
https://doi.org/10.1007/s12083-020-00981-8

An efficient secure data compression technique based on chaos
and adaptive Huffman coding

Muhammad Usama1 ·Qutaibah M. Malluhi1 ·Nordin Zakaria2 · Imran Razzak3 ·Waheed Iqbal4

Received: 7 April 2020 / Accepted: 4 August 2020
© The Author(s) 2020

Abstract
Data stored in physical storage or transferred over a communication channel includes substantial redundancy. Compression
techniques cut down the data redundancy to reduce space and communication time. Nevertheless, compression techniques
lack proper security measures, e.g., secret key control, leaving the data susceptible to attack. Data encryption is therefore
needed to achieve data security in keeping the data unreadable and unaltered through a secret key. This work concentrates on
the problems of data compression and encryption collectively without negatively affecting each other. Towards this end, an
efficient, secure data compression technique is introduced, which provides cryptographic capabilities for use in combination
with an adaptive Huffman coding, pseudorandom keystream generator, and S-Box to achieve confusion and diffusion
properties of cryptography into the compression process and overcome the performance issues. Thus, compression is carried
out according to a secret key such that the output will be both encrypted and compressed in a single step. The proposed work
demonstrated a congruent fit for real-time implementation, providing robust encryption quality and acceptable compression
capability. Experiment results are provided to show that the proposed technique is efficient and produces similar space-
saving (%) to standard techniques. Security analysis discloses that the proposed technique is susceptible to the secret key and
plaintext. Moreover, the ciphertexts produced by the proposed technique successfully passed all NIST tests, which confirm
that the 99% confidence level on the randomness of the ciphertext.

Keywords Security · Secure compression · Encryption · Chaotic map

1 Introduction

The aim of securing data during storage or transmission is to
increase the resistance level against various security attacks
and protect the data from accidental modifications, illegal
or unauthorized access [1]. Plenty of efforts were made in
data security to overcome security challenges. The work in

This article is part of the Topical Collection: Special Issue on
Security of Mobile, Peer-to-peer and Pervasive Services in the
Cloud
Guest Editors: B. B. Gupta, Dharma P. Agrawal, Nadia Nedjah,
Gregorio Martinez Perez, and Deepak Gupta

� Muhammad Usama
usama.khanzada@hotmail.com

1 Qatar University, Doha, Qatar

2 Universiti Teknologi PETRONAS, Perak, Malaysia

3 Deakin University, Melbourne, Australia

4 University of the Punjab, Lahore, Pakistan

[2] highlights the importance of cryptography to protect data
storage and transmission. However, cryptographic systems
require high time and space complexity. Moreover, they
have various performance and security limitations [3].
Since conventional cryptographic techniques may not fit
well into the requirements of modern data storage and
communication systems [4], many researchers are keen
to investigate better security solutions. Subsequently, the
underlying properties of the chaotic nonlinear systems such
as randomness, sensitivity were found to be suitable for
achieving cryptographic capabilities [5]. Many researchers
have developed efficient cryptographic techniques based
on chaos theory, and their security features were analyzed
in detail in [6]. On the other hand, data sizes can be
controlled by applying various data compression techniques
during data storage and transmission, e.g., Huffman Coding
(HC), Arithmetic Coding (AC), Lempel Zip (LZ) [7, 8].
Data compression transforms input data (source message
or file) into another form of data, which is smaller in size
(compressed or small output). Compression systems are
based on different ideas and suitability for different types

/ Published online: 19 October 2020

Peer-to-Peer Networking and Applications (2021) 14:2651–2664

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-020-00981-8&domain=pdf
mailto: usama.khanzada@hotmail.com

of input data and produce separate outputs. However, all
compression systems are grounded on the same principle,
that is, compact input data by eliminating redundancy.

Hence, both data compression and encryption are essen-
tial, but their implementation is difficult and complicated,
which requires extensive computation power and resources
to process a large amount of data. Nevertheless, these
two different processes can be employed sequentially for
the same dataset. The sequential implementation of com-
pression and encryption techniques can be classified into
two approaches, i.e., encryption-first and compression-first
approaches. In the encryption-first approach, compression
is embedded into encryption for achieving a higher level of
data security. However, these techniques have insufficient
and relatively reduced compression ratio and performance
as compare to standard compression techniques. Here, com-
pression is by reducing redundancy present in input data,
while encryption also works by reducing redundancy found
in input data. However, encryption does not, in general,
reduce the size of the input data but introduces the signif-
icant randomness in data, thus deeming the compression
process in vain. In the compression-first approach, encryp-
tion is embedded in compression but suffers from severe
processing and security limitations. It needs the output of
the compression operation to be piped to the encryption
operation, which makes this approach more complicated
and time-consuming.

This work focuses on the problems of data compression
and encryption collectively so that compression is carried
out according to a secret key such that the output will
be both encrypted and compressed in a single step.
Towards this end, this work proposes an efficient, secure
data compression technique by introducing cryptographic
capabilities in adaptive Huffman coding using chaotic
pseudorandom keystream generator and chaotic S-Box.
The proposed technique intends to achieve confusion and
diffusion properties of cryptography into the compression
process of adaptive Huffman coding and overcome the
performance issues of the prior techniques.

The paper is organized as follows. Section 2 discusses
the related work. Section 3 introduces some preliminary
components and work principles related to the proposed
work. The proposed technique and its various parts are
presented in Section 4. Section 5 analyses the compression
and security of the proposed technique. Finally, we provide
concluding remarks in Section 6.

2 Related work

Next-generation data storage and network systems are
proliferating in unique manners due to the proliferation of
diverse and ubiquitous connectivity across mobile systems,

networks, and sensors. Moreover, data is growing into
unprecedented ranges of Terabytes, Petabytes, or even
Exabytes, where users require the continuing at full strength
and intensity of data. The critical issue now is how to ensure
efficient and reliable usage of resources while preserving
the data storage and transmission security. In such a
situation, data encryption and compression techniques are
often applied together to perform secure data compression.
In this direction, many chaotic systems were applied
because of operational efficiency for achieving secure
data compression [9, 10]. Compared with the conventional
sequential implementation, simultaneous data compression
and encryption is aimed to provide data security while also
minimizing data redundancy. Notably, most of the existing
research works were focused on integrating encryption
into conventional data compression techniques [11–13].
Since both encryption and compression have a certain
resemblance and common objective in the sense of secrecy,
which removes redundant data. Furthermore, it is easy to
turn the compression algorithm into an encryption algorithm
by introducing a secret key control [12, 14].

