the success of Bitcoin, many other cryptocurrencies were
created in the last decade: according to [1], currently there
are over 3500 types of cryptocurrencies, with the global
cryptomarket worth almost 400 billion dollars. However, as
reported by [1], Bitcoin still holds 64% of the cryptomarket
capitalization, with Ethereum steadily in the second place
with the 11%.

The cryptomarket is currently still growing and there
are different reasons why one might be fascinated by
this technology: some users might be interested in the
anonymity (or pseudo-anonymity) features [27], others in
the lack of central entities in charge of managing the money
transfers, in the economic value of the cryptocurrencies built
over these ledgers (for example, for speculation purposes),
or finally, with the aim to build decentralized applications
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that are able to exploit the features offered by smart
contracts [24].

Blockchains and cryptocurrencies have been widely
studied in these last years. Mostly, the domains of
investigation are related to security issues [7, 26], usage
in Internet of Things deployments and drones [13,
33], Smart Cities environments [12, 21, 36], large-scale
heterogeneous networks [32], as well as on their economical
impact [22].

In this paper, we follow a totally different approach, in
fact we perform a study of these technologies by relying
on mechanisms that are typical of the (social) networks
analysis (e.g. [17, 37]). Thus, we study the interactions
among the accounts involved in the transactions that are
recorded on the Distributed Ledger Technologies (DLTs).
For this purpose, the system to be studied is treated as a
graph, where links are drawn when pairs of accounts have
a some sort of interaction. This kind of analysis is viable,
since unlike normal methods for exchanging money, the
whole set of transactions is traced in the distributed ledger
and furthermore it is visible to everyone [16].

To this aim, we devised and implemented a novel
software tool called DiLeNa (Distributed Ledger Network
Analyzer)1.

This software is able to grab the transactions stored in the
distributed ledger of different DLTs, create an abstraction of
a network and then measure some important related metrics,
which allow to extract some peculiar characteristics of the
network.

We claim that these metrics can provide insights on the
respective technologies and on the use that users make of
them.

Specifically, in our work we apply this approach to four
different DLTs, namely Bitcoin, DogeCoin, Ethereum and
Ripple. The analysis on their transactions graphs reveals
that the networks -some more, some less- feature a small
world behaviour, and that most of the nodes have very few
connections, even though some hubs with a very high degree
exist. The exhibited behaviour is supposed to be influenced
by the considered time interval and by the implementation
features of the DLTs, so different types of transactions
graphs have been taken into account. We think that the
approach we propose in this paper, should help to get more
information about how interactions through DLTs occur and
that it could have useful applications, such as for anti-money
laundering purposes.

The remainder of the paper is organized as follows.
Section 2 introduces some background and related work.

1An early version of this work appeared in [31]. This paper is an
extensively revised and extended version where more than 50% is new
material.

Section 3 describes the design choices of the software tool
and deals with the critical aspects of its implementation.
Section 4 analyzes the results obtained by analyzing
the some relevant distributed ledgers. Finally, Sections 5
provides some concluding remarks.

2 Background and related work

In this section, some background that is essential to
understand the rest of the paper is introduced. Specifically,
the topics covered will be the DLT technology, the
representation of complex systems as graphs and some
metrics that can be used in order to evaluate the specific
characteristics of a network (e.g. small world property).

2.1 DLT and blockchain technologies

Cryptocurrencies, unlike traditional banking systems, store
their data into distributed ledgers, thus making the
information decentralized and avoiding single points of
failure. DLTs work as distributed and immutable databases
and the nodes involved in the management and in the
update of the DLTs check the integrity and the consistency
of the data, ensuring the correctness of the system.
Most of the DLTs are permissionless, meaning that no
prior approval to actively participate in the system is
needed.

There can be different implementations of a distributed
ledger but most of the cryptocurrencies rely on the
blockchain, a data structure that stores the transactions
into containers called blocks, logically linked among each
other through the use of cryptographic techniques. All
the cryptocurrencies require a consensus strategy that
allows all the nodes of the system to agree about the
actual state of the distributed ledger. Also in this case,
different schemes are available, but the most popular
implementations use the so-called Proof of Work (PoW),
requiring to solve computationally intensive crypto-puzzles
in order to validate the blocks and the transactions contained
therein. The act of solving the cryptographic puzzles
is called “mining”. Bitcoin was the first cryptocurrency
launched in the market and still now is the most famous
and the most used one. Recently, also Ethereum gained
popularity because it allows to execute, other than simple
transactions, actual contracts written with code, the so called
“smart contracts”.

In most of the systems, users are identified with
addresses derived from their public cryptographic key and
there is no trivial way to associate the addresses with the real
identity of the users. So it is possible (and often happens)
that certain users control multiple accounts and that multiple
addresses are linked to a single account.
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2.2 Graphs and complex systems

A graph can be an effective way to represent systems
or parts of systems where different entities interact.
Specifically, a graph G is a data structure defined as G =
(V , E) where V is a set of entities called nodes or vertices
and E is a set of edges, which are links representing
connections between pairs of nodes. In directed graphs,
the link relation is not necessarily commutative, while
in undirected graphs the edges symbolize links in both
directions: that means that if A is connected with B then
B is also connected with A. Graphs can also be either
weighted or unweighted, depending if the edges are marked
with weights, i.e. numerical values that are able to represent
different measures depending on the meaning of the graph
such as distances, economical costs, number of interactions,
etc.

In a graph, it is not always possible to reach each
couple of nodes by following a path along the edges. A
subgraph including all the nodes that can communicate with
each other, through a certain path, is called a “connected
component”. There can be various connected components
in a graph, and usually the component with the largest
number of nodes is referred to as the “main component”.
In directed graphs a component can either be strongly or
weakly connected: in the first case all the couples of nodes
can communicate in both directions, in the second case the
communication might be possible just in one direction.

