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Abstract
Matchmaking players is an important problem in online multiplayer games. Existing solutions employ client-server
architecture, which induces several problems. Those range from additional costs associated with infrastructure maintenance
to inability to play the game once servers become unavailabe (due to being under Denial of Service attack or being shut
down after earning enough profit). This paper aims to provide a solution for the problem of matchmaking players on the
scale of the Internet, without using a central server. In order to achieve this goal, the SelfAid platform for building custom
P2P matchmaking strategies is presented. After the developer creates a service algorithm defining the matchmaking behavior
specific to his/hers case, the SelfAid platform designates a number of player machines to execute the service. Furthermore,
the number of designated machines adapts to the demand. SelfAid uses only spare resources of player machines, following
the trend of sharing economy. A distributed algorithm is presented and its correctness is proven.

Keywords P2P · Games · Resource management · Large-scale distributed systems · Matchmaking

1 Introduction

Video games are a popular form of entertainment. In
January of 2018, Steam, one of the most successful gaming
platforms, hosted as much as 18.5 million concurrent users
[1]. Video games are also appealing to business. According
to [2] worldwide PC game market was estimated to be
worth $36 billion in 2016. The market is composed of
many types of games. Some of the most popular and widely
recognized categories include: simulation, strategy, action,
role-playing, fighting, adventure, puzzle [3–6].

Although game genres significantly differ from one
another, many games have one thing in common: they
can be played between many players. Games, which
additionally can be played over the Internet, as opposed
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to playing on a local network or one machine, are called
online multiplayer games. For example, ”Counter Strike:
Global Offensive” is a successful (about 400,000 concurrent
players) online multiplayer game, belonging to the action
genre.

Developers of online multiplayer games are not usually
trained in networking, yet need to make their game work
over the Internet. Popular game engines [7–11] make it
easy, by providing high-level features such as distributed
object management or state synchronization. While these
solutions perfectly abstract networking concerns, they rely
on a client-server model, which implies additional costs for
players.

Let us consider a company which wants to release a
game in the client-server architecture. In order to create
a global gaming experience, by connecting players all
over the world, the company needs to provide publicly
accessible servers. They may decide to invest in their
own infrastructure. This would mean building a specialized
server room, hiring administrators, buying hardware. What
is more, they would have to over-provision servers to be
able to handle load peaks. Another possible way is to move
infrastructure to the cloud. Whether running on a private
infrastructure or in the cloud, servers generate maintenance
costs. The price is ultimately paid by players in monthly fees
or watching advertisements. In addition, this model makes it
very difficult to release free multiplayer games. Also, when
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people who released the game shut down servers, players
will not be able to play it anymore.

Recently the idea of ”sharing economy” emerged,
informally defined as ”a socio-economic ecosystem built
around the sharing of human and physical resources. It
includes the shared creation, production, distribution, trade
and consumption of goods and services by different people
and organisations” [12–14]. A recurring pattern present
in several successful ”sharing economy” based companies
is making use of un- or under- used resources. Airbnb
[15] built its business model on renting spare housing
space. Uber [16] takes advantage of underutilized cars by
proposing a taxi-like service. BlaBlaCar [17, 18] makes use
of empty car seats on longer trips.

Multiplayer games may also profit from ”sharing
economy”. User bandwidth and computing power may be
thought of as an underused resource. While playing a game
at home, CPUs and bandwidth are not utilized completely,
except for some extremely resource-hungry games. Sharing
bandwidth with others does not impose additional costs, as
most Internet Service Providers (ISPs) offer unlimited data
plans to domestic users. By making use of these resources, it
is possible to develop multiplayer games and charge players
only for game content. Thus making games more appealing
to the customers by lowering the overall price.

This goal may be achieved using the P2P model [19–21].
P2P is a decentralized communication model, where each
participating node has the same rights (there are no ”special”
nodes). The term peer-to-peer (P2P) refers to direct com-
munication between parties with equal rights. Some people
incorrectly assume that fulfilling this criterion is enough for
any system to be called P2P. What really brings together
systems called P2P are the goals they aim to achieve and
benefits associated with them. One of the goals is shift-
ing the balance of computation from central servers to
regular, personal computers. Another goal is to use other-
wise unused distributed resources such as computing power,
storage, network bandwidth. Common benefits include scal-
ability and eliminating the need for expensive infrastructure
such as servers and specialized networks.

Expecting that some work in applying P2P model to the
area of computer games has been done already, an analysis
of literature related to the problems of P2P multiplayer
games was performed. The majority of reviewed articles
presented solutions for either synchronizing the game state
[22, 23] or contributed to other elements directly associated
with playing the game [24, 25]. However, there is a research
subject other than those two, which becomes apparent after
examining the shortcomings of the reviewed articles. [23]
did not take issues of trust and safety into account and a
central directory service had to be used in order to find
other players. [22] assumed a static division of the game
world and a coordinator for each game region. [25] put a

severe limitation on the size of playing group and did not
discuss how players find opponents. Solution described in
[24] generates a lot of network traffic, because each action
is broadcasted to all players in the region and a byzantine
voting is frequently performed.

The crucial observations include the fact that [23] had
to use a central directory service in order to find other
players and [25] did not discuss how players find opponents.
Both works left out the problem of matchmaking players
in a P2P environment. Matchmaking in multiplayer video
games is the process of connecting players together for
online play sessions. The primary task of a matchmaking
system is to find another person willing to play. However,
existing matchmaking systems, which function in the client-
server model [26], may connect players in many ways. The
most simple case is random matchmaking, in which players
subsequently connecting to the server play with each other.
Another way is to allow players to create named game
instances. Since they are publicly visible, other players may
see all of them and join a game instance of their choice.
It may also be the case that a global ranking system exists
(such as ELO [27], Trueskill [28]) and that players with
similar ranking scores are chosen to play together. Players
may be connected based on other criteria such as age or
country as well.