The secure data compression techniques based on HC
can be found in the literature [11–13]. In [15], a unified
data compression and encryption technique is introduced
that swaps Huffman tree (HT) branches, left and right,
by a secret key. Furthermore, multiple mutated trees
were generated for introducing confusion and diffusion
in the compression process. However, all the mutated
trees generated by this approach were fixed in size.
Thus, a new optimized multiple HTs technique [13] was
suggested to overcome the fixed size mutated trees issue
by statistical-model-based compression for generating the
mutated tables. Afterward, enhanced technique over [15],
was proposed in [11] using chaotically mutated Huffman
trees. It overwhelmed the multiple codeword issues in [15]
by increasing the keyspace. The idea of this technique
was like Huffman tree mutation, but it controls the tree
updates by chaotic pseudorandom keystream. However,
this technique suffers from a known-plaintext attack [12].
Further, an improved technique over [11] was presented
in [12] by incorporating two chaotic functions to increase
resistant level against known-plaintext attacks. Still, the
length of the codewords attained by the statistical model
continued unaffected, and the resulting system was found
vulnerable against known-plaintext attacks [14].

Nevertheless, secure data compression techniques based
on HC still possess stern security vulnerabilities [16].
These techniques implement the concept of the tree
mutation for achieving data compression and encryption
at the same time. In contrast, data encryption is achieved
by incorporating a secret key mechanism to control
and randomize the Huffman tree process. Therefore, the
integrating of encryption features in HC has been primarily

2652 Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

limited to the control of Huffman tree branches using the
secret key. Further discussion about the most recently used
such secure data compression techniques based on HC and
chaos and their strengths and weaknesses are presented in
Table 1.

3 Preliminaries

Chaos theory is well-known due to its ability to effectively
change to initial condition and parametric control values,
which makes the entire system unpredictable and random
[17]. The nonlinear dynamical systems of chaos theory
can be employed for cryptographic purposes when they
successfully implemented in infinite precision computing
to achieve confusion and diffusion [18]. Thus, a straight-
forward and common application of chaos is to design a
pseudorandom keystream generator [19]. The chaoticity of
one-dimensional chaotic maps can be tested easily with
different desirable properties in them, and it can be acces-
sible to rigorous mathematical analysis and experiments
such as Lyapunov exponent [20] and Bifurcation analysis
[21]. This work implies the chaotic Logistic map to gen-
erate pseudorandom keystream due to its complex, chaotic
behavior.

3.1 Chaotic logistic map

The Chaotic Logistic Map (CLM) is popular one-
dimensional chaotic map that confirms effective change to
initial condition and parametric control values [22]. CLM
proves complex chaotic behavior and satisfies various cryp-
tographic basics such as unpredictability and randomness

[18, 22]. Equation 1 defines CLM:

xn+1 = Fλ(xn) = λxn(1 − xn) (1)

where 0 < xn ≤ 1; n= 0, 1, 2 ; λ is a parametric
control value in range 0 < λ ≤ 1; and x0 is the initial
condition. The rigorous Bifurcation and Lyapunov exponent
results are presented in Figs.1 and 2, respectively that
confirms chaotic behavior of the CLM beyond parametric
control value λ at 3.57, where, orbits {xn}∞n=0 are distributed
in a uniform manners between 0 and 1. The design proposed
in this work employs the value of λ= 3.57 to generate a
pseudorandom keystream for stealth key control to shuffle
or randomize the symbols codes during Adaptive Huffman
Tree (AHT) generation process.

3.2 Pseudorandom Keystream Generator based on
CLM

The CLM was carefully implemented for generating
pseudorandom keystream for key control in the proposed
work. CLM requires two input parameters, an initial value
x0 and parametric control value λ to iterate and obtain
the next value xn. Further, these two inputs x0 and λ are
considered as a secret key. The xn value is then used to
generate c a threshold t value. The threshold t value is set as
t = 0.5 (according to uniform probability model) as per (2):

Bn =
{
0 0 ≤ xn < t

1 t ≤ xn ≤ 1
(2)

The pseudorandom keystream is obtained from real
values xn of CLM by comparing with threshold are
presented in Fig. 3.

Table 1 A discussion about some recently used approaches based on HC

Technique Strength Weakness

Design of integrated multimedia
compression and encryption sys-
tems [15].

1) It provides high compression
ratio. 2) It swaps HT branches,
left and right, using the control
key.

1) Poor processing speed. 2) All
the mutated trees generated by
this approach were fixed in size.

Joint compression and encryption
using chaotically mutated Huff-
man trees [11].

1) It overcomes multiple code-
word issues and enlarge the key
space of [15]. 2) It controls the
tree updates using the PRKG.

1) Poor processing speed. 2)
Vulnerable to known-plaintext
attack.

Securing Multimedia Transmis-
sion Using Optimized Multiple
Huffman Tables Technique [13].

1) Optimized multiple HTs tech-
nique. 2) It overcomes the fixed
size mutated trees issue by sta-
tistical model for generating the
mutated tables.

1) The length of the code-
words obtained by the statistical
model remained unchanged. 2)
The resulting system was vulner-
able to known-plaintext attack.

A Chaos-based Joint Compres-
sion and Encryption Scheme
Using Mutated Adaptive Huff-
man Tree [13]

. 1) Two chaotic functions were
adopted to avoid known-plaintext
attacks.

1) It offers very poor com-
pression and decompression effi-
ciency. 2) Weak security issues.

2653Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

Fig. 1 Bifurcation diagram of the CLM [14]

The process of generating pseudorandom keystream by
CLM is described as follows:

Inputs andoutputs: The PRKG based on CLM requires two
inputs, secret key K and length L of the pseudorandom
keystream, where, inputs x0and λ are considered as a secret
key K . KS is an output pseudorandom keystream.

Step 1. Initialize the counter value i = 1 and output
pseudorandom keystream KS to empty.

Step 2. Calculate the value by CLM as: x1 = λx0(1−x0).
Step 3. If obtained x1 value is greater or equal to 0.5, then

go to Step 5 else go to Step 6.
Step 4. Concatenate 1 with KS as KS = KS ‖ 1,

(where the symbol “ ‖ ” represents concatenation
operation) and go to Step 6.

Step 5. Concatenate 0 with KS as KS = KS ‖ 0.

Fig. 2 Lyapunov exponent of the CLM [14]

Fig. 3 Trajectory of two pseudorandom keystreams, where x0 = 0.19
for blue, x0 = 0.37 for orange and λ = 3.99

Step 6. Set x0 = x1 (to keep x1 value for the next iteration
of CLM in Step 2).

Step 7. Increment the counter value as i = i + 1.
Step 8. Check, if i ≥ L, then go to Step 9 else go to Step

2.
Step 9. End of the pseudorandom keystream generation

process.

