
Behavior Reconstruction Models for Large-scale Network
Service Systems

Zhaohui Zhang1,2,3
& Lina Ge4

& Pengwei Wang1,2,3
& Xinxin Zhou1

The Author(s) 2017. This article is an open access publication

Abstract
In large-scale network service systems, the phenomenon of instantaneous gathering of a large number of users can cause system
abnormality, whenever the load imposed by the user behaviors does not match the system load. This paper proposes a behavior
reconstruction model for large-scale network service systems integrated with Petri net reconstruction methodology, for the
purpose of achieving load balancing in the system under increasing number of users. Based on the features of the user interaction
behavior sequence, the behavioral load balancing model defines a user behavior membership function. Then, a random fuzzy
Petri net with delay is presented to control the user behavior reconstruction. Experiments conducted by considering various
changes in the number of user behaviors and their distribution in unit time demonstrate that the proposed methodology can
effectively trigger the reconstructed model to balance the system load when the system load exceeds the defined warning point.

Keywords Large-scale network service system . Behavior membership function . Load balancing . Behavior
reconstruction .Petrinet

1 Introduction

In the recent years, large-scale service systems based on
Internet have witnessed rapid evolution such as growth of

users, diversification of user requirements, and the openness
of system services. Owing to the recent increase in the number
of users using internet services, sharp gathering of users in a
quick time often lead to the service unavailability issue. This is
due to the fact that the new user load suddenly overloading the
system, and often this imposed load surge up to paralyzing the
system due to the increasing number of users. For instance,
ticket booking system is often seasonal and can paralyze the
system lead during peak time with the upsurge of user groups.

Large-scale user concurrent processing system are usually
affected whilst expanding resources, whereby risking
overloading the system due to uncertain user behaviors after
expanding the computing resources. To this end, software
self-adaptation strategies have been put forward to cope with
this system overloading issue whilst expanding the system
resources and to combat the complexities faced due to the
increasing Internet service systems. It is obvious that the
Internet system cannot suddenly scale to match the user be-
haviors. Therefore, it is important that special attention should
be given to restructure the system behaviors in accordance
with the changes in user behaviors by balancing the system
load. Existing system load balancing methods [1–3] are main-
ly based on resource allocation and task scheduling strategies,

This article is part of the Topical Collection: Special Issue on Software
Defined Networking: Trends, Challenges and Prospective Smart
Solutions
Guest Editors: Ahmed E. Kamal, Liangxiu Han, Sohail Jabbar, and Liu Lu

* Zhaohui Zhang
zhzhang@dhu.edu.cn

Lina Ge
glngelina@163.com

Pengwei Wang
wangpengwei@dhu.edu.cn

Xinxin Zhou
158452693@qq.com

1 School of Computer Science and Technology, Dong Hua University,
Shanghai, China

2 The Key Laboratory of Embedded System and Service Computing,
Ministry of Education, Tongji University, Shanghai, China

3 Shanghai Engineering Research Center of Network Information
Services, Shanghai, China

4 Department of Computer Science and Technology, Anhui Normal
University, Wuhu, China

https://doi.org/10.1007/s12083-017-0625-x
Peer-to-Peer Networking and Applications (2019) 12:502–513

Received: 27 August 2017 /Accepted: 24 November 2017 /Published online: 2 January 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-017-0625-x&domain=pdf
http://orcid.org/0000-0002-3171-7667
mailto:zhzhang@dhu.edu.cn

but not consider when and how to dynamically reconstruct the
system behaviors for the real-time load equilibrium.

Two important components should be considered for adap-
tive refactoring of system behavior. Firstly, classification of
users according to the user behavioral characteristics and sec-
ondly, constructing the behavior flow for each user group to
dynamically control the system load.

The remainder of the paper is organized as follows:
Section 2 reviews the related works and Section 3 presents
the proposed system behavior reconstruction model.
Section 4 details the proposed Petri net model and algorithm
for implementing system behavior reconstruction. Section 5 is
covered with the experiments and discussion on the obtained
results and Section 6 concludes this paper.