Depending on the problem, the meaning of a graph can
be different. In a map, for example, vertices may represent
some locations and the weights of the edges are the distance
between two nodes [14–16]. In our case, the vertices are
addresses of a certain blockchain and the presence of an
edge indicates that there has been an interaction between the
two nodes (i.e. a transaction).

2.3 Network topologies

The structure of a network can be described through some
mathematical properties of the associate graph. Here, we
focus on two specific graph topologies, i.e. random graphs
and small world graphs.

The random graphs are networks completely generated
by random processes and where no presence of hubs or
skewed distribution is expected to occur. A typical method
to generate a synthetic random graph is the Erdos-Renyi
model [30]: it is an algorithm that takes as arguments (i)
the number of nodes to be created and (ii) either the total
number of edges or the probability that a link between
two nodes exists. Then, the algorithm proceeds to consult
iteratively random sources to decide where edges are going
to be placed.

Small world networks [39] are a graph topology where
usually two nodes are connected by a low number of hops
and where often neighbor nodes share other neighbors
in common. Frequently, these graphs are characterized
by the presence of cliques (i.e. subgraphs where each
couple of nodes is directly linked) and hubs, which serve
as connectors among highly clustered groups of nodes.
Several examples of real networks that exhibit a small
world structure exist, i.e. food chains, electric power
grids, neural networks, telephone call graphs and social
influence networks. Detecting if a graph is a small world
can be useful in various application areas. For example,
in medicine it can give information about how a disease
spreads within a population, while in telecommunications
and computer science it is possible to exploit the knowledge
on the structuring of the graph in order to optimize the
dissemination and the storage of data [9].

Two metrics are commonly used in order to evaluate if a
graph has a small world property [3]:

– Average shortest path length (ASPL). In unweighted
graphs, the shortest path is the path that connects
two nodes with the minimum number of hops. The
ASPL is thus calculated averaging the shortest paths
among all the couples of connected nodes. The shortest
path can be computed by using the classic Dijkstra’s
algorithm [11], and the procedure is iterated for n∗(n−
1) times in the worst case. The overall time complexity
of the algorithm is O(|V |2|E| + |V |3log|V |).

– Average clustering coefficient (ACC). The clustering
coefficient of a node is the fraction that indicates the
percentage of the neighbors of such a node that are
in turn directly linked. It basically tells how much the
friends of a node (i.e. the node neighbors) are friends
among themselves. The average clustering coefficient
of the whole network is obtained by averaging the
clustering coefficients of all the nodes. It produces an
output ranging from 0 to 1: the higher the value the
more clustered is the graph.

The two mentioned metrics can be used to characterize a
small network as follows. Such values have to be compared
with a random graph, created with the same number of
nodes and edges. Then, one can state that the graph features
small world properties if, compared to a random graph of the
same size, the average clustering coefficient is significantly
higher and the average shortest path length similar (or
smaller) [15].

In practice, all this can be measured by computing the
following metrics

σ =
C
Cr

L
Lr

841Peer-to-Peer Netw. Appl. (2022) 15:839–853



In this last formula, C is the ACC of the analyzed graph
and Cr is the ACC of the random graph. Similarly, L is
the ASPL of the analyzed graph and Lr is the ASPL of the
random graph. The higher σ , the more pronounced the small
world behaviour is.

Other graph topologies exist, for example scale-free
networks are characterized by the degree distribution
following a power law. In these types of graphs there are few
hubs connected with a large number of nodes, while most of
the nodes are scarcely connected [8].

3 The DiLeNa tool

The proposed software, that is freely available on the
research group website [10], is modular and it is composed
of two main components (as shown in Fig. 1):

– Graph Generator: it is in charge of downloading the
transactions of the examined DLT, generated during the
time interval of interest. Then, a directed graph is built,
that represents the interactions among the nodes. The
vertices of the graph correspond to the addresses in the
DLT and, for each transaction, an edge directed from
the sender to the recipient of the transactions is made (if
not already existing).

– Graph Analyzer: this module is in charge of calculating
the typical metrics related to the obtained graph. Among
the others, the tool is able to measure the degree
distribution, network clustering coefficient, as well as
to identify the main component and some of its main
metrics, such as the average shortest path. Moreover,
the tool computes if the network is a small world, by
comparing it with a corresponding random graph (with
the same amount of nodes and edges).

The generated graph is stored in Pajek format [34].
This format is particularly efficient for our scope, since
it is an optimized data encoding format for graphs, that
allows to save space, by mapping the addresses (represented
by hexadecimal strings of about 40 characters each) with

an incremental integer. For example, one day of Bitcoin
transactions (e.g. 1st September 2020) needed 125.8 MB to
be stored in Pajek format, while with the standard JSON
representation, the amount of memory consumed was 368.6
MB.

3.1 Graph generator

As already mentioned, this module is in charge of retrieving
a set of transactions, by inspecting the distributed ledger
related to the cryptocurrencies under study. Needless to say,
every DLT stores its transactions according to a different
encoding format. Moreover, each DLT typically provides
its own set of specific Application Programming Interfaces
(APIs) to inquiry the ledger and retrieve contents. Thus,
for each DLT a different data retrieval methodology (and
software module) has been implemented.