3.3 Chaotic S-Box

A substitution box (S-Box) plays a central role in many
conventional symmetric-key techniques in order to prevent
differential and linear cryptanalyses [14]. Currently, these
two are an extremely effective cryptanalyses attack [23].
Nevertheless, the major issue of the conventional S-Boxes
is the static behavior and utilized as a fixed-size lookup
table without any secret key control. Thus, chaotic systems
were employed to produce dynamic S-Box with key control
instead of being fixed [24, 25]. This work uses an efficient
method proposed by Usama et al. [25] for constructing S-
Boxes to perform data substitution and introduce confusion
and diffusion in the proposed work without compromising
compression capabilities. The presented method requires a
secret key K as an input of size 106-bit to generate dynamic
S-Box. Table 2 presents the output S-Box constructed using
Usama et al. method [25], where, inputs x0and λ are set to
be x0 = 0.85 and λ = 0.99 as a secret key K .

4 The proposed work

This work focuses on incorporating the recent results
of chaos theory, which has proven to exhibit strong
cryptographic properties into Adaptive Huffman Coding
(AHC) to overcome the security and performance issues
of the prior techniques. As per the literature review, the
chaotic behavior of the CLM is favorable to achieve the

2654 Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

Table 2 The output S-Box of the proposed method

confusion and diffusion properties of cryptography. Hence,
an efficient, secure data compression technique (ESDC)
is introduced, such that output is secured and compressed
simultaneously (Fig. 4).

HC is a well-known data compression technique. It
consists of two main parts, i.e., the statistical model known
as the Huffman tree and the compression engine. It utilizes
the Huffman tree to code the data symbols by assigning
shorter codewords to more frequent symbols. However,
to accomplish the compression process, it requires two
times the scanning of input data. First, it needs to create
a statistic model from input data symbols to construct the
Huffman tree. Second, the compression engine assigns a
shorter codeword to input data symbols using a constructed
Huffman tree. An improved version of the HC was
presented in [26] that does not require two times scanning
for data compression, known as AHC.

AHC also consists of two main parts, i.e., the statistical
model and the compression engine. However, it mutates
the statistical model known as the adaptive Huffman tree
and assigns the shorter codewords at the same time. Thus,
it needs to scan input data only one time to complete the
compression process. AH tree (AHT) plays an essential
role in the AHC coding process to achieve efficient
compression efficiency (when AHT matches the exact
statistical characteristics of data). More importantly, there
are three advantages of these two separate parts that are used
as design principles to implement the proposed work:

1. AHC allows to shuffle or randomize the probabilities
of the symbols during the AHT generation process,
which leads to the achievement of Shannon’s suggested
fundamental properties of confusion and diffusion.

2. AHC allows symbol substitution or changes to the
order of the symbols before updating AHT and

data encoding, which provide significant flexibility
to introduce complexities in the compression process
without compromising compression capabilities.

3. AHC allows for integrating different cryptographic
processes. For example, it will enable masking the
coding output with some pseudorandom keystream that
can enhance encryption quality.

Thus, this work carries out the following three operations
in AHC to implement the above mentioned three operations,
respectively, so that output is secured and compressed,
simultaneously with key control:

1. Proposed work employed CLM to introduce key control
in the compression and decompression processes of the
AHC, named as secure adaptive Huffman coding (See
Section 4.1).

2. The proposed work incorporates a chaotic S-Box
construction method [25] to perform data substitution
without compromising compression capabilities.

3. The proposed work implements a masking pseudoran-
dom keystream using PRKG based on CLM (presented
in Section 3.1) that enhances encryption quality.

The component-level block diagram of the proposed
ESDC technique with their sequence to perform secure data
compression and decompression is presented in Fig. 5. It
consists of three main components chaotic S-Box, secure
adaptive Huffman coding, and PRKG. The description of
each component is provided in the following sections. The
process of the ESDC technique to perform secure data
compression by chaotic S-Box, secure adaptive Huffman
coding, and PRKG is described as follows:

Inputs and outputs: The secure data compression is
performed by introducing three secret keys K1,K2, andK3
(each key is a combination of the initial value x0 and control
parameter λ for their respected chaotic map). K1 is used
for chaotic S-Box [25] to construct dynamic S-Box, and K2
and K3 are used to generate the pseudorandom keystreams
using CLM. Here, I is the input data,L represents the length
of the input data, and C represents the output (compressed
and encrypted data).

Step 1. Generate the initial AHT.
Step 2. Generate the chaotic S-Box using secret key K1.

(See: Usama et al. S-Box construction method
[25])

Step 3. Initialize the counter value i = 1 and output data
D to empty.

Step 4. Read the input symbol Ii from input data I .
Step 5. Substitute the input symbol Ii using chaotic S-

Box, the output symbol is si .
Step 6. Encode the si by secure adaptive Huffman coding

method using key K2 (See: Section 4.1.1). The

2655Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

Fig. 4 Component level block
diagram of the ESDC

output code ci . Concatenate the ci with the output
data as D = D ‖ ci (where the symbol “ ‖ ”
represents concatenation operation).

Step 7. Increment the counter value asi = i + 1.
Step 9. Check, if i > L, then go to Step 9 else go to Step

4.
Step 10. Finally, key K3 generates a pseudorandom

keystream KS using PRKG based on CLM (See:
Section 3.2) and masks the completed output data
D. Simple XOR operation is used to mask the
output ofD, which enhances overall randomness.
This step produces the final ciphertext C as C =
D ⊗ KS.

Step 3. End of secure data compression.

The secure data decompression is like a secure data
compression technique. It just reverses the order of secure

Fig. 5 AHT node structure

data compression. It requires the same three secret keys
K1, K2, and K3 as that used in the encoding process.
Firstly, it decrypts the ciphertext using PRKG based on
CLM with the secret key K3, then decodes the data using
secure adaptive Huffman Decoder with secret key K2, and
then performs inverse substitution using chaotic S-Box by
Usama et al. method [25] with secret key K1. Finally, it
produces the original plaintext data. The process of the
secure data decompression is described as follows:

Inputs and outputs: The secure data decompression is
performed by the same three secret keys K1, K2, and K3
(each key is combination of the initial value x0 and control
parameter λ for their respected chaotic map) as that used in
secure data compression. Where C is the input ciphertext
data, and P represents the output plaintext data.

Step 1. Generate keystream using PRKG based on CLM
with K3 (See: Section 3.2). It produces the
keystream KS. This KS is used to unmask the
ciphertext C to get the compressed data D as D =
C ⊗ KS.

Step 2. Generate the initial AHT.
Step 3. Generate the chaotic S-Box using secret key K1.

(See: Usama et al. S-Box construction method
[25])

Step 4. Initialize the plaintext data P to empty.
Step 5. Read the compressed code c from compressed data

D.

2656 Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

Step 6. Decode the c by secure adaptive Huffman coding
method using key K2, the output code s.