2 Related work

Recently, several research works have focused on dynamic
system load balancing based on system behavior adaptive
reconstruction. Doukha [4] proposed a load balancing
method that distributes the beacon and fairly transmits the
system load. Hwang [5] proposed the use of hardware indi-
cators, CPU utilization and the number of online connec-
tions as a load evaluation criteria. Duan [1] used the CPU
utilization rate, disk utilization ratio, page error number,
request number, request response time and other relevant
indicators to calculate the real-time load of the server. Gang
[2] proposed a method to classify the user requested ser-
vices to allocate the system resources, so as to achieve dy-
namic load balancing. Shailesh [3] used a fuzzy dynamic
load balancing algorithm to achieve load balancing through
task scheduling. Liu [6] proposed a distributed load
balancing algorithm using a defined protocol sequence,
and developed a model of queuing distributed asynchro-
nous multi-server system. In order to achieve dynamic load
balancing based on data stream level, Wang [7] proposed a
cloud center dynamic load balancing method based on SDN
(Software Defined Networks). However, these works have
not given enough importance to the system behaviors and
behavior time, both should be considered as essential
criteria to achieve system load balancing in dynamic envi-
ronments based on behavior reconstruction.

Adaptive reconstruction strategies have been the fo-
cus of a few research works. Slim [8] put forward ad-
aptation as a key requirement for many software sys-
tems, whereby the system should be able to adapt its
structure and behavior during runtime in order to re-
spond to the changes witnessed in the operating envi-
ronment and user needs. Zhang [9] proposed a new
coordination method based on a reconfigurable
network-event system. Pamela [10] proposed the imple-
mentation of a distributed persistence management

model for reconfigurable multiprocessor systems on dy-
namically reconfigurable circuits. Rui [11] further pro-
posed a dynamic adaptive wiping mechanism and Yang
[12] proposed a reconfigurable architecture model based
on layered hypergraph. Mohamed [13] proposed a
reconfigurable and replaceable system for embedded
control systems, and modeled it using Petri net.
However, such research works have not considered the
user requirements into account for system reconstruc-
tion. When a large number of users gather in a short
time, system reconstruction may not be efficient without
considering the user needs.

From the perspectives of the system behavior, Wang
[14] pointed out that it is vitally important to under-
stand user behaviors in online services and further pro-
posed an unsupervised system based on the click traffic
to check the modes of user behaviors. Luo [15] used
fuzzy Petri nets to represent the fuzzy production rules,
and performed a state analysis of power systems by an
iterative computation of matrices. Kotevski [16] con-
jointly used queuing networks and Fluid Stochastic
Petri Nets, and developed several performance models
to analyze the behavior of complex systems. Lu [17]
used a new hybrid model to explore the impacts and
guidance of user behaviors on mobile banking services.
Matthew [18] highlights the importance of finding out
the user behaviors and using the same as the source of
information by studying a long query log. Jose [19]
proposed a genetic algorithm for user behavior model-
ing and classification from event sequences. In summa-
ry, the dynamic relationship between user behaviors and
system service is vitally important and should be con-
sidered as an essential criteria whilst attempting to im-
prove the overall system performance in balancing the
system load.

To sum up, despite a number of works focused on
adaptive dynamic balancing of system load, system re-
construction is hardly been considered in the state-of-the-
art works to date. Reconstructing the system behavior
flow to dynamically balance the system load based on
user behavior characteristics can achieve effective load
balancing performance in the large-scale network service
systems. In this paper, the behavior reconstruction meth-
od has been exploited to balance the system load when a
large number of users gather in a short time, for the
purpose of achieving real-time system load balancing to
maximize the processing capacity of the system. Users
are classified based on their behavioral characteristics
and corresponding behavior processes are constructed.
The proposed reconstruction model is triggered when
the system load exceeds the warning point during
runtime, ultimately to balance the system load by con-
trolling the interaction time of various types of users.

Peer-to-Peer Netw. Appl. (2019) 12:502–513 503

3 Model of system behavior reconstruction
based on user behavior classification

Under normal conditions, large-scale network service
systems can provide users with a stable and good ser-
vices. But sometimes, due to the rapid expansion of the
user population within a short time the system behaviors
and the user behaviors may become incompatible. Thus,
the system will become abnormal or even paralyzed.
Now, many large scale network service systems usually
continue to provide the same services to the users as
before. As a result, when the user population increases
rapidly, the system load will increase beyond the capac-
ity of the system. In this scenario, the system will be
overloaded and the system resources will be limited. To
this end, this paper considers reducing the system load
by dividing the user behaviors into different groups ac-
cording to the user interaction sequence features, and by
delaying the user group interaction behavior time.