For instance, as concerns Ripple, a Python library
is available, named python-ripple-lib, which allows to
download up to 100 transactions given a certain period
of time. Due to such a limit, in case that larger datasets
are required, multiple requests have to be performed,
until the whole time interval of interest is covered.
Regarding Ethereum, in a previous version of DiLeNa,
the transactions were downloaded by using Infura, a
service that provides access to a remote Ethereum node
through APIs. However, recent restrictions on the free
version of Infura lead us to lean on Etherscan.io, a
block explorer and analytics platform for Ethereum.
Dogecoin’s transactions are retrieved from the website
SoChain [35], which offers the functionality of blockchain
explorer. The site also shows the content of other
blockchains, like ZCash, Litecoin and Dash. So extending
the software for such distributed ledgers should be trivial
work. Finally, in order to get Bitcoin transactions, we
use the “curl” library to query the Blockchain.info [4]
website.

More specifically, the download phase was designed to
follow a parallel approach: the user can optionally define the
number of concurrent workers to use (1 by default) in order

Fig. 1 DiLeNA’s modular design: the graph generator retrieves the transactions graph of a certain DLT and then the graph analyzer calculates the
requested metrics
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to better share the workload for the requests of blocks and
transactions.

3.2 Graph analyzer

This module has been specifically implemented in Python
in order to have a seamless interaction with the NetworkX
library, a software package for the analysis and the
manipulation of graphs and complex networks [18].

Under the usage viewpoint, the Graph Analyzer enables
the user to specify what graph is to be analyzed and then to
compute some metrics provided by NetworkX. In particular,
for our scope we are mainly interested in:

– Degree Distribution;
– Average Clustering Coefficient (ACC);
– Average Shortest Path Length (ASPL) of the main

component.

After completing these computations, the Graph Ana-
lyzer generates a new random graph with the same number
of nodes and an equivalent number of edges using the well-
known Erdos-Renyi model. This makes possible a compar-
ison between the two graphs that is necessary to find if the
networks that are analyzed have small world properties. It
is worth noticing that, also in this case, we implemented the
computation of the metrics enabling a parallel execution. In
fact, the user has the chance to define the number of workers
to be used (a single worker is used by default).

3.3 Design and implementation issues

To be able to perform the analysis described above, the first
issue that needs to be properly addressed is how to automate
the download of transactions from the DLTs. Generally
speaking there are two main options for downloading slices
of a distributed ledger:

– An API that, among other things, allows downloading
blocks and/or transactions.

– Blocks and/or transactions are available (usually in
JSON format) on certain web pages. In this case,
once the indices of blocks corresponding to the desired
period of time are found, all one has to do is to iterate
requests to the site by using the right parameters.

There are also cryptocurrencies, however, for which none of
the two methods is available. Thus, if one wanted to retrieve
the data of such cryptocurrencies, it would be necessary to
download the full distributed ledger, often made of hundreds
of gigabytes. Furthermore, there are some cryptocurrencies
like Monero with a particular focus on privacy that prevent
the observer from accessing some information. Monero
is built on top of a public blockchain, but most of its
portions are encrypted. Senders, recipients and amounts

being transferred are hidden to third parties through the use
of stealth addresses, RingCT and Bulletproofs [23].

Another problematic aspect concerns the parallelization
of the download. In the proposed version of the software (for
Ripple, Ethereum and Dogecoin) the user can specify the
number of workers that will manage the retrieval of blocks
and transactions. Though, it happens frequently that the
server replies with a 429 HTTP status code, indicating that
a rate limit mechanism is implemented and that too many
requests have been issued. When this occurs, the program is
paused for a few seconds before resuming its activity. Thus,
it is advised to use a limited number of concurrent workers
in order to not overload the servers with too many requests.

Once the transactions are downloaded, the biggest
concern is how to calculate the metrics linked with the
shortest path in a reasonable amount of time. For example,
the average shortest path length can require up to several
months to complete, while metrics such as the clustering
coefficient or the degree distribution are almost immediate
to compute. A parallel approach can significantly reduce
the amount of time required for the metrics, sharing the
workload among multiple workers (i.e. each worker can be
executed on a different CPU core). However, this may not be
sufficient to get the results in an acceptable amount of time,
so it could be necessary to only consider a random sample
of nodes on which to calculate the shortest path length.

Another problem that arises with large-scale graphs is
that their representation in a data structure could exceed
the space available in RAM on the computer used for the
analysis. This often requires a more complex management
of the memory and a costly (in terms of time) access to the
secondary storage. To mitigate this issue, the adoption of
the Pajek format, to represent the generated graphs, can be
really useful. In fact, it saves a lot of space with respect to
the JSON format that is often used. For example, a single
month of Ethereum transactions required 1.9 GBs to be
stored in JSON and just 540 MBs in Pajek.

4 Analysis of the results

In this section, the outcomes of our analyses are discussed.
As mentioned, we will report the outcomes from Bitcoin,
DogeCoin, Ethereum and Ripple.

4.1 Setup, methodologies and performance

Our main intention was to analyze the behavior of the
most popular cryptocurrencies’ ledgers in a specific time-
frame (i.e. all the transactions in a specific day or month,
in our case either 1st September 2020 or the entire month
of September 2020). While most of the metrics do not
require a lot of time to be calculated, the average shortest
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path length is very critical timewise. In order to mitigate
this problem, we investigated the viability to consider just
a sample of the nodes of the main weakly connected
component, thus reducing the number of times that Dijkstra
algorithm needs to be applied. For example, with a sample
of 1/n nodes, just 1/n2 of the total paths of the main
component need to be computed. From our experiments
(Table 1), it turns out that the difference between the actual
results and the sampled results is negligible (around 1%
of difference using a sample including 10% of the nodes).
Thus, for the sake of computation, we decided to adopt such
a technique. However, even with the use of samples, the
Dijkstra algorithm remains time-dependent on the number
of nodes and edges of the main component, therefore
calculating the average shortest path length on very big
graphs always remains very time consuming.