Step 7. Substitute the output code s, using chaotic S-Box,
the outputs symbol is I . Concatenate I with P as
P = P ‖ I , (where the symbol “ ‖ ” represents
concatenation operation).

Step 8. Check, check the end of the file; if the file ends,
then go to Step 9 else go to Step 5.

Step 9. End of secure data decompression.

4.1 Secure adaptive Huffman coding

As mentioned earlier, AHC mutates the AHT and assigns
the shorter codewords to produce compress output at the
same time. AHT is a binary tree that has the shortest
weighted path length. The node structure contains node
number, symbol, and weight, as shown in Fig. 4. Thus, each
node must have a unique number and symbol with its weight
in AHT.

AHT generation process starts with a “RAW” node
and keeps updating the AHT after performing encoding
or decoding input symbol, according to the data statistics
[26]. The details of data encoding and decoding processes
are provided in the following sections. The process of the
updating AHT is described as follows:

Inputs and outputs: The AHT updating process requires a
symbol as an input and outputs updated AHT.

Step 1. Check, if the input symbol is included in AHT,
then go to Step 10 else go to Step 2.

Step 2. Generate a new node for input symbol with
weight 1.

Step 3. Generate a new “RAW” node.
Step 4. Add new symbol node and new “RAW” node as

children nodes of the old “RAW” node. Continue
with this node.

Step 5. Increase the node weight and go to Step 10.
Step 6. Continue with the parent node.
Step 7. Check for the most weighted node; if it is the

highest weighted node, then go to Step 9 else go
to Step 8.

Step 8. Swap the current node with the most weighted
node.

Step 9. Increase the node weight.
Step 10. Check for the root node; if it is the root node, then

go to Step 11 else go to Step 6.
Step 11. End of the AHT update process.

The proposed work incorporates a stealth key control to
shuffle or randomize the symbols codes during the AHT
generation process. As per the literature review, the chaotic

behavior of the CLM is in favor of achieving the confusion
and diffusion properties of cryptography. To randomize
the compression process, two rules are incorporated in the
update process of the AHT by pseudorandom keystream
generated using CLM. CLM is an iterative map that requires
two input values x0 and λ to obtain xn values from Eq. 1.
The obtained xn value is used to apply the rule as given
below:

1. If obtained xn value is greater or equal to 0.5 then add
new symbol node on the right and RAW node on the
left.

2. If obtained xn value is less than 0.5 then add a new
symbol node on the left and RAW node on the right.

Here, the uniform probability model is adapted to assign
an equal probability to each rule. Moreover, the input
parameters x0and λ of the CLM are used as a secret key.
The process of updating AHT using CLM is described as
follows:

Inputs and outputs: The process of updating AHT using
CLM is performed by introducing input secret keyK (which
is a combination of the initial value x0 and control parameter
λ for CLM). It requires a symbol as an input and outputs
updated AHT.

Step 1. Check, if the input symbol is included in AHT,
then go to Step 2 else go to Step 2.

Step 2. Generate a new node for input symbol with
weight 1.

Step 3. Generate a new “RAW” node.
Step 4. Calculate the new value by CLM as: x1 =

λx0(1 − x0). As mentioned earlier, the input
parameters x0and λ of the CLM are used as a
secret key to new obtain x1.

Step 5. If obtained x1 value is greater or equal to 0.5, then
go to Step 6 else go to Step 7.

Step 6. According to rule 1, add a new node on the right
and new “RAW” node on left as children nodes
of the old “RAW” node. Continue with this node
and go to Step 8.

Step 7. According to rule 2, add a new node on the left
and new “RAW” node on the right as children
nodes of the old “RAW” node. Continue with this
node.

Step 8. Set x0 = x1 (to keep x1 value for the next
iteration of CLM in Step 4).

Step 9. Increase the node weight and go to Step 14.
Step 10. Continue with the parent node.
Step 11. Check for the most weighted node; if it is the

highest weighted node, then go to Step 13 else go
to Step 12.

2657Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

Step 12. Swap the current node with the most weighted
node.

Step 13. Increase the node weight.
Step 14. Check for the root node; if it is root node, then go

to Step 15 else go to Step 10.
Step 15. End of the AHT update process.

Note: In above mentioned AHT updating steps, AHC and
AHT implementation details are not included. This work
only focused on providing the difference and modification
in the AHC technique for secure data compression.
Implementation details of the AHC and AHT can be found
in [26].

4.1.1 Encoder

The data encoding process requires a symbol as an input
to produce output compressed code using AHT [26]. In the
end, it updates the AHT for input symbol [26]. The process
of the data encoding is described as follows:

Inputs andoutputs: Encoder require symbol as an input and
outputs compressed code.

Step 1. Check, if the input symbol is new using AHT, then
go to step 2 else go to step 3.

Step 2. Output the code for RAW, followed by the fixed
code of the input symbol.

Step 3. Output the code of the existing symbol from AHT.
Step 4. Update the AHT for input symbol using the

method described in the secure adaptive Huffman
coding section.

4.1.2 Decoder

Like the data encoding process, the decoder takes the
compressed code as input to decode the original symbol
using AHT [26]. The decoding process also requires
updating AHT after decoding the original symbol according
to the data statistics [26]. The process of data decoding is
described as follows:

Inputs and outputs: Decoder require compressed code as
an input and outputs decoded symbol.

Step 4. Decode the code to get a symbol using AHT.
Step 2. Check, if the input code is RAW, then go to step 3

else go to step 4.
Step 3. Use the fixed code to decode the code to get the

symbol.
Step 4. Update the AHT for the decoded symbol using a

method described in the secure adaptive Huffman
coding section.

5 Experiment analysis

The experimental analysis begins with defining the experi-
ment setup for benchmarking the proposed technique. The
required input files, software, and description of input data
generation are also described. The performance of the pro-
posed technique was evaluated to justify their superiorities
over those similar existing techniques. Also, the strength of
the proposed technique, as well as its various parts, are ana-
lyzed concerning the related parameters per the definitions
in this paper.

5.1 Experiment design

The proposed technique and its different related parts
were implemented using Java. A Personal Computer
running Windows 7 with 3GB DDR3 RAM and Pentium-
IV 2.4 MHz processor is used. Calgary Corpuses are
commonly used to measure the performance of any
compression technique as the standard benchmark input
data. Hence, standard Calgary Corpuses [27] were used in
the experiments to evaluate the performance of the proposed
technique and their various aspects. The data compression
techniques such as AC and AHC are well-known for
producing comparatively good compression efficiencies.
Hence these compression techniques are taken as the
base reference against the performances of the proposed
technique. Furthermore, prior techniques for joint operation
of the data compression and encryption are also taken
as a reference against the performance efficiencies of the
proposed technique. These techniques are Chaotic Mutated
Adaptive Huffman Tree (CMAHT) [12], Chaotic Huffman
Tree (CHT) [11], and Simultaneous Arithmetic Coding and
Encryption (SACE) [10]. All techniques are implemented
using Java language and were benchmarked using Calgary
Corpus files [27].