Definition 1 User behaviors membership function μUi
jð Þ. It

indicates the degree of the user behavior Ui belonging to each
class of Sj. μUi

jð Þ is defined as follow:

μUi
jð Þ ¼

ffi

∑
m

k¼1
uik−s j
� �2

s

; j ¼ 1; 2;…; pð Þ;

where Ui = {u1, u2, …, um} (i = 1, 2,…,m) represents the in-
teraction behavior sequence with the characteristics of user
behavior time, assuming that the user behaviors are divided
into p user groups based on the length of the interaction be-
haviors time; Sj = {s1, s2,…, sp}(p ≥ 1) represents the standard
for each class of user groups.

Definition 2 User behaviors subordinate standards d(ui, sj). It
is the standard of user behaviors belonging to a specific user
group, that is, d ui; s j

� � ¼ min μUi
jð Þ� �

. It indicates that the

user behavior membership function value is kept to a mini-
mum if the user behavior belongs to the group. Suppose that
Nd (Nd ∈ N+) represents the number of μUi

jð Þ ¼ d ui; s j
� �

.
Then, when Nd = 1, the behavior Ui belongs to the class of j
user behavior group; when Nd > 1, the behavior Ui is random-
ly assigned to any kind of behavior group in the Nd classes.

Definition 3 At time t, the total number of user behaviors Bt
submitted in the system is equal to the number of users, that is,
Bt =Ut, whereUt represents the number of users in the system.

Definition 4 The real-time load Lt at time t. It is the system load
corresponding to the total number of behaviors submitted by
the users at time t, Lt = Bt × l, where l(l ≥ 1) represents a system
load required by a user to submit a request behavior.

Definition 5 System good service status. It is the service state
when the system can provide services normally. When 0 ≤
Lt ≤ Lsafe, the system is in a good service state, where Lsafe is
the safe load, indicating that the system is in a good service
state which can withstand the maximum service capacity cor-
responding to the load value.

Definition 6 System unstable service status. It is the service
state when the system can provide services, but there may be
abnormality. That is, when Lsafe < Lt ≤ Lmax, the system is in an
unstable service state, where Lmax represents the load value
corresponding to the maximum service capacity that the sys-
tem can withstand in the unstable service state, which is the
maximum load that the system can resist.

Definition 7 System non-service status. It is the service state
when the system cannot provide services because the load is
too large to handle. That is, when Lt > Lmax, the system is in a
non-service state or in a state of paralysis.

Definition 8 At time t, the system real-time load Lt is the sum
of the load corresponding to the p class user behaviors, namely

Lt ¼ ∑
p

i¼1
Li, where Li represents the system load corresponding

to the user behaviors of the group i.

Definition 9 System processing capability LHC. It is the system
load corresponding to the user behaviors which can be proc-
essed by the system in unit time. If Lmax = LHC,and Lt > LHC,
then the system will enter the non-service status.

Definition 10 System load per unit time Lut. It is the system
load corresponding to the number of behaviors But in unit
time. When the system real time load is Lt ≥ Lsafe at tmoment,
the system load exceeds the processing capacity of the system
in unit time. Set Lut = Lt/tc, and Lut < Lsafe, where tc is the time
required to achieve load balancing in the system.

Definition 11 Reconstruction system delay time Δtd ¼ ∑
j

i¼1
ti,

where ti is defined as follows:

t1 ¼ ∑
i¼1

k1

Li=Lsafe

& ’

; 1≤k1 < p; when ∑
i¼1

k1

Li≤Lsafe and ∑
k1þ1

i¼1
Li > Lsafe;

t2 ¼ ∑
i¼k1þ1

k2

Li=Lsafe

& ’

; k1 < k2≤p;when ∑
i¼k1þ1

k2

Li≤Lsafe and ∑
k2þ1

i¼k1þ1
Li > Lsafe;

……;

t j ¼ ∑
i¼k j−1þ1

k j

Li=Lsafe

& ’

; 1 < k j≤p;when ∑
i¼k j−1þ1

k j

Li≤Lsafe and ∑
k jþ1

i¼k j‐1þ1
Li > Lsafe:

The user interaction behaviors are divided into p clas-
ses according to the time sequence characteristics, and
L1,..., Lp are the system load of the p classes. Supposed
that the system is in an unstable state, i.e., the system
instantaneous load is Lt > Lsafeat t moment. After

504 Peer-to-Peer Netw. Appl. (2019) 12:502–513

reconstruction, the instantaneous system load is Lt' ≤ Lsafe
at any time t' in the Δt period, and the total system load is
equal to Lt in Δtd time.