Different sample sizes were applied, depending on the
size of the graph. For example, to study one month of Ripple
transactions we used a 20% sample. The analysis took 19
hours to complete, 6h37m for the retrieved graph and the
rest for the random graph. In this case, the generation of
the random graph only lasted 10 minutes, but in other cases
it is a very long operation, requiring up to some days. The
server used for conducting this analysis is equipped with an
Intel Xeon CPU E3-1245 (v5 @ 3.50GHz) running Ubuntu
18.04.5 LTS.

Analyzing one day of Ethereum transactions (sample:
10%) required 14 hours, most of them (i.e. 11h35m) for
computing the ASPL of the random graph. In general, to
calculate the metrics on the random graph is much more
time consuming compared to the retrieved graph. This is due
to the higher ASPL, always detected in the random graphs,
which directly protracts the time required to compute such
a metric.

4.2 Ripple

Released in 2013, Ripple is both a cryptocurrency and
a platform that allows, with negligible fees (only there
to prevent Denial-of-Service attacks), to connect banks,
payment providers and digital asset exchanges, by offering
a solution for real-time money transfers that could be
slow and costly due to different countries and currencies
involved. Ripple was thought as a bridge currency between

Table 1 Analysis of the Ripple’s transactions graph: one day of
transactions, comparison of different samples size

Sample Size Main Component ASPL Difference

10% 4.4548 0.98%

25% 4.395 0.37%

100% 4.4116 –

fiat currencies when making cross-border payments or
between crypto and fiat currencies. Unlike most of the
cryptocurrencies, Ripple does not use a blockchain as a
distributed ledger. Transactions are stored in a network
made of independent validating nodes that constantly
compare their transaction records and the consensus
is achieved by using the Ripple Protocol Consensus
Algorithm. Ripple has the advantage of being extremely
fast to validate transactions, achieving to validate up
to 1500 transactions per second [25], against the 7
transactions per second manageable by Bitcoin in its
maximum throughput [6]. However, unlike most of the other
cryptocurrencies, the system is not fully decentralized, since
all the Ripple tokens are pre-mined but only some of them
are available to the market, being periodically released at the
discretion of the company that controls the system, Ripple
Lab [20]. At the time of writing (i.e. April 2021), Ripple
is the forth cryptocurrency by market capitalization, only
behind Bitcoin, Ethereum and Binance Coin [1].

Another interesting characteristic of Ripple is that it is
possible to avoid the noise caused by the presence of change
addresses, created in Bitcoin-like systems when a part of
the input has to be returned to the sender of a transaction.
Ripple allows for different types of transactions [2] like the
creation or the removal of accounts, payment channels and
escrows. However, here we focus on payments, since they
are the only type of transaction through which it is possible
to directly map a sender and a receiver of economical funds.

Figure 2 shows the degree distribution of the graph
resulting from one day of Ripple transactions (September
1st, 2020). Most of the nodes interacted just sporadically,
with more than 7 out of 10 nodes just having either
incoming or outgoing edges but not both of them. It
also turned out that the number of nodes with 0 as out-
degree is almost double compared to the nodes that never
received a transaction. Moreover, there are few hubs with
a large number of interactions. The node with highest
degree (i.e. the most connected node), for example, had
connections with 1125 nodes, that is 11.58% of the whole
network.

After this preliminary evaluation, we have collected and
analyzed a full month of transactions (i.e. September 2020).
The obtained results are reported in Fig. 3. It is worth noting
that, as expected, there are fewer nodes with a very low
degree distribution with respect to the previous graph. This
is due to the fact that there are some nodes that may have
a single interaction in one day, but multiple in a longer
time period. As a result, the percentage of nodes with just
one interaction dropped from 71.6% (as reported in the
first graph) to the 59.5% in the second graph. Regarding
the hubs, there are 4 nodes with more than 10 000 edges,
with the most connected one having connections with 15%
of the nodes. Here 95% of the nodes belong to the main
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Fig. 2 In, out and total degree distribution of the Ripple graph. Based
on the transactions dated: 1st September 2020. The plot is performed
in logarithmic scale on both axes

component, a higher amount with respect to the 89.4%
reported in the one-day transactions graph. Moreover, it is

Fig. 3 In, out and total degree distribution of the Ripple graph. Based
on the transactions dated: September 2020. The plot is performed in
logarithmic scale on both axes

interesting that the size of the one-month graph is just 9.7
times larger (in terms of total nodes) and 6 times larger
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(in terms of edges) with respect to the on-day graph. This
happens because a significant part of the transactions carried
out in 30 days were performed among nodes that already
directly interacted, thus no new node nor new link is added
to the network. In fact, in the one-day graph, 84% of the
transactions happened between two addresses that already
communicated in that direction, and this percentage rises to
93.6% in the one-month graph.

Table 3 shows the outcome of the computed metrics.
We can state that the transactions graph has a small world
behaviour both considering one day and one month of
interactions. In the first case, the ratio of the average shortest
path lengths is 0.28 and the clustering coefficient of the
Ripple graph is almost 600 times greater compared to the
random graph. In the second case the ratio of the average
shortest path lengths is similar (0.24) and ratio of the
average clustering coefficient is even considerably higher
(12512).