5.2 Compression efficiency analysis

The primary concern of any data compression technique
is to reduce storage space. The ability to reduce the data
size by a compression technique can be measured by
determining its compression efficiency in terms of space-
saving (%) capability [28, 29]. Literature studies indicate
that any compression technique that produces higher space-
saving (%) is supposed to be robust and efficient for
saving disk space and reducing transmission overheads [28,
29]. In this section, the discussion of space-saving (%) is
included to evaluate and show the compression efficiency
of the proposed technique in comparison to well-known
compression techniques and prior techniques for performing
the joint operation of compression and encryption. Space-
saving (%), produced by the proposed technique and other

2658 Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

existing techniques, was calculated using Eq. 3 [29]:

Space Saving (%) =
(
1 − Input data size

Output data size

)
× 100

(3)

The comparison results are presented in Table 3. Results
demonstrate that the proposed technique produced similar
space-saving (%) to AC and AHC techniques with slight
variations. Thus, the space-saving (%) results identified
that the proposed technique has acceptable compression
efficiency while also providing adequate security. The
detailed security analysis is presented in the security
analysis section.

5.3 Processing time analysis

This section presents the processing efficiency offered by
the proposed and various existing techniques. In any data
storage and communication system, the processing time is
an important factor as the entire data need to be stored or
transmitted for processing within a specified time frame
[1]. Thus, it is essential to measure the processing time of
the proposed technique to justify performance efficiency.
Equation 4 is used to calculate processing time:

Processing time = Process end time − Process start time (4)

The performances of the proposed technique were
compared with their corresponding current simultaneous
data compression and security techniques. Tables 4 and
5 demonstrate a processing time comparison between the
proposed and CHT, CMAHT, and SACE techniques running
on standard Calgary Corpus input files. Results showed that
the proposed technique was the fastest while performing
data compression and encryption simultaneously, compared
to the corresponding existing techniques.

Calgary Corpus test files were compressed and encrypted
by standard AC and AHC with AES as well. Tables 6
and 7 give a comparison for processing time between the
proposed, AC and AHC with AES techniques. These results
showed that both well-known compression techniques AC
and AHC were the fastest while performing only data
compression without any encryption capabilities. Results
show that the proposed technique requires less processing
time compared to two separate operations. In a nutshell,
experimental results show that AC and AHC had the
fastest compression speeds, while proposed technique is
in third place. Apart from well-known coding techniques,
the proposed technique offered better time efficiency
than the other existing simultaneous compression and
encryption techniques. Hence, it can be claimed that
the proposed technique is efficient compared to the
corresponding related techniques to perform simultaneous
compression and encryption by reducing the space and time
overheads.

Table 3 Comparison of proposed and existing techniques with respect to space-saving (%)

File Compression techniques Existing simultaneous compression and encryption techniques Proposed technique

AC HC CHT CMAHT SACE

bib 31.64 31.96 31.96 31.86 31.99 31.85

book1 40.76 40.46 40.46 40.41 40.03 40.41

book2 37.68 37.42 37.42 37.23 36.70 37.23

geo 26.21 26.67 26.67 26.48 26.15 26.48

news 32.91 32.68 32.68 32.47 31.81 32.47

obj1 18.80 22.07 22.07 18.45 19.41 18.45

obj2 19.56 19.48 19.48 16.83 18.46 16.84

paper1 33.62 34.65 34.65 33.79 33.57 33.82

paper2 38.91 39.41 39.41 39.10 38.79 39.10

paper3 37.20 38.51 38.51 38.19 37.57 38.19

paper4 31.06 36.47 36.47 36.01 36.19 36.02

paper5 27.46 33.46 33.46 32.42 32.86 32.42

paper6 32.50 34.10 34.10 32.60 33.31 32.69

pic 81.20 77.34 77.34 76.90 77.65 76.91

progc 30.56 32.12 32.12 31.30 31.41 31.35

progl 36.30 37.01 37.01 36.01 36.01 36.03

progp 34.51 35.70 35.70 34.98 36.85 34.98

trans 27.33 27.71 27.71 26.69 27.59 26.73

2659Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

Table 4 Processing time (seconds) offered by proposed and existing techniques to perform secure data compression

File Existing simultaneous compression and encryption techniques Proposed technique

CHT CMAHT SACE

bib 393.73 988.26 218.43 137.32

book1 998.53 1593.58 375.88 192.33

book2 303.96 744.48 272.00 125.12

geo 150.24 29.08 47.14 28.69

news 155.90 342.90 158.66 115.19

obj1 42.02 87.46 11.41 9.37

obj2 201.63 160.61 96.17 63.81

paper1 25.89 33.82 18.56 14.38

paper2 31.01 46.69 18.37 18.59

paper3 20.95 23.50 33.64 12.81

paper4 9.27 12.53 13.29 7.71

paper5 8.17 26.89 5.16 7.48

paper6 22.94 68.14 4.25 12.73

pic 101.95 231.03 130.09 53.58

progc 19.01 29.80 13.71 12.83

progl 29.75 86.85 26.51 17.57

progp 22.26 26.54 20.56 14.57

trans 87.45 281.30 147.87 26.83

5.4 Security analysis

Along with an adequately sized key, the cryptographic
technique should produce an output that is indistinguishable

from random for any input data to prevent an attacker
to discover the input data statistics and to minimize any
relationship within cipher output. Furthermore, the cipher
output should be highly sensitive and dependent upon the

Table 5 Processing time (seconds) offered by proposed and existing techniques to perform secure data decompression

File Existing simultaneous compression and encryption techniques Proposed technique

CHT CMAHT SACE

bib 194.51 488.22 266.75 172.29

book1 288.15 609.86 669.18 135.94

book2 211.77 518.67 472.08 99.39

geo 43.87 8.49 92.44 27.57

news 143.74 316.17 307.04 65.88

obj1 15.97 33.25 23.61 8.94

obj2 115.87 92.30 220.95 47.90

paper1 18.93 24.73 46.86 13.47

paper2 27.47 41.35 39.44 16.70

paper3 17.71 19.87 66.05 14.80

paper4 7.70 10.41 27.55 7.54

paper5 5.20 17.12 17.01 7.00

paper6 16.52 49.09 9.00 10.81

pic 68.37 154.94 316.36 40.28

progc 14.64 22.96 37.32 11.19

progl 27.41 80.02 61.15 16.86

progp 16.67 19.87 44.53 13.34

trans 41.43 133.26 126.39 21.03

2660 Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

Table 6 Processing time (seconds) offered by compression, encryption, proposed and sequential compression and encryption techniques to
perform compression and encryption