Many matchmaking strategies compare multiple possible
matches and choose an approximately satisfying result. For
example, when searching for one opponent based on ELO
ranking and knowing that it’s desired for ranking difference
between players to not exceed 100. We still would choose
to match players with 120 ranking points difference if no
better matches are available after, say, 1 minute — as players
are unwilling to wait longer. To be able to compare multiple
possible matches it’s necessary to gather player requests.

In a P2P setting comprised of end-user machines it’s
necessary to take churn into account (ongoing process of
new nodes joining and leaving the network). Thus, we
propose to direct player requests to a group of nodes which
will process it. Concretely, we propose a failure resistant
group structure, which enables efficient workload division
among its members. The structure elects one node as a
leader. Furthermore, we describe a design of the system
composed of multiple groups and show how to use it to
implement custom matchmaking strategies.

This paper aims to provide a solution for the problem of
matchmaking players in multiplayer games on the scale of
the Internet, without using a central server. Implementing
all of the aforementioned strategies in a single library would
be a daunting task. Instead, in the paper we propose a
P2P platform — the SelfAid network, which facilitates the
process of setting up those strategies in a P2P environment,
and ensures their appropriate instantiation, load balancing
and replication.
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With the use of the proposed solution, a game developer
can obtain a matchmaking system for his game by providing
only a specific matchmaking strategy (further in the
paper called a service algorithm). The SelfAid platform is
responsible for creating (at runtime) processes running the
defined service algorithm at the machines of some players.
Furthermore, it finds (provides an IP address of) a process
when a player wants to find an opponent. The traffic to
processes is subject to load balancing. What is more, if load
on the node running the process proves to be too much, the
SelfAid network creates additional processes. This ensures
that the nodes of SelfAid network use only their spare
bandwidth. On the other hand, if the load on processes is too
small (players have to wait for a long time), some instances
are deleted.

Besides introducing the SelfAid network concept, the
paper also discusses the correctness of the proposed solution
— all guarantees exposed by the system described in the
paper are formally defined and proven.

The paper is structured as follows. Section 2 elaborates
on the literature related to the problems of matchmaking
players in P2P multiplayer games. Section 3 describes the
assumed system model. The conceptual project including
functional and non-functional requirements, as well as
detailed description of the Self-aid network is presented
in Section 4. Section 5 contains description of a proof of
concept implementation of the proposed system and an
example of a matchmaking service. Finally, conclusions and
further work are presented in Section 6.

2 Related work

This chapter describes several works related to matchmak-
ing in P2P multiplayer games.

In 2009 Microsoft research released an article describing
a latency prediction system called Htrae [29]. Before, there
existed strategies for minimizing latencies experienced
by players based on either geolocation data or direct
latency measurements. Htrae excels at combining both of
those strategies into one. It works similarly to a network
coordinate system called Vivaldi [30], that is, it assigns
to each peer coordinates in a virtual spherical space (in
Vivaldi the space was non-spherical). The clue of the
system is that the initial positions in the virtual space are
dictated by geolocation data but they are later adjusted
based on latency measurements. This way the distance
in virtual space can be used to predict latency between
any nodes in the system. The system provides means to
predict latencies between players machines, but it is not
a complete matchmaking solution ready to use by game
developers. Htrae was designed with P2P games in mind,
however the system itself is not free of central components

such as GeoIP database or a routing table service for AS
correction.

Switchboard [31] is a P2P matchmaking system for
mobile devices. Switchboard puts emphasis on scalability,
as well as ease of use for game developers. It exposes a
cloud service with a simple API for game developers, allow-
ing them to define a few basic criteria for matchmaking.
The available criteria consist of: tolerance for latency, num-
ber of players, the exact same requirements (e.g. play game
”x” on map ”y”). The main contributions include elabo-
rate methods of predicting latency components specific to
cellular networks, the architecture of the cloud service for
processing matchmaking requests, and the API for game
developers. For latency prediction not specific to cellular
networks, the authors decided to use previously described
Htrae. Similarly to Htrae, Switchboard is a system for P2P
games, but is itself a non-P2P system. Additionally the
matchmaking criteria available to game developers are not
sufficient to connect players based on a ranking scheme.

Both previously described works focused on reducing
latency between players, as the most important problem in
matchmaking. The authors of the next work present another
approach to matchmaking, focusing on providing the best
user experience by using additional data about players to
prevent hostile situations during gameplay. The article [32]
presents an idea for a matchmaking system for the game
”League of Legends” which takes into account the inner
mechanics of the game. The game is played as a match
between two teams. Each team is created from players
chosen (to some degree randomly) by the matchmaking
system. Once the team is formed, each player is allowed
to choose a character whom they will be playing during
the match in order of their ranking (the best player chooses
first). Each available character corresponds to a different
role and style of play and can be chosen only by one player.
The combination of the aforementioned factors results in
the dissatisfaction of lower ranking players when they are
forced to choose a character they do not like. The idea
described in the article is to keep track of the players
preference to specific characters and then compose teams of
people with non-overlapping preferences. This article shows
how case specific matchmaking rules may be required for a
good user experience.