The tests over one month of Ripple transactions were
repeated changing configuration for the evaluation of the
average shortest path. By default, the ASPL is calculated
among the nodes belonging to the main weakly connected
component, considering only the couple of nodes that are
actually connected. A second test was made, considering

Table 2 Analysis of the load centrality of the hubs with the highest degree in the transaction graph

Node Degree Load Centrality Node Degree Load Centrality

(a)Ripple hubs’ load centralityRipple hubs’ load centrality (b) Ethereum hubs’ load centrality

13 276 0.1004 30 465 0

12 352 0.0447 24 858 0.0000012

11 935 0.0479 8 418 0.0369

10 863 0.0399 8 384 0.000001

8 697 0.0851 6 992 0

6 860 0.1147 5 514 0.00607

4 818 0.0389 5 100 0

3 785 0.0216 5 055 0.00495

3 251 0.0168 4 622 0.0043

2 753 0.0194 4 484 0.000001

2 684 0.0144

(c) Dogecoin hubs’ load centrality (d) Bitcoin hubs’ load centrality

8 259 0.211 35 597 0.07518

4 601 0.04047 4 571 0.00205

2 678 0.09613 4 438 0.00336

2 209 0.02883 3 753 0.000000027

1 984 0.02489 3 734 0.00106

1 765 0 3 573 0.0031

1 143 0.000008 3 319 0

797 0.01693 3 045 0.00159

716 0.00588 2 958 0.00098

608 0.02464 2 861 0

the main strongly connected component, but no significant
difference was noticed, except that the clustering coefficient
of the main component (which includes 22.2% of the
nodes, against 95% of the weakly connected component)
is considerably higher. Finally, the test was repeated
considering the graph as undirected. Here, some differences
occur: first of all the clustering coefficient is higher, as a
direct consequence of the increased number of links. Then,
for the same reason, the ASPL is lower (3.12). However,
taking into account the comparison with a similar random
graph, also in this case we can state that the transactions
graph has small world properties, even though both the ratio
are slightly higher.

Finally, the load centrality was computed for the most
connected hubs of the system. The load centrality of a node
is the fraction of all shortest paths that pass through that
node. Table 2 shows that, in general, the more the nodes are
connected the more the load centrality tends to be high, even
if a strict correlation cannot be claimed (Table 3).

4.3 Bitcoin

In Bitcoin, accounts are addresses composed of alphanu-
meric characters, generated by applying a hash function
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Table 3 Comparison between the Ripple graph and the equivalent random graph, one day and one month of transactions

Graph Graph ACC Main Comp. ASPL Main Comp. ACC

Ripple (one day) 0.0516 4.4116 0.0561

Random (one day) 0.000089 16.1623 0.000094

Ripple (one month) 0.1489 4.4307 0.1562

Random (one month) 0.000012 18.5325 0.000012

to a generated public key, associated with a given user.
The balance of the wallets is not written somewhere in the
blockchain, so novel transactions must point to a set of
Unspent Transaction Outputs (UTXO), in order to prove
that the sender owns the necessary amount of money for
the payment. Since UTXO inputs must be spent entirely,
when the sum of the pointed inputs of a transaction is
greater than the actual expenditure, then the unspent part
of the inputs are sent back to the original owner, similarly
to the change someone receives after conducting a cash
transaction in a store. For change operations, often differ-
ent addresses are used (the so-called change addresses) [28],
in order to enhance the privacy while making more diffi-
cult the traceability of the blockchain. In fact, there can be
multiple addresses linked to a given wallet. Furthermore,
unlike Ripple and Ethereum (where a transaction can only
have a single address as sender and another one as recipi-
ent), transactions with multiple inputs and multiple outputs
are allowed: in these cases, for our analysis the n input
addresses are mapped with the m output addresses, result-
ing in n ∗ m links. This is possible since one wallet can
have multiple receiving addresses; thus, one can collect the
UTXO associated with these addresses to create a single
transaction.

Similarly to other graphs, the analysis of the Bitcoin
degree distribution shows the presence of very few hubs.
However, here the percentage of active nodes involved with
more than 5 accounts in daily transactions is greater than
10%, a significantly higher fraction with respect to the other
distributed ledgers (see Fig. 4). This is probably due to the
transactions with multiple addresses as input and/or output.
The peculiar thing about the Bitcoin graph is that the most
connected node has a degree (35 597 connections, whose
21 729 are incoming edges) that is almost 8 times greater
than the degree of the second most connected node. Such a
node is linked with the 4% of the other active nodes in the
network.

Like the previously analyzed graph, also the Bitcoin
transactions graph has a small world property. However,
as we can observe from Table 4, the ratio of the average
shortest path length of the transactions graph and the
random graph is 0.69, the highest among our analyses.

4.4 Ethereum

Ethereum, unlike Bitcoin, does not rely on a UTXO model
to retrieve the balance of the accounts [19]. Similarly to
banks, each account has a balance, which increases when it
receives Ethers, and decreases when it sends Ethers to other
users. Thus, there is no need for change addresses, because
all the transactions simply deduct from one account and
add to another. In addition, there are two types of Ethereum
accounts [38]:

– private key controlled user accounts;
– contract code-controlled accounts.

Each contract can be identified by its Ethereum address in
the same way a normal Ethereum user can. In Ethereum,
from the standpoint of the blockchain, transactions have a
single address both as sender and as recipient. This differs
from Bitcoin where transactions with multiple inputs and
multiple outputs are allowed.