File Compression techniques Encryption technique Sequential compression and encryption Proposed technique

AC HC AES AC + AES HC + AES

bib 135.39 126.76 332.54 281.71 319.84 137.32

book1 220.51 143.80 1127.45 1007.68 823.21 192.33

book2 165.81 92.53 894.76 747.89 703.13 125.12

geo 26.07 43.30 174.85 170.45 160.64 28.69

news 93.83 65.73 537.14 467.30 458.55 115.19

obj1 8.05 9.66 38.39 59.87 34.92 9.37

obj2 58.47 44.34 341.66 375.91 313.83 63.81

paper1 11.62 9.84 70.72 92.02 53.46 14.38

paper2 19.93 15.94 128.47 121.14 85.22 18.59

paper3 13.64 8.46 58.85 64.05 46.89 12.81

paper4 5.08 4.28 17.68 23.04 16.55 7.71

paper5 3.21 3.15 15.50 26.99 20.39 7.48

paper6 12.62 8.64 67.23 91.38 84.36 12.73

pic 77.69 43.04 791.92 248.63 212.00 53.58

progc 9.14 7.38 48.79 50.89 40.33 12.83

progl 16.75 13.07 100.10 110.94 77.74 17.57

progp 11.90 8.94 87.32 75.79 47.95 14.57

trans 92.16 14.19 132.46 179.57 102.63 26.83

Table 7 Processing time (seconds) offered by compression, encryption, proposed and sequential compression and encryption techniques to
perform decompression and decryption

File Compression techniques Encryption technique Sequential compression and encryption Proposed technique

AC HC AES AC + AES HC + AES

bib 115.38 74.98 405.93 290.44 286.42 172.29

book1 298.13 90.40 1806.12 1424.10 1169.79 135.94

book2 197.64 47.19 1480.98 1101.37 947.99 99.39

geo 37.78 9.01 246.14 244.78 185.26 27.57

news 127.66 63.98 852.26 729.25 669.72 65.88

obj1 11.00 4.60 49.73 49.34 46.85 8.94

obj2 90.71 48.40 588.10 551.81 531.43 47.90

paper1 17.65 4.32 121.88 100.96 81.18 13.47

paper2 26.03 6.79 224.20 140.99 135.36 16.70

paper3 15.24 3.80 99.81 90.41 71.07 14.80

paper4 7.53 3.25 30.73 27.33 25.58 7.54

paper5 4.14 1.39 27.42 32.04 25.82 7.00

paper6 21.11 4.54 131.73 90.22 110.73 10.81

pic 155.76 13.92 1229.81 375.93 291.22 40.28

progc 17.99 4.24 90.51 87.13 73.97 11.19

progl 26.52 7.11 171.33 157.86 130.67 16.86

progp 18.02 4.40 129.87 109.88 80.33 13.34

trans 50.98 7.55 216.06 208.55 179.55 21.03

2661Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

key and plaintext such that a single bit is altered within
the key or plaintext, the cryptographic technique should
produce entirely different output every time. The proposed
technique was designed to achieve high security while
reducing data storage and transmission overheads. The
security analysis of the proposed technique and its various
parts are evaluated in the following sections through several
assessment parameters.

5.4.1 Key space analysis

Cryptographic techniques should have sufficiently large
enough keyspace to prevent the attacker from decoding
the ciphertext or reveal the key in any reasonable time
[17]. Henceforth, this section discusses the keyspace of the
proposed technique. The proposed technique utilizes CLM
for two purposes. First, CLM was employed to generate
pseudorandom keystreams and second to randomize the
compression process in the update process of the AHT.
The CLM is iterative chaotic map (start from two input
parameters, an initial value x0 and a control parameter λ)
and obtain xn values from Eq. 1. The obtained xn values
from CLM are then converted to generate pseudorandom
keystreams. These input parameters x0and λ are used
as a secret key for generating pseudorandom keystreams
from CLM. As mentioned earlier, this work employed an
efficient method proposed by Usama et al. in [25] for
constructing S-Boxes to perform data substitution. This
method is based on the mixing property of the chaotic Sine
map, where the initial value x0 and control parameter λ

were used as a secret key K . Thus, the proposed technique
requires six input parameters. If they are comprehended
in a finite precision system, then the keyspace is ∼318
bits. According to the [17], the keyspace of the proposed
technique is acceptable to resist brute-force attacks and
satisfy cryptographic requirements.

5.4.2 Key and plaintext sensitivity

Along with a sufficient keyspace, the cryptographic
technique should produce a random output from any input
data to prevent an attacker from discovering the input data
statistics and minimizing the relationship within cipher
output [17, 30]. Moreover, the cipher output should be
highly sensitive and dependent upon the key and plaintext
such that if the even single bit is altered within the key
or plaintext, the cryptographic technique should produce
entirely different output every time [18]. The key sensitivity
is the bit change percentage of the ciphertexts obtained
after performing the data encryption process using slightly
different keys. Experiments were performed by changing
x0 = 0.30896 to x′

0 = 0.30897 to assess the key sensitivity,
where ciphertext incurred from the corresponding Calgary

Corpus files [27] were compared. Similarly, plaintext
sensitivity of the proposed technique was assessed by
randomly toggling a single bit in the plaintext while
performing secure data compression with the same key,
where ciphertext incurred from the corresponding Calgary
Corpus files [27] were analyzed.

The bit change percentage for key sensitivity analysis of any
cryptographic algorithm must possess a 50% change in bits to
resist against cryptanalysis attacks [31]. Table 8 provides an
experimental result for key and plaintext sensitivity trials of
the proposed technique. Results show that the bit-change-
percentage for both analyses was very close to the ideal
value 50%. This confirms that the proposed technique is
highly sensitive to input key and plaintext.