LOM [33], presents an attempt to create a general match-
making system, using an abstract association criterion. The
goal of LOM is to group players into independently running
game sessions comprising of a certain amount of players.
In order to achieve this, a leader for each group is cho-
sen (e.g. randomly). The problem is then transformed into a
minimum-cost flow problem where the source is connected
to a layer of leaders, which in turn is connected to a layer of
members (all players who are not leaders), which converges
in target node. The weights on the arcs between leaders
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and members correspond to the association criterion (which
is defined by game developer as e.g. difference in ranking
score). It is an efficient design of a server-based flexible
matchmaking system.

Each of the mentioned works focuses on a different
matchmaking strategy and presents a concrete solution
for the considered problem. The aim of this paper is to
provide a more flexible solution. Instead of focusing on
a single matchmaking strategy, a platform supporting any
matchmaking strategy is proposed.

3 Systemmodel

The SelfAid system described in this paper is a decentralized
and structured P2P network. It does not feature a central
node (like Napster [34]) or supernodes (like Kazaa [35]).
Instead, all nodes in the system have equal roles — they
perform the same tasks and have the same rights. As all
structured P2P networks, the SelfAid has a precisely defined
set of rules on how nodes should choose with whom they
establish and maintain connection. This set of rules is called
a Distributed Hash Table (DHT) [36] and allows efficient
resource location. Following the trend of sharing economy,
SelfAid network assigns only as much work to a particular
node as it can handle using spare resources.

SelfAid network is a synchronized distributed system,
which means that the Upper bound Transmission Time of
messages [37] is assumed to be known (further abbreviated
UTT). All algorithms presented in this article assume
perfect links (messages are always delivered) and FIFO
channels. Also, it is assumed that failure detection takes at
least UTT. Furthermore, the code is executed in a single
thread to avoid issues related to concurrent modification
of variables. To be able to predict the arrival time of a
message from another node, computation is assumed to be
instantaneous (it cannot cause a message to be delayed). The
code in all algorithms contains no blocking operations. The
considered failure model is crash-stop (halt failure) [38].

SelfAid network operates under the assumption that each
node knows the names (unique identifiers) of all service
algorithms. Once again, a service algorithm is a specific
matchmaking strategy implemented by the game developer.
A game developer may define many service algorithms. A
service algorithm is required to be stateless (SelfAid does
not provide mechanisms to ensure data consistency across
processes). Furthermore, each node is able to run any of
the defined service algorithms when asked by the SelfAid
network. In order to do this, a node has to have the code
or executable of the service algorithm. One way to achieve
this would be for all nodes to get the code or executables of
service algorithms beforehand. For example, the code may
be embedded in data downloaded in order to play the game.

SelfAid network is responsible only for creating processes
and providing contact information to reach them, so clients
have to know the appropriate protocol to communicate with
the service.

4 Concept

The goal of this paper is to provide a platform for building
case-specific matchmaking strategies. The developer imple-
ments one or more service algorithms (a server program
for a concrete matchmaking strategy). SelfAid automati-
cally creates processes of a given algorithm, each running
on a separate machine. SelfAid also makes the processes
available to clients. For a given algorithm, a client receives
addresses of all processes and picks one at random, then
sends a request to it. How this request is handled is deter-
mined by the algorithm implemented by the developer.

Processes executing the same algorithm A form a group
GA. Each group G has one leader, which we name
the coordinator CGA. A coordinator is responsible for
(I) publishing the contact information of the processes
comprising the group, and (II) for recruiting new members
to lessen the load on all processes. Matchmaking requires
accumulating user requests in one place. To ensure that
there is only one group for a matchmaking algorithm, a rule
was established. If there are concurrent groups for the same
algorithm, the one which runs longer will prevail. In case
of ties, the conflicts are resolved deterministically based on
the id of the node which was the first member of the group.
This node is called the original node

The rest of this section is divided into subsections.
First subsection contains a description of the ring structure,
consisting of nodes running an instance of a particular
service algorithm. Variables stored at the nodes are listed
as well. Second subsection discusses how a process running
a particular service algorithm can be found and defines the
concept of an announcement. Third subsection presents the
process of adding new members to the ring structure. Fourth
subsection describes when and how nodes are removed from
the ring structure. Fifth subsection explains how failures in
the ring structure are handled.

4.1 Ring structure

In order to be able to detect failures, instances are organized
in a ring structure, as in the Fig. 1. Each node monitors the
state (up or down) of one other node which is called the
parent. Since the coordinator may fail, its responsibilities
have to be transferred to another node in case of failure.
The responsibilities include publishing announcements,
checking whether they are reachable by clients, adjusting
the number of nodes in the ring. In the beginning this role
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Fig. 1 Processes from a group GA form a ring structure. Arrow points
at parent

is fulfilled by the original node. Later, the node which
detected the failure of a ring coordinator becomes the new
ring coordinator. In figures, the node fulfilling the role of
ring coordinator is distinguished by a bigger size of the node
circle. In Fig. 1, node A is the ring coordinator.

This solution makes the ring more robust in case of
failures because every node knows about all other nodes
in the ring and their order. It is reasonable, assuming that
the number of nodes comprising a particular ring grows
linearly with a small constant (as it should be in case of
matchmaking for games).

4.2 Service algorithm lookup

Service algorithm lookup is the task of finding a process
PA given the identifier of algorithm A. Processes are
located by retrieving from the DHT an announcement
stored under the key corresponding to the A identifier. The
announcement contains, among other things, a list of nodes
hosting processes running A. In order to ensure proper load
balancing, an instance is chosen from the list randomly, with
uniform distribution of probability. If no announcement is
found, a process is created at the node which issued the
request.

As shown in Table 1, an announcement contains the name
of the service algorithm, the list of contact information to
the nodes hosting a process running that algorithm, running
time of the ring, hash of the original node identifier, hash of
the service algorithm name.