Assumption 1 The large-scale network service system itself
has a maximum system load Lmax.

Assumption 2 When the number of user behaviors at a
certain time increases sharply, which leads to an abnor-
mal system i.e., Lt > Lsafe, users can be classified ac-
cording to the user interaction behavior time sequence.

.p1

p8

p3p2

p5
p6

p7

p4
p9

t1

t2

t3

t4 t5

t6

t7

t8t9

c1

c2

c3

sequential structure

p10

.

selection structure

p8

p5
p6 p7

p4

p9

t5

t6 t7

t8

t9

c1

c2

c3

t1

t10
p10p11 t11

p3

p2

t2

t3

t4

p1

.

parallel structure

p8

p3

p2

p5

p6

p7

p4

p9

t2

t3

t4

t5

t6 t7

t8

t9

c1

c2

c3

p1 t1

t10

p10

p11

p12
p13 t11

.

cycle structure

p8 p5

p6

p7

p4
p9

t5
t6

t7

t8

t9
c1

c2

c3

t10 p3

t2

t4

t1 t3p1

p2

Fig. 1 Four basic structures of the timed stochastic fuzzy Petri Net

Fig. 2 Train ticket booking website flow chart

Peer-to-Peer Netw. Appl. (2019) 12:502–513 505

3.1 Theorem. Load balancing reconstruction

Under Assumption 1 and 2, suppose that the system real-time
load is Lt1 > Lsafe at time t1. The user behaviors are classified
accordingly, and the system behavior flows are reconstructed
at the system interactions. So the instantaneous load is Lt2 ≤
Lsafe at any time t2 in the delay time Δtd.

Proof According to def.4, Bt1 � l > Lsafe is Lt1 > Lsafe at time

t1. The users are divided into p classes, so∑
p

i¼1
Bsi � l > Lsafe.

Set ∑
k

i¼1
Bsi � l≤Lsafe and ∑

kþ1

i¼1
Bsi � l > Lsafe,1 ≤ k < p.

If the system dealing with the load ∑
k

i¼1
Bsi � l requires one

unit time, then Lt1− ∑
k

i¼1
Bsi � l ¼ ∑

p

j¼kþ1
Bs j � l, it takes

time ∑
p

j¼kþ1
Lj=Lsafe
� �

.

So, we obtain Δtd ¼ 1þ ∑
p

j¼kþ1
Lj=Lsafe
� �

.

According to def.11, the instantaneous load is Lt2 ≤Lsafe at
any time t2 in the delay time Δtd. Therefore, the system load
Lt1 can be balanced at the Δtd.

4 Petri net model and algorithm
for implementing system behavior
reconstruction

In this section, the system behavior reconstruction model pro-
vides a theoretical support for the adaptive reconstruction pro-
cess for load balancing in the large-scale network service sys-
tem. This section will elaborate the implementation of the
system behavior reconstruction model in the actual system
behavior reconstruction process based on user classification.

4.1 Random fuzzy Petri nets with time delay

Delay Petri nets [20] define the occurrence of changes that
needs to be completed by a units of time. This transition issue
can be divided into the problem of time transition and immedi-
ate transition, Li [21] used the stochastic Petri nets to construct
the social network system model. Milinkovic [22] proposed a
fuzzy Petri net (FPN) model for estimating train delay. On this

Start

Require users to enter the login information

Get user information

Require users to enter the travel information

Query the System database

Booking?

Connect to the database

The order generates the serial number

Require users to pay

 paying time> 30 minutes?

The system sends messages to inform the details

End

N

Y

Require user to enter the verification code

Require user to enter the verification code

Y

N

Fig. 3 A booking system flow chart

.

t7

t6t5t4t1 t2 t3 t8

t9

t

t11t12

t14

t13

Fig. 4 Petri net model of a booking system

506 Peer-to-Peer Netw. Appl. (2019) 12:502–513

basis, in order to implement the system behavior reconstruction,
this paper presents a timed stochastic fuzzy Petri Net.