5.4.3 Randomness analysis of the proposed technique

The NIST SP800-22 [32] test suite is the most common
tool for randomness analysis. This study applied the NIST
suite to perform the randomness analysis of the proposed
technique. This suite includes fifteen statistical tests, where
each test gives p-values between 0 and 1. This p-value is
further applied to evaluate the randomness of ciphertext
by defining the significance level α, e.g., whenp < α,
the ciphertext is non-random otherwise random. In this
work, the significance levelα is set to 0.01 to confirm
99% confidence level for the randomness analysis of the
proposed technique. Table 9 lists all computed p values
for all tests with default input parameter settings defined in

Table 8 Key sensitivity analysis of ESDC

File Key sensitivity Plaintext sensitivity

bib 50.1441 49.9049

book1 50.0791 49.5351

book2 50.0867 49.9958

geo 50.1548 49.8277

news 50.0735 50.0418

obj1 50.0528 49.9784

obj2 50.0699 49.4375

paper1 50.0761 49.5703

paper2 50.1109 49.9181

paper3 50.0765 50.4847

paper4 50.2837 49.9058

paper5 50.1851 50.609

paper6 50.0557 49.9222

pic 50.1083 50.6542

progc 50.0753 49.7119

progl 50.0847 50.1187

progp 50.0971 49.894

trans 50.1198 50.0457

2662 Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

Table 9 NIST randomness test results

Statistical test Proposed technique

p-value Result

Frequency 0.2474 Success

Block frequency 0.6714 Success

Runs 0.0167 Success

Long runs of one’s 0.7697 Success

Binary Matrix Rank 0.0270 Success

Spectral DFT 0.1587 Success

No overlapping templates 0.5340 Success

Overlapping templates 0.5335 Success

Universal 0.4365 Success

Linear complexity 0.2796 Success

Serial 0.9393 Success

Approximate entropy 0.7847 Success

Cumulative sums 0.2575 Success

Random excursions 0.7 Success

Random excursions variant 0.4425 Success

the NIST statistic test suite. Results clearly show that the
proposed technique successfully passed all NIST tests, thus,
proved secure with a 99% confidence level.

6 Conclusion

This work concentrates on the problems of data compres-
sion and encryption collectively without negatively affect-
ing each other. An efficient, secure data compression tech-
nique was introduced, which provides cryptographic capa-
bilities for use in combination with an adaptive Huffman
coding, pseudorandom keystream generator, and S-Box.
This work carries out three operations in adaptive Huffman
coding, so that output is secured and compressed, simulta-
neously with key control. 1) The proposed work employed
a chaotic Logistic map to introduce key control in the
compression and decompression processes of the adaptive
Huffman coding, named as secure adaptive Huffman cod-
ing. 2) The proposed work incorporates a chaotic S-Box to
perform data substitution without compromising compres-
sion capabilities. 3) Furthermore, implementing a masking
pseudorandom keystream based on chaotic Logistic map
enhanced encryption quality. Thus, data compression is car-
ried out according to a secret key such that the output
will be both encrypted and compressed in a single step.
Experimental results proved that the proposed technique
achieved faster processing time compared to performing the
encryption and compression techniques as separate steps.
The proposed algorithm decisively achieved secure data
compression; thus, proving useful for real-time implementa-

tion by reducing data space and transmission consumption.
Security analysis also revealed that the proposed work is
highly sensitive to both key and plaintext and that the gener-
ated ciphertexts successfully passed all NIST tests showing
that the randomness of the ciphertext has 99% confidence
level. Compression efficiency analysis demonstrates that
the proposed technique produced similar space-saving (%)
to standard techniques with slight variations while also
providing adequate security.

Funding This publication was made possible by the NPRP award
NPRP8-2158-1-423 from the Qatar National Research Fund (a
member of The Qatar Foundation). The statements made herein are
solely the responsibility of the authors. Open access funding provided
by the Qatar National Library.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

1. Bajaj S, Sion R (2014) IEEE Trans Knowl Data Eng 26(3):752.
https://doi.org/10.1109/TKDE.2013.38. http://ieeexplore.ieee.org/
document/6468039/

2. Gentry C (2010) Commun ACM 53(3):97.
https://doi.org/10.1145/1666420.1666444. http://portal.acm.org/
citation.cfm?doid=1666420.1666444

3. Xiaolin Y, Nanzhong C, Zhigang J, Xiaobo. C. (2010)
In: 2010 Second International Workshop on Education
Technology and Computer Science. IEEE, pp 329–332.
https://doi.org/10.1109/ETCS.2010.460. http://ieeexplore.ieee.
org/document/5458952/

4. Puangpronpitag S, Kasabai P, Pansa. D. (2012) In: 2012 9th
International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology.
IEEE, pp 1–4. https://doi.org/10.1109/ECTICon.2012.6254320.
http://ieeexplore.ieee.org/document/6254320/

5. Baptista MS (1998) Phys Lett A 240(1-2):50.
https://doi.org/10.1016/S0375-9601(98)00086-3

6. Fridrich J (1998) Int J Bifurcat Chaos 8(06):1259.
https://doi.org/10.1142/S021812749800098X

7. Starosolski R (2014) J Vis Commun Image Represent 25(5):1056.
https://doi.org/10.1016/j.jvcir.2014.03.003. http://linkinghub.
elsevier.com/retrieve/pii/S1047320314000595

8. Chen S. k. K. (2011) Comput Stand Interfaces 33(4):367.
https://doi.org/10.1016/j.csi.2010.11.002. http://linkinghub.
elsevier.com/retrieve/pii/S092054891100002X

9. Nagaraj N, Vaidya PG, Bhat KG (2009) Commun Nonlinear
Sci Numer Simul 14(4):1013. https://doi.org/10.1145/1666420.
cnsns.2007.12.001

2663Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1109/TKDE.2013.38
http://ieeexplore.ieee.org/document/6468039/
http://ieeexplore.ieee.org/document/6468039/
https://doi.org/10.1145/1666420.1666444
http://portal.acm.org/citation.cfm?doid=1666420.1666444
http://portal.acm.org/citation.cfm?doid=1666420.1666444
https://doi.org/10.1109/ETCS.2010.460
http://ieeexplore.ieee.org/document/5458952/
http://ieeexplore.ieee.org/document/5458952/
https://doi.org/10.1109/ECTICon.2012.6254320
http://ieeexplore.ieee.org/document/6254320/
https://doi.org/10.1016/S0375-9601(98)00086-3
https://doi.org/10.1142/S021812749800098X
https://doi.org/10.1016/j.jvcir.2014.03.003
http://linkinghub.elsevier.com/retrieve/pii/S1047320314000595
http://linkinghub.elsevier.com/retrieve/pii/S1047320314000595
https://doi.org/10.1016/j.csi.2010.11.002
http://linkinghub.elsevier.com/retrieve/pii/S092054891100002X
http://linkinghub.elsevier.com/retrieve/pii/S092054891100002X
https://doi.org/10.1016/j.cnsns.2007.12.001
https://doi.org/10.1016/j.cnsns.2007.12.001

10. Wong KW, Lin Q, Chen J (2010) IEEE Trans Circ Syst II: Express
Briefs 57(2):146. https://doi.org/10.1109/TCSII.2010.2040315

11. Hermassi H, Rhouma R, Belghith S (2010) Commun Non-
linear Sci Numer Simul 15(10):2987. https://doi.org/10.1016/j.
cnsns.2009.11.022

12. Zhu ZL, Tang Y, Liu Q, Zhang W, Yu H (2012) In: 2012 Fifth
International Workshop on Chaos-fractals Theories and Appli-
cations. IEEE, pp 212–216.https://doi.org/10.1109/IWCFTA.
2012.52. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6383208