It is possible that many nodes simultaneously tried to
lookup a service algorithm which was not run by anybody

Fig. 2 Processing a request to store an announcement. d(x,y) —
function of distance between two hash values

and ended up creating processes unaware about each other.
In order to deal with this situation, the announcement
contains additional information. Announcement contains
hash of the original node’s identifier, hash of service
algorithm name and running time — the time which
elapsed since the moment in which the original node
started its process. A node which received request to store
an announcement stores it if it contains a higher value
of running time than the one currently stored. If it is
impossible to tell which process is running for a longer
time, due to networking delays (the difference in running
times is smaller than parameter ε), the announcement
with the hash value of the original node identifier closer
to the service name hash value is stored. The nodes
publishing announcements must periodically check if their
announcements are stored. If not, they should shut down
because no clients will contact them. The process of
storing an announcement is visualized in Fig. 2 and its

Table 1 Structure of an
announcement Field Type Comment

Service algorithm name String The name of provided service

instances List of contact information (IP) Contacts to running instances

RT TimeSpan Running time

h Hash Hash of the original node identifier

sh Hash Hash of the service algorithm name
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parameters are shown in Table 1. To prevent spreading
outdated information, an announcement is stored for a
limited amount of time (given as parameter RA) and then
deleted. To keep them available, announcements must be
stored periodically in the DHT by the ring coordinator.

Coordinator periodically checks if multiple rings are
operating. In order to do so, it retrieves an announcement
associated with its service algorithm name from the DHT.
Then, it checks if the retrieved announcement comes from
a different ring by checking the hash of original node. It
decides to shut down the ring if the running time stored in
the announcement is longer than the running time stored
by coordinator. If a ring is to be shut down, a SNOTIF
is broadcasted. Then, SHUTDOWN is broadcasted, but in
reverse order. Finally, the coordinator shuts down. When
a node receives SNOTIF, it remembers to rebroadcast
SNOTIF if it becomes the coordinator. When a node
receives SHUTDOWN, it shuts down. Shutting down the ring
is illustrated by Fig. 3.

4.3 Ring construction

Before the functioning of the system is explained, the
variables representing state of each node are described here.
The local ring view is the representation of the ring
— which nodes are in it and how they are connected. Each
node knows the address of parent — the node whose
state it is supposed to monitor (watch). The ring coordinator
watches the youngest node in the ring or a node trying to
become the youngest node in the ring. Since any node may
become ring coordinator, all nodes have to remember the
nodes which they may have to put in the announcement
when they become the coordinator. The sname (service
algorithm name) is a string identifying the service algorithm
which all nodes in the ring provide. Other values needed for
the announcement are orig (the address of original node)
and rt (running time) — the time which elapsed since the

Fig. 3 An example of shutting down the ring

original node created the process. accRt is the snapshot
of running time value stored in the message received when
the node joins the ring (or 0, for original node). Since nodes
may fail, sometimes it is necessary to resend messages. DS
(dead nodes), detected (detected failures) and newNode
are used for this purpose.

Algorithm 1 Key events in the SelfAid platform.

1: recruiting a new node at coordNode
2: newNode get a free node

3: send PARENT to newNode

4: parentNode newNode

5: upon receiving PARENT at newNode

6: launchServiceProcess()

7: send LAUNCH CONF to PARENT.sender

8: upon receiving LAUNCH CONF at coordNode

9: //notify the whole ring about new

10: bcast(NNOTIF(new))

11: upon receiving NNOTIF at newNode

12: parentNode coordNode

13: become established

14: when parentNode failure detected at newNode

15: if next coord candidate = NULL then
16: shutdown

17: end if
18: parentNode next coord candidate

19: send NEW QUESTION to next coord candidate

20: upon receiving NEW QUESTION at coordNode

21: if new is unknown then
22: send Shutdown to m.sender

23: end if

The number of processes depends on the demand for the
service algorithm (bigger demand means more instances).
When load becomes too big, the coordinator recruits a new
node from the nodes present in the system (l. 1-4). The
coordinator is able to estimate the load on ring nodes based
on local load measurements, since a client picks a ring node
from the list received in the announcement with uniform
distribution of probability. A PARENT message is sent to
the new node, containing the addresses of all nodes in the
ring, the current value of running time and the name of
service algorithm. After sending the message, coordinator
starts to watch the new node (by making it the parent
node). When the new node receives PARENT message (l.5-
7), it launches a process and copies values embedded in the
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message. The list of nodes from the message is copied to
local ring view. Once the process of joining the ring is over,
the newly added node watches the previously added node
(the ring structure is sorted according to the joining order).
However, at this moment, the new node starts to temporarily
watch the coordinator. This ensures that all other nodes in
the ring know about the new node before it can become
the coordinator. If it would immediately start to observe
the last node of the ring, it is possible that a node which
does not know about the new node, would become new
coordinator and would create an additional new node. This
situation would be indistinguishable from two nodes being
added concurrently and carries the same risk of both of them
becoming coordinator at the same time. Finally the new
node sends LAUNCH CONF message to the coordinator.

When coordinator receives LAUNCH CONF message (l.8-
10), it broadcasts a NNOTIF with the address of the new
node.

The broadcast reaches also the new node, to inform it
that it is acknowledged by all nodes in the ring. When last
NNOTIF was sent, coordinator knows that all nodes will
receive it (perfect links) in maximum UTT time (known
upper bound transmission time), so it recognizes the new
node as a normal node in the ring. Then it broadcasts
NCONF, so that nodes do not resend notification (because
all nodes already got it). When a node receives NNOTIF,
it remembers the address of new node (in case it has to be
resent later). If the node which received the message is the
new node (l.11-13), it starts to watch the last node in the
ring and considers itself a recognized member of the ring.
All other nodes recognize the new node as a part of the ring.
When a node receives NCONF, it will not broadcast NNOTIF
notifying other nodes about the new node when it becomes
the coordinator. Adding a new node to the ring is illustrated
by Fig. 4.