Unlike Ripple, just 25.4% of the Ethereum transactions
pass through already existing edges, thus the main part of
the payments are carried out among nodes that have not
communicated between each other in that 24 hours interval.
This percentage grows to 48.4% taking into account the full
month. The degree distribution resulting from our analysis
shows that also here there are few nodes with a very
high degree, thus implying the presence of hubs. Figure 5
shows the degree distribution of the graph resulting from
the transactions performed on 1st September 2020. With
322 467 nodes and just 376 587 edges, it turns out that
80.75% of the nodes belongs to the main weakly connected
component. Almost 2/3 of the nodes just had interactions
with another node and there are 10 nodes with a degree
greater than 4000, including two giant hubs, the first one
having incoming edges with the 9.45% of the network and
the second one having outgoing edges with 7.7% of the
nodes. Considering one month of transactions (September
2020) we have slight differences, as we can notice in Fig. 6.
The ratio edges-nodes is now slightly higher (1.47, versus
1.17 of the one day transactions graph) and the percentage
of nodes with just one interactions fell from 63.66% to
51.59%. The most connected hub here has interactions with
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Fig. 4 In, out and total degree distribution of the Bitcoin graph. Based
on the transactions dated: 1st September 2020.The plot is performed
in logarithmic scale on both axes

just 1.16% of the network and there are other 5 hubs with
over 1% of the possible links.

Table 4 Comparison between the Bitcoin graph and the equivalent
random graph

Graph Graph ACC Main Component
ASPL

Main Component
ACC

Bitcoin 0.02067 10.0886 0.02358

Random 0.00000214 14.7141 0.00000216

Table 5 shows that, also in this case, we can state that
Ethereum transactions graph has a small world behaviour. In
fact, the ratio of the average clustering coefficient between
the transactions graph and the random graph is 14 320, and
the ASPL ratio is 0.13. Regarding the load centrality of the
hubs, unlike Ripple, very few shortest paths pass through the
most connected hubs. Figure 2b shows that among the ten
most connected nodes, just one has a load centrality value
greater than 1%.

The website “Etherscan.io” allows to visualize, other
than normal transactions, also the so called internal
transactions, which are some kind of interactions that
occurred between two smart contracts. Despite the name,
they are not actually considered real transactions, since they
are not directly included in the blockchain. An internal
transaction is triggered whenever a smart contract needs
to send Ethers, Tokens or make some sort of mechanic
on its own. The degree distribution of Ethereum internal
transactions resulted as particularly unbalanced: in the one-
day graph 99% of the addresses just either sent or received
one transaction (99.38% in the one-month graph) while the
most clustered hub has incoming connections with 36.8%
of the nodes (41.1% in the one-month graph). This happens
despite having a similar edges-nodes ratio (around 1.1) with
respect to the Ethereum graphs with normal transactions.

4.5 DogeCoin

Dogecoin is a Litecoin based cryptocurrency, launched in
December 2013. Similarly to Bitcoin, it features Proof-of-
Work as a consensus protocol and the accounts rely on
a UTXO model to get the balance of the accounts (thus
several change addresses will appear). Transactions with
multiple inputs and multiple outputs are allowed. Like
Bitcoin, several input addresses in a transaction can indicate
that these multiple addresses are associated to the same user.

In particular, in our analysis 55 212 transactions have led
to 513 759 binary connections between addresses and to a
total of 143 641 directed edges in the resulting graph. Most
of the transactions were composed of 1-2 inputs and 1-2
outputs, however few transactions with a very big number of
addresses involved were detected. For example, the largest
involved 167 input addresses and 1141 output addresses.
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Fig. 5 In, out and total degree distribution of the Ethereum graph.
Based on the transactions dated: 1st September 2020.The plot is
performed in logarithmic scale on both axes

Table 6 shows that also Dogecoin exhibits small-world
behaviour, having 840 as clustering coefficient ratio and
0.68 as ASPL ratio.

Fig. 6 In, out and total degree distribution of the Ethereum graph.
Based on the transactions dated: September 2020. The plot is
performed in logarithmic scale on both axes

The degree distribution, shown in Fig. 7, has some
peculiarities. First of all, the nodes with 0 out-degree are
almost four times more than the nodes with 0 in-degree.
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Table 5 Comparison between the various Ethereum graphs, one day
and one month of transactions

Graph Graph ACC Main Comp.
ASPL

Main Comp.
ACC

ETH normal (one day) 0.00879 6.9129 0.0103

ETH normal (one month) 0.03025 7.46296 0.03174

ETH internal (one day) 0.0.00646 3.9556 0.00686

ETH internal (one month) 0.00764 4.1599 0.00793

Then, there are significantly more nodes with 2 as out-
degree than nodes with 1 as out-degree. As expected, also in
this case there are few hubs including 7 nodes with a degree
greater than 1000 and the most connected node that is linked
with the 12.3% of the network and through which 21% of
the shortest paths pass (see Table 2c).

4.6 Outcome analysis

The results reported above show that the transaction
graphs of all the analyzed cryptocurrencies have small-
world properties, even though some of them have a more
pronounced behaviour than others.

Regarding one day analyses, Ethereum showed by far
the lowest ASPL ratio (0.13), followed by Ripple (0.27),
Dogecoin (0.68) Bitcoin (0.69). On the other hand, for
which concerns the ACC ratio, Ethereum and Bitcoin had a
value greater than 10 000, while Ripple and Dogecoin had
a value between 500 and 1000. This is probably because
the clusterization level generally tends to grow when the
size of the graph increases. In fact Ripple, considering a full
month of transactions instead of just one day, has an average
clustering coefficient ratio over 10 000 as well.

Several factors must be taken into account when
interpreting the results, such as:

– The presence of change addresses in Dogecoin and
Bitcoin.

– The role of the smart contracts in Ethereum (interac-
tions among groups of users are performed through
smart contracts, that thus become common network
neighbors to all these users).

– The existence of exchange platforms that are connected
to a lot of nodes.