Definition 12Random fuzzy Petri net (DSFPN) with delay is a
seven-tuple ∑ = (P, T; F,C,DI, τ,M), in which:

(1) P is a set of places, P = {p1,p2,..,pn}(n ≥ 0), and the num-
ber of tokens in a place represents the number of user

actions. The number of users arriving at the system over
a period of time is subjected a to Poisson distribution;

(2) T is a set of transitions, T = Tt ∪ Ti, Tt∩ Ti = φ, where
time transition set Tt = (T1,T2,...,Tk) includes the transi-
tions of service behaviors; and instantaneous transition
set Ti = (Tk+ 1,Tk+ 2,...,Tk + i) (k ≥ 0,i ≥ 0) includes the ser-
vice transitions which are triggered by the system load
beyond the warning point;

(3) C i s t h e con t r o l s e r v i c e t r an s i t i on se t ,
C = {c1,c2,..,cm}(m ≥ 0);

(4) DI is the time function on the transition set, DI:C→ R0.
For t ∈C, DI(t) = a, it indicates that the occurrence of the
transition t requires a units of time to complete;

(5) F is a directed arc set, where F = FT ∪ FC, FT ⊆ (P ×
T) ∪ (T × P), FC ⊆ (P ×C) × (C × P);

(6) τ is a function on the transition set, which represents the
triggering threshold of the transition, and its range is
[0,∞).

4.2 Four basic structures of DSFPN model based
on user classification

The system model based on Petri net is composed of four
basic structures including sequence, parallel, selection and
circulation [23]. Therefore, the following four basic structures
of large-scale network service systems are modeled by the

Table 1 Transition description of t1~t14 in Fig. 4

Transition tag Description

t1 Require users to enter the login information

t2 Require users to enter the verification code

t3 Get user information

t4 Require users to enter the travel information

t5 Query the system database

t6 Whether the user is booking

t7 Return a query page

t8 Requires users to enter the verification code

t9 Connect to the database

t10 The order generates the serial number

t11 Require users to pay

t12 The system judges whether the time is over 30 min

t13 The system sends an e-mail and messages to inform
the details

t14 User booking ends

.
t7

t6t5
t4t1 t2

t3 t8

t9

t10

t11t12
t14

t13

t30

c8

c9

t29

t31

t32

t33t34

t35

c2

c3
t15

t16

t17

t18

t19

t20t21

c5

c6
t22

t23

t24

t25

t26

t27t28

c11

c12

t36
t37

t38

t39
t40

t41

t42

c4

c1

c7

c10

Fig. 5 Random fuzzy Petri net model of the booking system with the delay

Peer-to-Peer Netw. Appl. (2019) 12:502–513 507

timed stochastic fuzzy Petri net. According to the user mem-
bership function, the divided groups of the user behaviors are
different. Here, in order to describe the model conveniently,
the user behaviors are divided into three groups without the
loss of generality, as shown in Fig. 1.

There are three kinds of transitions represented in Fig. 1.
The first is the system behavior transition represented bywhite
rectangles. The second is the instantaneous transition for judg-
ment represented by a black line. When the system satisfies
the judgment condition, the instantaneous judgment transition
is triggered. If the original behavior transition and the judg-
ment transition are in a conflict, the instantaneous transition is
triggered in priority. The third is the control transition repre-
sented by the shadow rectangle, which controls the delay of
each behavior group according to the system load.

Table 2 Transition description of t15~t42, c1~c12 in Fig. 5

Transition tag Description

t15、t22、t29、t36 Determine whether the load is overloaded

t16、t23、t30、t37 Judge that the speed of user behaviors belongs
to the slow group

t17、t24、t31、t38 Judge the load of the slow group

t18、t25、t32、t39 Judge that the speed of user behaviors belongs
to the moderate group

t19、t26、t33、t40 Judge the load of the moderate group

t20、t27、t34、t41 Judge that the speed of user behaviors belongs
to the extremely fast group

t21、t28、t35、t42 Judge the load of the extremely fast group

c1~c12 Judge the delay time of three groups

Fig. 6 The first group of experimental results

508 Peer-to-Peer Netw. Appl. (2019) 12:502–513

We take the sequential structure as an example, since
the other three cases are nearly similar. Petri net is used
to model the behavior of the large-scale network service
system. If the key interactive behavior node is in a
sequential structure and the system load exceeds the
warning point before the node is executed, the system
is reconstructed as a DSFPN model to classify the sys-
tem behaviors.