There are two reasons for the new node being added to
the ring as the parent of ring coordinator. First, detecting

Fig. 4 An example of adding a new node to the ring

node can take the place (watch next node or become
coordinator) faster because some time is needed for the
free node to be recognized by other nodes in the ring. The
speed of assuming the role of the failed node is especially
important if the failed node was the ring coordinator. The
longer the time without the ring coordinator, the bigger the
possibility that some clients requesting contact information
to processes will not be able to receive it. Because the ring
coordinator is responsible for publishing announcements
which are necessary to contact the processes. Second, by
doing it this way, the node publishing announcements is
always the oldest node in the ring (the one who is running
the process for the longest period of time). It is a beneficial
property, assuming that the nodes operating longer exhibit
smaller probability of failure.

4.4 Node removal

If coordinator detects that load became too small, a node
is removed from the ring. First, a RNOTIF containing
the address of the youngest node is broadcasted. Then,
the same node is removed from the ring view of the
coordinator. Finally RCONF with address of removed node
is broadcasted.

When a node receives RNOTIF, it first checks whether it
is the removed node or not. If it is, it shuts down. If not, it
remembers the address of the removed node (in case it has
to be resent later). Then, the removed node is deleted from
the local ring view. When a node receives RCONF, it will not
resend information about the last removed node. Removing
a new node from the ring is illustrated by Fig. 5.

4.5 Failure handling

When a failure occurs, the node which detected it (called
the detecting node) starts watching the node which was
previously watched by the failed node. For example, in

Fig. 5 An example of removing a node from the ring
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Fig. 6 node D fails and E starts watching C. Additionally,
if the failed node was the ring coordinator node (A in
this example), the detecting node (B) would become new
ring coordinator. The detecting node notifies coordinator
of failure of the failed node. Then coordinator notifies all
nodes in the ring.

When a failure is detected, taken actions depend on the
type of failed node and the role of detecting node. The first
case is the new node detecting failure of its parent (l.14-19).
In this case the failed node had to be the coordinator. Since
detecting node was still not established, the coordinator had
to fail before it sent NNOTIF to the new node. Detecting
a failure takes at least UTT and any message sent by
coordinator had to be sent before failure so it would arrive
before the failure detection procedure was executed. If the
new coordinator did not receive NNOTIF from previous
coordinator, it will create a new node to compensate for
the failed coordinator. In this case, the new node will shut
down to avoid scenario with two concurrent coordinators.
If the new coordinator did receive NNOTIF from previous
coordinator, it will resend the notification again and if it
does not fail in the process, the new node will become
part of the ring. Upon detection of parent failure, the new
node removes it from its local ring view and starts to watch
next coordinator. If the coordinator and all nodes between
it and the detecting node have failed (ring may still be
functioning with nodes unknown to this new node) then
new node shuts down. If the coordinator or any of the
nodes between it and the new node is alive, the new node

Fig. 6 An example of failure

sends NEW QUESTION message, containing its contact
information, to the coordinator. When coordinator receives
NEW QUESTION (l.20-23), it checks if the new node is
present in its local ring view (it would be if coordinator
received NNOTIF from previous coordinator) and if it is not
there, replies with SHUTDOWN message. When new node
receives SHUTDOWN message, it shuts down.

The second case is failure of any node that is neither
coordinator nor the newest node in the ring. The failed node
is added to the set of detected failures, called ”detected”.
Then the failed node is removed from the local ring
view. Next the detecting node sends FREP (fail report)
message to the node it thinks is the current coordinator
and starts to watch the next node on the ring. When the
coordinator receives FREP, it removes all nodes mentioned
in the report from its local ring view. Then the coordinator
broadcasts FNOTIF and FCONF messages to all other
nodes in the ring. The first message is meant to inform
other nodes of failures, the second prevents rebroadcasting
contents of the first when other nodes take over the
coordinator role. Rebroadcasting is needed because based
on receiving FNOTIF it is impossible to tell if other
nodes received that message too — coordinator may have
failed during the broadcast procedure. When FCONF is
sent, it is guaranteed that FNOTIF was sent to all nodes.
Since the assumed model features perfect links and known
Upperbound Transmission Time, the sent messages will
arrive to destination in at most UTT (even if sending node
fails). Therefore, after a node receives FCONF, it will not
broadcast information from preceding FNOTIF when it
becomes coordinator. What is more, a node may become
coordinator only after (minimum) UTT time passed from
previous coordinator failure. So, it is guaranteed that any
FNOTIF messages sent by previous coordinator already
reached all nodes in the ring. When a node receives
FNOTIF, it removes nodes mentioned in the message
from detected. Then it adds the same nodes to DS (dead
nodes) set. Nodes in DS are sent to all nodes when a
node becomes coordinator. Nodes in detected are sent to
the coordinator in FREP when parent failed or coordinator
changed (it contains all failed nodes whose failures were
detected directly by this node because they may be not
known to coordinator). Next, if notification contains the
node which was until now considered coordinator the node
sends unconfirmed nodes in detected to new coordinator.
Finally failed nodes are removed from the local ring view.
When a node receives FCONF, it removes mentioned nodes
from DS (dead nodes) list.