Table 6 Comparison between the Dogecoin graph and the equivalent
random graph

Graph Graph ACC Main Component
ASPL

Main Component
ACC

Dogecoin 0.06665 5.1633 0.06819

Random 0.0000799 7.6305 0.0000763

Fig. 7 In, out and total degree distribution of the Dogecoin graph.
Based on the transactions dated: 1st September 2020. The plot is
performed in logarithmic scale on both axes

– The presence of transactions with multiple inputs and
multiple outputs in Bitcoin and Dogecoin, which also
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Table 7 Comparison of the small world properties among the DLTs, one day and one month of transactions

Distributed Ledger Nodes |E|/|N | ASPL ACC σ

ETH(normal, 1 day) 322 467 1.17 0.13 14 320 110 154

ETH (internal, 1 day) 91 340 1.04 0.3 192 630

ETH (internal, 1 month) 1 458 543 1.07 0.25 30 596 122 003

BTC (1 day) 886 296 2.49 0.69 10 923 15 830

XRP (1 day) 9 717 1.61 0.27 598 2 215

XRP (1 month) 94 593 1.76 0.24 12 512 52 336

DOGE (1 day) 67 111 2.14 0.68 841 1 242

1) DLT 2) Number of Nodes 3) Edges-Nodes Ratio 4) ASPL Ratio 5) ACC Ratio 6) Sigma

lead these cryptocurrencies to have a higher edges-
nodes ratio with respect to Ethereum and Ripple.

– Finally, the common practice to adopt a new address or
wallet for any novel transaction, in order to increase the
users anonymity and unlinkability between transactions
(or at least, reduce the ease to aggregate accounts and
de-anonymize them).

Table 7 shows the mentioned ratio of the metrics, as well
as the σ value.

The different structuring of the systems brings, other than
a different edges-nodes ratio, even to a bigger transactions-
addresses ratio. Figure 8 shows that Ripple has considerably
more transactions compared to the number of addresses
involved with respect to other DLTs. In addition, Ripple
payments-addresses ratio is very irregular, particularly
because the number of involved accounts is subject to severe
fluctuations. In Dogecoin, on the other hand, the number of
active nodes is greater than the number of transactions.

Fig. 8 Transactions - active addresses ratio, data from the first day of
each quarter since late 2015 (Jan 1st, Apr 1st, Jul 1st, Oct 1st)

All the analyzed graphs show the presence of hubs,
while most of the nodes have very few connections.
This is probably due to the presence of cryptocurrencies
exchange platforms (e.g. Binance), which interact with a
lot of accounts that aim to convert fiat currencies into
cryptocurrencies or vice versa. By observing the degree
distribution results, we note that the plots in logarithmic
scale look pseudo-linear. In fact, in all these charts the first
part of the line representing the degree distribution well
approximates a linear decade, thus suggesting a power law
relation. Then, a tail is present with a minimal amount of
nodes with much higher degrees (than others). This suggests
that the considered networks might have a weak scale-free
structure [5].

5 Conclusions

In this paper, we presented the Distributed Ledger
Network Analyzer (DiLeNA), a new software tool designed
for downloading the transactions recorded in certain
Distributed Ledger Technologies (DLTs) and to compute a
set of metrics on the resulting interaction graph. Based on
the current version of DiLeNa, we studied four prominent
DLTs: Bitcoin, Ethereum, Dogecoin and Ripple. Our
analyses revealed that all the transactions graphs taken into
account exhibit small world properties, although in certain
cases such behaviour is more pronounced. Furthermore,
from our tests it turns out that by stretching the period of
time considered for the analyses (in our case from one day
to one month) the small world behaviour becomes more
marked in the observed graphs. This is because while the
ACC of the random graphs tends to decrease when the size
grows, the ACC of the transactions networks remains stable
or even increases, causing the ACC ratio to be higher.

As reported before, the modular structure of DiLeNa
permits to easily add the support for other DLTs, although it
is not always possible to find a way to efficiently automatize
the download of the transactions given a range of time.
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Another future extension of DiLeNa aims to further increase
the computation parallelization throught GPUs. In this case,
the main bottleneck is the lack of support for GPUs in the
current version of the NetworkX library used for computing
some of the metrics described in the paper. In other words,
this will require us to switch to another library or to embed
the metrics computation in DiLeNa using a more efficient
programming language.
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Urbino Carlo Bo within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Coinmarketcap. https://coinmarketcap.com/
2. Ripple, transactions types. https://xrpl.org/transaction-types.html
3. Bassett D. S., Bullmore E. (2006) Small-world brain networks.

The neuroscientist 12(6):512–523
4. Blockchain.info (2020) Blockchain explorer. Website. https://

www.blockchain.com/explorer accessed 27th November 2020
5. Broido A. D., Clauset A. (2019) Scale-free networks are rare.

Nature Commun 10(1):1017. https://doi.org/10.1038/s41467-019-
08746-5

6. Croman K., Decker C., Eyal I., Gencer A. E., Juels A., Kosba
A., Miller A., Saxena P., Shi E., Sirer E. G. et al (2016) On
scaling decentralized blockchains. In: International conference on
financial cryptography and data security. Springer, pp 106–125

7. Dahiya A., Gupta B. B. (2021) A reputation score policy and
bayesian game theory based incentivized mechanism for ddos
attacks mitigation and cyber defense. Futur Gener Comput Syst
117:193–204

8. D’Angelo G., Ferretti S. (2009) Simulation of scale-free networks.
In: Simutools ’09: Proceedings of the 2nd international conference
on simulation tools and techniques, 1-10, ICST (institute for
computer sciences, social-informatics and telecommunications
engineering), ICST, Brussels, Belgium, Belgium

9. D’Angelo G., Ferretti S. (2017) Highly intensive data dissemina-
tion in complex networks. J Parallel Distrib Comput 99:28–50