In Fig. 1, p1~p10 is the place set that represents a state.
When the user behavior load submitted to the system ex-
ceeds the warning point of the system load, the behavior
transition t2 and immediate transition t3 face a conflict.
Because the priority of the immediate transition t3 is
higher than the behavior transition t2, the immediate tran-
sition t3 will be triggered. According to the user interac-
tion speed, the user behaviors are divided into three
groups as slow, medium and fast speed. Immediate tran-

sitions t4, t6 and t8, respectively decide the group to which
a behavior belongs. Immediate transitions t5, t7, and t9
respectively judge the relationship between the corre-
sponding load of three behavior groups and the warning
point. Control transitions c1, c2, c3 control the delay of
three behavior groups.

4.3 DSFPN algorithm

In the above Petri net model, the reconstructed flow
will be activated when the tokens in behavior places
exceed a certain value, i.e., when the system load ex-
ceeds the safe load. According to the definitions 1~11,
the DSFPN can obtain the system load, each classified
group load and required delay accordingly. The corre-
sponding algorithm of system behavior reconstruction is
described as follows.

Peer-to-Peer Netw. Appl. (2019) 12:502–513 509

5 Examples and experiments

5.1 The DSFPN model of a booking system

Online shopping systems and ticket booking systems are typ-
ical representatives of the large-scale network service systems,
such as Taobao and 12,306 ticket system. Online booking
system usually undergo rapid expansion of user groups during
seasonal periods such as holidays (Fig. 2). The system will be
overwhelmed by this state, this may even paralyze the system.
This situation demands necessary modifications in the service
process to accommodate the changes occurring in the system
load. The process flow in a ticket booking system is simulated
(Fig. 3).

Now, an appropriate Petri net model is constructed accord-
ing to the process flow in the ticket booking system, as shown
in Fig. 4. The notations of the behavior transitions in Fig. 4 are
shown in Table 1. The sequential user interaction behaviors in
this system can be presented as follows: login, query, booking
and paying. These interactive behaviors are reconstructed ac-
cording to the defined DSFPN model, as shown in Fig. 5. The
notations of the transitions of t15~t42, c1~c12 in Fig. 5 is shown
in Table 2.

5.2 Experimental design

The experiment simulates the system process based on the the
booking system flow chart, as shown in Fig. 3. It detects and
collects the number of user actions and records the time of the
each of the user interaction behaviors. The tokens in the places
present the user amount. We use a data generator to continu-
ously increase the number of user actions, which is responsi-
ble for increasing the system load. The data for simulation is
generated according to the flow chart of the 12,306 train book-
ing system, as shown in Fig. 2, so that the experiment replicate
the actual traffic characteristics such as gradually changing
user behavior, little changes in the user behavior and suddenly
changing user behavior.

According to the traffic characteristics, user behavior is sim-
ulated under three different types of load service states including
[0,120000) as a good service state, [120000150000) as an un-
stable service state, [150000,+∞) as an unavailable service state,
and it has been assumed that the user behavior is divided into
three categories. Now in this simulation environment, we train
the system data into the reconstruction algorithm. We imple-
ment the simulation system in C++ and use the drawing tool
TeeChart to interpret the experimental renderings.

Fig. 7 The second group of experimental results

510 Peer-to-Peer Netw. Appl. (2019) 12:502–513

5.3 Experimental results analysis

The first set of simulated experimental data is applied to the
load balancing algorithm of the system behavior reconstruction
process; the experimental results are shown in Fig. 6, where the
real-time load changes with time are illustrated. The real-time
load exceeds the warning point, but it is not obvious, reflecting
that the change is not significant.When the real-time load in the
system exceeds the warning point, the reconstruction model is
triggered and executed. So the user behaviors are divided into
three categories and the system load is balanced. The load at
any time does not exceed the warning point after the point of
equalization, and the system is in good service state.

The second experimental results are shown in Fig. 7. The
real-time load exceeds the warning point significantly, but it

does not exceed the maximum load which the system cannot
withstand. That is, the magnitude of the change is significant.
When the real-time load exceeds the warning point, the recon-
struction model is triggered and the system load is balanced.