The third case is the failure of the current coordinator.
The node taking over starts to fulfill the duties of
coordinator by starting to execute periodic actions, specific
to coordinator. First, the new coordinator checks if there
is an unconfirmed new node and rebroadcasts information
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about it if needed. If the previous coordinator issued
the request to shutdown the ring, the new coordinator
broadcasts first SNOTIF, then SHUTDOWN (the second one
in reverse order) and finally it shuts down. If SHUTDOWN
would be broadcasted in the ”normal” order and coordinator
would fail during the process, the node closest to becoming
coordinator from the remaining nodes would have to detect
failures of all nodes which received the confirmation
message. For example consider a ring with coordinator A
watched by B, followed by C,D,E,F If A fails before sending
SHUTDOWN message to E, then B,C,D will shut down and
E will have to spend at least 4*UTT time before overtaking
coordinator role and rebroadcasting. If the confirmation
message is sent in reverse order, even when coordinator fails
during the process, the nodes which received SHUTDOWN
do not delay the process of overtaking the coordinator. The
condition to rebroadcast shutdown notification is checked
before condition for removed but after eventual resending
of new node. This way, new node does not have to
check if every other node has failed. Then, it checks if
information about a removed node has to be rebroadcasted.
If yes, the new coordinator broadcasts RNOTIF with the
address of the removed node. Next, RCONF is broadcasted
to avoid needless rebroadcasting in the future. Next,
it broadcasts FNOTIF and FCONF with nodes from
both sets of detected and DS. Since the node became
coordinator by detecting failure of previous coordinator,
the detected set would contain at least the address of the
old coordinator. Handling a failure of a node is illustrated
by Fig. 6.

The fourth case is failure of the new (not yet established)
node (only coordinator watches the new node). The failed
node is removed from the local ring view of the coordinator
and the failure is broadcasted in FNOTIF and FCONF
messages. Finally, the coordinator starts to watch the last
node in the ring.

The most important thing is for the coordinator to
remove dead nodes from its local ring view as fast as
possible because it puts nodes from its local view on the
announcement (putting a failed node on the announcements
risks that a client will not be able to access the service
algorithm). Another important issue is that nodes closest
to becoming next coordinator have to be notified about
the failures first so that they can overtake the coordinator
responsibilities faster. To explain the issue, let’s consider
an example with coordinator A watched by B, followed
by C,D,E. If B and C fail, D is not notified and then
A fails, D will have to wait at least UTT to detect
failure of C then the same time to detect failure of B
and again for A. In worst case D detects failure of A
and becomes coordinator after 3*UTT. If it would be
notified of B and C failures, it would have to wait only
1*UTT.

5 Analysis

5.1 Adjusting time parameters

In order to properly adjust time parameters, some upper
bound times have to be known. Let dhtPUT be the upper
bound on time needed for a dht.put(...) request to reach
destination. Let dhtGETreq be the upper bound on time
needed for a dht.get(...) request to reach destination. Upper
bound on time needed for response to dht.get(...) to reach
the requester will be denoted by dhtGETresp.

There are multiple time parameters associated with the
algorithm. ε is used to check if the values of running time
of two announcements are so close to each other that it
is impossible to tell which is running longer. Let’s call
the time intervals in which coordinator checks consistency
CA. The time interval in which an announcement is
published by coordinator will be denoted as PA. RA is the
time after which a stored announcement is removed from
DHT.

ε should be bigger than DHTput + DHTgetReq +
DHTgetResp + CA to compensate for the time between the
moment one ring publishes an announcement and another
retrieves it. CA influences how fast two concurrent rings
notice each other. There are no special considerations for
this parameter. PA determines how fast changes in the list
of functioning instances are propagated to DHT, which
has direct impact on user experience. However, picking
a short PA may cause the coordinator to use substantial
amount of upload bandwidth due to big size of published
announcement. RA determines how fast an announcement
is removed. If it is too short, nodes will not be able
to access instances of a running ring. If it is too long,
nodes will have to wait longer to detect that a ring is not
running.

5.2 Proving correctness

This section proves that system functions correctly. Correct
functioning of the system is composed of the following
claims:

– announcements published by a ring include all properly
functioning ring nodes.

– dead nodes eventually are not included in published
announcements.

– as long as there are nodes in the ring, an announcement
will eventually be published.

– if there are multiple competing rings, eventually only
one of them remains.

– if load on processes is too big, it is eventually reduced.
– if load on processes is too small, it is eventually

increased.
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To make proofs more concise, a new term is introduced.
Ring nodes are defined as nodes which received PARENT
message and did not crash.

Lemma 1 When a node becomes coordinator, all messages
sent by previous coordinator to any node are already
received.

Proof For the statement to be false, a message sent by
previous coordinator (before it failed) would have to be
received after a node became new coordinator. A node
may become coordinator only when it detected failure of
previous coordinator, which takes more than UTT time.
That implies that the moment of receipt would have to
be more than UTT later then moment of sending. It is
impossible because according to assumptions each message
is delivered before UTT time passes from sending.

Lemma 2 If a node became coordinator and did not receive
a broadcasted message m, assuming that new nodes are
added to the ring atomically (either all other add the new
node to their local view of the ring or none of them do)
and in linear order (in order in which coordinators send
PARENT messages) , no other ring node received (or will
receive) m.

Proof Messages are broadcasted in the order of node
appearance in the ring (message is first sent to the node
watching coordinator). If another node in the ring would
receive m, it would mean that previous coordinator sent
it also to the node which became new coordinator. It
is impossible, because it would have to be received by
new coordinator (lemma 1), which is contradictory to the
statement.