10. D’Angelo G., Ferretti S., Serena L. (2021) PADS: Parallel and
distributed simulation research group. http://pads.cs.unibo.it/

11. Dijkstra E. W. (1959) A note on two problems in connexion with
graphs:(numerische mathematik, 1 (1959) 269–271)

12. Esposito C., Ficco M., Gupta BB (2021) Blockchain-based
authentication and authorization for smart city applications. Inf
Process Manage 58(2):102468

13. Feng C., Yu K., Bashir A. K., Al-Otaibi Y. D., Lu Y., Chen S.,
Zhang D. (2021) Efficient and secure data sharing for 5g flying

drones: A blockchain-enabled approach. IEEE Netw 35(1):130–
137

14. Ferretti S. (2013) Gossiping for resource discovering: An analysis
based on complex network theory. Futur Gener. Comput Syst
29(6):1631–1644

15. Ferretti S. (2017) On the modeling of musical solos as complex
networks. Inform Sci 375:271–295

16. Ferretti S., D’Angelo G. (2020) On the Ethereum blockchain
structure: a complex networks theory perspective. Concurr
Comput Pract Exper 32(12):e5493

17. Gabielkov M., Rao A., Legout A. (2014) Studying social networks
at scale: macroscopic anatomy of the twitter social graph. In:
The 2014 ACM international conference on Measurement and
modeling of computer systems, pp 277–288

18. Hagberg A., Swart P., S Chult D. (2008) Exploring network
structure, dynamics, and function using networkx. In: Tech. rep.,
Los Alamos National Lab.(LANL), Los Alamos, NM (United
States)

19. Horizen Academy : UTXO vs account model. https://academy.
horizen.io/technology/expert/utxo-vs-account-model

20. Jani S. (2018) An overview of ripple technology & its comparison
with bitcoin technology

21. Li D., Deng L., Bhooshan Gupta B., Wang H., Choi C. (2019)
A novel cnn based security guaranteed image watermarking
generation scenario for smart city applications. Inform Sci
479:432–447

22. Li X., Wang C. A. (2017) The technology and economic
determinants of cryptocurrency exchange rates: The case of
bitcoin. Decis Support Syst 95:49–60

23. Logo M., van Saberhagen N. (2014) Monero (cryptocurrency)
24. Luu L., Chu D. H., Olickel H., Saxena P., Hobor A. (2016)

Making smart contracts smarter. In: Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security,
pp. 254–269

25. Mauri L., Cimato S., Damiani E. (2020) A formal approach for
the analysis of the XRP ledger consensus protocol. In: Furnell
S., Mori P., Weippl E. R., Camp O. (eds) Proceedings of the
6th international conference on information systems security and
privacy, ICISSP 2020, Valletta, Malta, February 25-27, 2020, pp.
52–63. SCITEPRESS

26. Mense A., Flatscher M. (2018) Security vulnerabilities in
ethereum smart contracts. In: Proceedings of the 20th international
conference on information integration and web-based applications
and services, iiWAS2018. pp 375–380, Association for Computing
Machinery, New York, NY, USA

27. Michael J., Cohn A., Butcher J. R. (2018) Blockchain technology.
J 1(7)

28. Monaco J. V. (2015) Identifying bitcoin users by transaction
behavior. In: Biometric and surveillance technology for human
and activity identification XII, vol 9457. International Society for
Optics and Photonics, p 945704

29. Nakamoto S. (2019) Bitcoin: A peer-to-peer electronic cash
system. Tech. rep., Manubot

30. Paul E., Alfréd R. (1959) On random graphs i. Publicationes
Mathematicae (Debrecen) 6:290–297

31. Serena L., Ferretti S., D’Angelo G. (2020) Dilena: Distributed
ledger network analyzer. In: Proceedings of the 3rd workshop
on cryptocurrencies and blockchains for distributed systems,
CryBlock ’20, pp 41–46, Association for Computing Machinery,
New York, NY, USA

32. Shi N., Tan L., Li W., Qi X., Yu K. (2020) A blockchain-
empowered aaa scheme in the large-scale hetnet. Digital
Communications and Networks

33. Singh N., Vardhan M. (2019) Distributed ledger technology based
property transaction system with support for iot devices. Int. J.
Cloud Appl. Comput. 9(2):60–78

852 Peer-to-Peer Netw. Appl. (2022) 15:839–853

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://coinmarketcap.com/
https://xrpl.org/transaction-types.html
https://www.blockchain.com/explorer
https://www.blockchain.com/explorer
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1038/s41467-019-08746-5
http://pads.cs.unibo.it/
https://academy.horizen.io/technology/expert/utxo-vs-account- model
https://academy.horizen.io/technology/expert/utxo-vs-account- model


34. Snijders T. A. (2007) Short introduction to pajek
35. SoChain (2020) Bitcoin block explorer and api. Website. https://

sochain.com/ accessed 27th November 2020
36. Tan L., Xiao H., Yu K., Aloqaily M., Jararweh Y. (2021)

A blockchain-empowered crowdsourcing system for 5g-enabled
smart cities. Comput Stand Interfaces 103517:76

37. Ugander J., Karrer B., Backstrom L., Marlow C. (2011) The
anatomy of the facebook social graph. arXiv:1111.4503

38. Vujicic D., Jagodic D., Randic S. (2018) Blockchain technology,
bitcoin, and ethereum: A brief overview. In: 2018 17th
international symposium INFOTEH-JAHORINA (INFOTEH),
pp 1–6

39. Watts D. J., Strogatz S. H. (1998) Collective dynamics of ’small-
world’networks. Nature 393(6684):440

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Luca Serena CIRI-ICT
Nuovo Campus Universitario
di Cesena, Via dell’Università
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