The third experimental results are shown in Fig. 8. The
real-time load exceeds the maximum load, that is, the magni-
tude of the change is huge. When the system real-time load
exceeds the warning point, the reconstruction model is exe-
cuted and the system is in good service state at any time.

From the above three groups of experimental results, if the
system real-time load exceeds the warning point, the system
enters into the unstable service state, and the system reconstruc-
tion model is triggered. At this time, the user behaviors are
classified by the time features of the behavior sequence, and
the system load is balanced by controlling the interaction time

Fig. 8 The third group of experimental results

Peer-to-Peer Netw. Appl. (2019) 12:502–513 511

of each type of user group. Therefore, the system load does not
exceed the warning point at any time. The experimental results
show that the system behavior reconstruction model based on
time features of the user behavior sequence can effectively bal-
ance the system in good service condition at any time.

6 Conclusions

This paper proposes a system behavior reconstruction model
based on the user interaction time sequence characteristics,
with the aim of resolving the system overloading issue
resulting from the rapid growth of user behaviors large-scale
network service systems, by the way of delaying user behav-
ioral time. Furthermore, a reconstruction algorithm has been
developed based on random fuzzy Petri net with imposed
delay.

The user behaviors have been classified based on a mem-
bership function and a membership criteria, which provided
the basis for constructing the system behavior reconstruction
model. In the actual service systems, the behavioral flow of
different user groups has been constructed by the system be-
havior reconstruction model and an algorithm based on ran-
domized fuzzy Petri net with delay has been implemented.
The proposed model for the balancing the system load guar-
antee that the system is always in good running state. As a
future work, we plan study the potentials of adaptive
refactoring system in effectively balancing the system load.

Acknowledgements This work was supported by National Natural
Science Foundation of China (No. 61472004, 61602109), Shanghai
Science and Technology Innovat ion Action Plan Project
(No.16511100903), and by The Key Laboratory of Embedded System
and Service Computing of Tongji University of Ministry Education
(2015).

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. Zhaolei D, Zhimin G (2008) Dynamic load balancing in web cache
cluster. 7th International Conference on Grid and Cooperative
Computing, pp 147–150

2. Yang L, Weizhe J, Youbo L (2017) A sliding window-based dy-
namic load balancing for heterogeneous Hadoop clusters. Concurr
Comp Pract E 29(3). https://doi.org/10.1002/cpe.3763

3. Saxena S, Khan MZ, Singh R (2012) Performance analysis in dis-
tributed system of dynamic load balancing using fuzzy logic.
Spring Congress on Engineering and Technology, IEEE, pp 6–12

4. Zouina D, BenMussa SA (2017) Load balancing aware SDMA-
based beaconing approach in vehicular ad hoc networks. Ann
Telecommun 72(3–4):189–197

5. Hwang ST, Jung NS (2002) Dynamic scheduling of web server
cluster. Proceedings of the 9th International Conference on
Parallel and Distributed System, pp 563–568

6. Liu F, Chen Y, Wong WS (2016) An asynchrous load balancing
scheme for multi-server systems. //2016 I.E. 7th Annual Ubiquitous
Computing, Electronics & Mobile Communication Conference:
IEEE Press, pp 20–22

7. Yong W, Xiaoling T (2016) A dynamic load balancing method of
cloud-center based on SDN. China Commun 13(2):130–137

8. Kallel S, Rodruigez IB, Drira K (2016) Adaptive and
reconfigurable software systems and architectures. J Syst Softw
122:342–343

9. Zhang J, Khalgui M, Li Z et al (2015) Reconfigurable coordination
of distributed discrete event control systems. IEEE Trans Control
Syst Technol 23(1):323–330

10. Wattebled P, Diguet J-P, Dekeyser J-L (2012) Membrane-based
design and management methodology for paralleldy namically
reconfigurable embedded systems. //7th International Workshop
on Reconfigurable and Communication-Centric Systems-on-Chip:
IEEE Press, pp 1–8

11. Santos R, Venkataraman S, Kumar A (2015) Dynamically Adaptive
Scrubbing Mechanism for Improved Reliability in Reconfigurable
Embedded Systems. //2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pp 1–6

12. Yang F, Shen L-X (2015) Reconfigurable architecture model based
on layered hypergraph. //Chinese Automation Congress:IEEE
Press, pp 27–29