Lemma 3 Assuming that new nodes are added to the ring
atomically (either all other add the new node to their local
view of the ring or none of them do) and in linear order (in
order in which coordinators sent PARENT messages), the
new node knows about all other nodes in the ring and their
order.

Proof From the assumptions, every node in the ring has
the same view of which nodes are in the ring and in what
order they are connected. Hence, coordinator also has this
knowledge and can properly relay this information to the
new node.

Lemma 4 Assuming lemma 3, failure of any node in the
ring is eventually detected.

Proof When new node receives NNOTIF it starts to watch
the node it considers the youngest after itself (the previous
new node). Local ring view contains addresses of all nodes

sorted by age which proves that all nodes except for the
youngest one either are watched or will be watched after
a finite amount of time. Additionally the youngest node
(the last recruited new node) is watched by the oldest node
(coordinator). When a node dies, its failure is detected by
the node which was watching it and the detecting node
starts watching next node on the ring or the youngest node
if it becomes the coordinator. Since each node in the ring
is eventually watched by another node, its failure will be
detected.

Lemma 5 Assuming lemma 3, if coordinator fails, it will be
eventually replaced.

Proof Since failure of any node is eventually detected
(lemma 4), failure of coordinator will be eventually noticed
by some node. When a node detects coordinator failure it
will become the coordinator.

Lemma 6 Adding a new node to the ring is an atomic
operation. When it terminates, either all nodes recognized
the new node (success) or no correct ring node recognized
or will recognize it (abort). Operations of adding a
new node are applied in linear order (order in which
coordinators sent PARENT messages to new nodes).

Proof Initial State. In the beginning there is only one node
in the ring. In this case, adding a new node is trivial. Original
node adds the newly recruited node to its local ring view
and, since it is the only node in the ring, operation ended in
success.

Induction step. If coordinator fails before starting to
broadcast NNOTIF, the operation aborts. NNOTIF can be
rebroadcasted only when next coordinator knows about the
new node. To know about the new node it would have to
receive notification sent by previous coordinator (which was
not sent).

If the coordinator finishes the broadcast, all nodes
will recognize the new node (the coordinator knows the
addresses of all other nodes in the ring, channels are
perfect). Moreover, it will be accepted before another new
node will be accepted. If another new node is added to
the ring by the current coordinator, the notifications will
travel through the same channels as previous notifications
and channels satisfy FIFO property. If another new node
is added to the ring by a different coordinator, it has to
happen after more than UTT from the moment of sending
notification by dead coordinator, which is enough for the
message to arrive to destination.

If coordinator fails during the broadcast of notification,
operation continues. Based on lemma 5, coordinator will be
replaced. Furthermore, from lemma 2, the new coordinator
will immediately know if there is a pending operation of
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adding new node (if it received a notification). If operation
is pending, new coordinator will broadcast the notification
again. If it fails during broadcast, the situation looks exactly
the same as in the case of previously discussed failure. If
broadcasts succeeds (messages are sent), the coordinator
may be sure that all nodes will receive this notification
(assumption of perfect links) before any other NNOTIF
messages. If the same coordinator sends next notification
the last statement is justified by FIFO channels, else if
next notification is sent by another coordinator lemma 1
holds.

Theorem 1 The announcements published by ring coordi-
nator include all properly functioning ring nodes (at the
moment when they were issued).

Proof The announcement is published by coordinator,
who adds to it all nodes in local ring view. The action
of publishing happens only when no adding new node
operation is pending. Since a node is added to the ring only
when all nodes in the ring are aware of its presence (lemma
6), the local ring view contains all properly functioning and
established ring nodes.

Lemma 7 Failure of ring coordinator is eventually known
by all nodes.

Proof When a coordinator failure is detected, the detecting
node becomes new coordinator and broadcasts FNOTIF.
If it fails during broadcast, next coordinator will broadcast
notification again either because it received notification or
because it detected the failure of previous coordinator. If it
does not fail during broadcast, all nodes will know about
coordinator failure after UTT (all messages are received
before UTT).

Theorem 2 Dead nodes eventually are not included in
published announcements.

Proof When a failure is detected by node D, eventually
a ring coordinator receives FREP or D becomes ring
coordinator. When coordinator receives the report, it sends
FNOTIF to all nodes in the ring. If a coordinator is
overtaken by a node other than D, D will be notified
(lemma 7). When it is notified, it sends FREP containing all
unconfirmed failures. If D becomes coordinator (and did not
receive notification with address of detected failure), it will
broadcast notification. If node fails before broadcasting,
next nodes will detect failures by watching failed nodes and
will broadcast notification. When a notification is received,
nodes in the message are erased from the local view of the
ring.

Theorem 3 As long as there are nodes in the ring, an
announcement will eventually be published.

Proof A coordinator will eventually be replaced (lemma 5),
when a node becomes coordinator it will start publishing
announcements.

Theorem 4 If there are multiple competing rings, eventu-
ally only one of them remains.

Proof Ring coordinator polls announcement DHT to
retrieve announcement of the ring matching the name of
service algorithm. If it retrieves announcement of another
ring, it checks the running times differ by less than ε. If ε >

DHTput + DHTgetReq + DHTgetResp + CA, it is sure
to compensate for all delays. If all delays are compensated
for then the ring which decides to shut down will always be
the one which either for sure is running for a shorter amount
of time or its hash is further away from hash of service
algorithm name.

Theorem 5 If load on processes is too big, it is eventually
reduced if nodes stop to fail.

Proof Eventually, a node becomes ring coordinator. Since
load is equally distributed among instances, it can measure
the load locally. Then, it creates a new instance if it detects
that load is too much and measures load again. If instances
are created faster than ring nodes fail, the number of
instances in the ring will increase. Since load is shared
equally between instances, the load on each particular
service algorithm will be reduced.