13. El-said SA, Hussein KFA, Fouad MM (2011) Int J Signal Process
Image Process Pattern Recogn 4(1):49

14. Usama M, Zakaria N (2017)
15. Wu CP, Kuo CCJ (2005) IEEE Trans Multimed 7(5):828.

https://doi.org/10.1109/TMM.2005.854469
16. Zhou J, Au OC, Wong PHW (2009) IEEE Trans Signal Process

57(5):1825. https://doi.org/10.1109/TSP.2009.2013901
17. ALVAREZ G, LI S (2006) Int J Bifurcat Chaos 16(08):2129.

https://doi.org/10.1142/S0218127406015970
18. Usama M, Khan MK, Alghathbar K, Lee C (2010) Comput Math

Appl 60(2):326. https://doi.org/10.1016/j.camwa.2009.12.033.
http://linkinghub.elsevier.com/retrieve/pii/S0898122110000064

19. Luca A, Ilyas A, Vlad A (2011). In: ISSCS 2011 - International
Symposium on Signals, Circuits and Systems. IEEE, pp 1–
4. https://doi.org/10.1109/ISSCS.2011.5978664. http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5978664

20. Schuster HG, Just W (2006) Deterministic chaos: an introduction,
4th edn. Wiley, New York

21. Zhu H, Zhao C, Zhang X (2013) Signal Process Image Commun
28(6):670. https://doi.org/10.1016/j.image.2013.02.004

22. Kanso A, Smaoui N (2009) Chaos Solitons Fract 40(5):2557.
https://doi.org/10.1016/j.chaos.2007.10.049. http://linkinghub.
elsevier.com/retrieve/pii/S0960077907009320

23. Biham E, Shamir A (1991) J Cryptol 4(1):3.
https://doi.org/10.1.1.31.2000

24. Belazi A, Rhouma R, Belghith S (2015) In: 2015 International
Wireless Communications and Mobile Computing Conference
(IWCMC). IEEE, pp 611–615. https://doi.org/10.1109/IWCMC.
2015.7289153. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=7289153

25. Usama M, Rehman O, Memon I, Rizvi S (2019) Int J Distrib
Sens Netw 15(12):155014771989595. https://doi.org/10.1177/
1550147719895957

26. Vitter JS (1987) J ACM 34(4):825. https://doi.org/10.1145/
31846.42227. http://portal.acm.org/citation.cfm?doid=31846.
42227

27. Witten J, Bell I, Cleary T Calgary Corpus (1990). http://www.
data-compression.info/Corpora/CalgaryCorpus/

28. Zhan W, El-Maleh A (2012) Integr VLSI J 45(1):91.
https://doi.org/10.1016/j.vlsi.2011.05.001. http://linkinghub.
elsevier.com/retrieve/pii/S0167926011000514

29. Klein ST, Shapira D (2014) Discret Appl Math 163:326.
https://doi.org/10.1016/j.dam.2013.08.022. http://linkinghub.
elsevier.com/retrieve/pii/S0166218X13003636

30. Peng JPJ, Jin SJS, Chen GCG, Yang ZYZ, Liao XLX (2008)
Fourth Int Conf Natur Comput 4:601. https://doi.org/10.1109/
ICNC.2008.227

31. Mishra M, Mankar VH (2012) pp 169–179.
https://doi.org/10.1007/978-3-642-30111-7 17

32. Rukhin A, Soto J, Nechvatal J, Miles S, Barker E, Leigh S,
Levenson M, Vangel M, Banks D, Heckert A, Dray J, Vo S (2010)
Natl Inst Stand Technol 800:131

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

2664 Peer-to-Peer Netw. Appl. (2021) 14:2651–2664

https://doi.org/10.1109/TCSII.2010.2040315
https://doi.org/10.1016/j.cnsns.2009.11.022
https://doi.org/10.1016/j.cnsns.2009.11.022
https://doi.org/10.1109/IWCFTA.2012.52
https://doi.org/10.1109/IWCFTA.2012.52
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6383208
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6383208
https://doi.org/10.1109/TMM.2005.854469
https://doi.org/10.1109/TSP.2009.2013901
https://doi.org/10.1142/S0218127406015970
https://doi.org/10.1016/j.camwa.2009.12.033
http://linkinghub.elsevier.com/retrieve/pii/S0898122110000064
https://doi.org/10.1109/ISSCS.2011.5978664
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5978664
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5978664
https://doi.org/10.1016/j.image.2013.02.004
https://doi.org/10.1016/j.chaos.2007.10.049
http://linkinghub.elsevier.com/retrieve/pii/S0960077907009320
http://linkinghub.elsevier.com/retrieve/pii/S0960077907009320
https://doi.org/10.1109/IWCMC.2015.7289153
https://doi.org/10.1109/IWCMC.2015.7289153
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7289153
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7289153
https://doi.org/10.1177/1550147719895957
https://doi.org/10.1177/1550147719895957
https://doi.org/10.1145/31846.42227
https://doi.org/10.1145/31846.42227
http://portal.acm.org/citation.cfm?doid=31846.42227
http://portal.acm.org/citation.cfm?doid=31846.42227
http://www.data-compression.info/Corpora/CalgaryCorpus/
http://www.data-compression.info/Corpora/CalgaryCorpus/
https://doi.org/10.1016/j.vlsi.2011.05.001
http://linkinghub.elsevier.com/retrieve/pii/S0167926011000514
http://linkinghub.elsevier.com/retrieve/pii/S0167926011000514
https://doi.org/10.1016/j.dam.2013.08.022
http://linkinghub.elsevier.com/retrieve/pii/S0166218X13003636
http://linkinghub.elsevier.com/retrieve/pii/S0166218X13003636
https://doi.org/10.1109/ICNC.2008.227
https://doi.org/10.1109/ICNC.2008.227
https://doi.org/10.1007/978-3-642-30111-7_17

	An efficient secure data compression technique based on chaos and adaptive Huffman coding
	Abstract
	Introduction
	Related work
	Preliminaries
	Chaotic logistic map
	Pseudorandom Keystream Generator based on CLM
	Inputs and outputs:

	Chaotic S-Box

	The proposed work
	Inputs and outputs:
	Inputs and outputs:

	Secure adaptive Huffman coding
	Inputs and outputs:
	Inputs and outputs:
	Note:

	Encoder
	Inputs and outputs:

	Decoder
	Inputs and outputs:

	Experiment analysis
	Experiment design
	Compression efficiency analysis
	Processing time analysis
	Security analysis
	Key space analysis
	Key and plaintext sensitivity
	Randomness analysis of the proposed technique

	Conclusion
	References