13. Khalgui M, Mosbahi O, Li ZW, Hanisch H-M (2011)
Reconfigurable multiagent embedded control. IEEE Trans
Comput 60(4):538–551

14. Wang G, Zhang X, Tang S, et al (2016) Unsupervised clickstream
clustering for user behavior analysis. //SIGCHI Conference on
Human Factors in Computing Systems

15. Xu L, Mladen K (2008) Implementing fuzzy reasoning Petri-nets
for fault section estimation. IEEE Trans Power Delivery 32(2):676–
685

16. Zoran K, Pece M (2014) Hybrid fluid modeling approach for per-
formance analysis of P2P live video streaming systems. Peer Peer
Netw Appl 7(4):410–426

17. LuMT, Tzeng GH, Cheng H et al (2015) Exploringmobile banking
services for user behavior in intention adoption: Using new hybrid
MADM model. Serv Bus 9(3):541–565

18. Richardson M (2008) Learning about the World through Long-
Term Query Logs. ACM Trans Web 2(4):1–27

19. Iglesias JA, Angelov P, Ledezma A, Sanchis A (2012) Creating
evolving user behavior profiles automatically. IEEE Trans Knowl
Data Eng 24(5):854–867

20. Ahangarani FA, Abbas D (2016) Continuous-Time Delay-Petri
Nets as A New Tool to Design State Space Controller. Inf
Technol Control 5(4):401–U66

21. Linyu L, Wu Z, Zhiguo H, Long Z (2016) Stochastic Petri Net-
based performance evaluation of hybrid traffic for social networks
system. Neurocomputing 204:3–7

22. Sanjin M, Milan M, Slavko V, Milos I, Norbert P (2012) A fuzzy
Petri net model to estimate train delays. Simul Model Pract Theory
33:144–157

23. Chuang L, Yang Q, Fengyuan R (2002) Performance equivalent
analysis of workflow systems based on stochastic Petri net models.
Engineering and Deployment of Cooperative Information Systems,
First International Conference, EDCIS 2002, Beijing, China

512 Peer-to-Peer Netw. Appl. (2019) 12:502–513

https://doi.org/10.1002/cpe.3763

Zhaohui Zhang received the B.S.
degree in Computer Science from
Anhui Normal University, Wuhu,
China, in 1994, and became a
teacher at the University. He com-
pleted his master's courses pro-
gram of University of Science
and Technology of China from
1999 to 2000. Respectively, he re-
ceived the Ph.D. degree in
Computer Science from Tongji
University, Shanghai, China, in
2007. He was a professor with
Anhui Normal University before
07/2015. Currently, he is a

Professor with the School of Computer Science and Technology,
Donghua University, Shanghai, China. His research interests include net-
work information services, service computing and cloud computing.

Lina Ge was born in 1993. She
r e ce i v ed t h e B .S . deg r e e
Computer Science from Huaibei
Normal University, Huaibei,
China, in 2014. She is a M.S. can-
d i d a t e o f An hu i No rma l
University. Her research area in-
cludes clouding computing and
service computing.

Pengwei Wang received the B.S.
and M.S. degrees in Computer
S c i e n c e f r om S h a n d o n g
Univers i ty of Science and
Technology, Qingdao, China, in
2005 and 2008, respectively, and
the Ph.D. degree in Computer
Science from Tongji University
in 2013. He finished his postdoc-
toral research work at the
Depa r tmen t o f Compu t e r
Science, University of Pisa, Italy,
in 2015. Currently, he is an
Associate Professor with the
School of Computer Science and

Technology, Donghua University. His research interests include service
computing, cloud computing, and Petri nets.

Xinxin Zhou was born in 1993.
She is a M.S. candidate of
Donghua University. Her research
area includes clouding computing
and service computing.

Peer-to-Peer Netw. Appl. (2019) 12:502–513 513

	Behavior Reconstruction Models for Large-scale Network Service Systems
	Abstract
	Introduction
	Related work
	Model of system behavior reconstruction based on user behavior classification
	Theorem. Load balancing reconstruction

	Petri net model and algorithm for implementing system behavior reconstruction
	Random fuzzy Petri nets with time delay
	Four basic structures of DSFPN model based on user classification
	DSFPN algorithm

	Examples and experiments
	The DSFPN model of a booking system
	Experimental design
	Experimental results analysis

	Conclusions
	References