Theorem 6 If load on processes is too small, it is eventually
increased.

Proof Eventually, a node becomes ring coordinator. Since
load is equally distributed among instances, it can measure
the load locally. Then, it removes a node if it detects
that load is too small. If failures occur, load has to be
shared between smaller number of instances which also
means that load on each particular service algorithm would
increase.

6 Performance evaluation

Detailed performance evaluation along with metrics was
described in conference paper [39]. The work focused on
developing metrics to measure the resource cost incurred
by being a part of SelfAid network, user satisfaction and
resistance to failures. Developed metrics were applied to a
simulation of SelfAid network, including the lower DHT
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Table 2 Total number of messages in function of ring size and churn (for 1000 rounds)

size = 10 size = 20 size = 50 size = 70 size = 100

churn = 0 19756 38858 91480 123598 166522

churn = 2 19809 38937 91868 123908 166843

churn = 4 19856 39098 92692 124683 166422

churn = 8 19921 39357 92334 124494 168383

churn = 16 20129 39647 95049 126116 169007

churn = 32 20274 39738 95381 127137 164598

churn = 64 20574 40969 96643 129659 167740

layer as well as the higher application layer. The simulation
was implemented using Peerfact.Sim simulator [40].

Several metrics were developed. Overload Time Ratio
measures how much time a node spent with load above
average (while ring size was adjusted to demand). System
Responsiveness is the average time span between issuing a
request to find an opponent and getting the response. In the
meantime it’s necessary to lookup the Announcement and
contact a member of the ring. Service Node Response Faults
measures how many requests a service node received and
how many were left unanswered. The behavior of metrics
was checked with various load distributions of application
requests and various degrees of crash-stop failures. The
simulation showed that SelfAid behaved well with respect to
user satisfaction (System Responsiveness metric). Resulting
latency was well within acceptable levels (several seconds).
Concerning bandwidth, even with modest application-level
traffic, most of the bandwidth was consumed by that traffic
and not due to maintenance associated with being part of the
ring.

Additionally, in this article, a study on message
complexity was performed and confirmed by a simulation.
The simulation was implemented in Python. The messages
in the simulation were delivered synchronously, in rounds.
One run of the simulation was limited to 1000 rounds.
The simulation focused exclusively on the properties of the
ring. Concretely, total number of messages sent during the
simulation was measured. Simulation was parameterized
by the size of ring and level of churn - how many
nodes failed. The value measured is the total number of
messages sent by all nodes. The results were averaged over
multiple repetitions of simulation with different random
seed. The ring tried to maintain a constant, set amount of
members.

Results of the simulation are summarized in Table 2,
which shows the number of messages in function of ring
size and churn. The value of churn is equivalent to the
number of nodes that crashed and were later substituted by
new nodes. Size refers to number of nodes in the ring. The
number of messages that can be sent during one round is
bound by a linear function (of ring size). The coordinator

may send no more than a fixed amount of broadcasts in
one round. The other members can send no more than a
fixed amount of messages, either to parent, child or the
coordinator. In the table, it is possible to see that number
of messages increases with the size of the ring. E.g. for
churn=4,size=10 it’s 19856 and for the same value of churn
but size=50, it’s 92692. Message complexity growth is
linear with respect to ring size. Furthermore, crashes tend to
increase the amount of messages. E.g. for size=50,churn=4
it’s 92692 and for the same size but churn=64, it’s 96643.

7 Conclusion

The goal of this paper was to provide a tool for automatic
locating and managing of processes running matchmaking
algorithms in a P2P environment, along with a proof of its
correctness.

The presented solution allows a player to quickly connect
to others, provided that no failures occur. In this case,
accessing a service algorithm is only a matter of issuing
one request to announcement DHT and then one request to
the process. When crash-stop failures occur, multiple things
may get slower or unresponsive for some time. For example,
if the nodes storing announcement fail, clients will have to
wait for the ring coordinator to publish the announcement
again. However, assuming that crash-stop failures happen
only once in a while, the system exhibits reasonable
performance. The coordinator of a ring is notified about
failure in constant (constant worst case) time, which means
that propagation of information about failure to the client
requesting list of processes for a given service algorithm
will not take long. All nodes in the system may perform any
role (e.g. storing announcements, being ring coordinator)
depending on circumstances. The system is able to handle
(connect) as much nodes as the underlying DHT, which was
designed for massive scale.

A simplified version of the proposed solution that does
not take failures into account was described in [41]. The
paper [41] focuses on providing implementation details for
both the platform and a particular matchmaking strategy. In
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contrast to theoretical analysis and proofs presented in this
article.

The SelfAid could be combined with [23] to create a
completely distributed online gaming framework.

Authors plan to enhance the proposed solution. The
concept presented in Section 4 may be subject to
improvements and extensions. Currently, the process
address returned to the user by lookup procedure is picked
at random, from the list of nodes contained in the retrieved
announcement, with equal distribution of probability. This
could be changed so that nodes which are able to handle
more load (they have more spare resources) would be more
likely to be picked. It would result in a more efficient
system, since less nodes would have to be added to the
ring of instances. Another idea is to introduce cache for
announcements stored in the DHT, which would prevent
overloading the node storing announcement. The delays
(e.g. time to detect failure) introduced by assuming a large
value of Upperbound Transmission Time are substantial. It
would be interesting to try to create the ring with nodes
which are close to each other in terms of latency. Finally, an
algorithm with weaker assumptions on synchrony or failure
detector could be designed.
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