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Abstract Peer-to-peer (P2P) sharing systems use incen-
tives for resource exchange to encourage cooperation and
ensure fairness. In bilateral strategies, such as BitTorrent
Tit-for-Tat or deficit-based FairTorrent, individual decisions
of peers utilize direct observations. It may result in low per-
formance and unfair treatment. In this paper, we study a
novel exchange strategy that applies Cyclic Ranking (CR).
In addition to direct observations, a peer utilizes provi-
sion cycles—a shared history of effective exchanges. The
PageRank algorithm runs for the locally collected cycles
and computes the numerical ranks to estimate the rep-
utation. The CR strategy incrementally augments known
incentive-aware strategies. For evaluation we implement
CR-BitTorrent and CR-FairTorrent variants. Our simulation
model captures the dependence on network bandwidth and
the number of seeders as well as selfishness and stability
of the participants. The initial experiments show improved
fairness and download times, compared to the original Bit-
Torrent and FairTorrent. The performance of selfish and
unstable peers decreases by as much as 50%. The CR strat-
egy suits well in environments where direct reciprocity has
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2 Aalto University, Espoo, Finland

3 Petrozavodsk State University, Petrozavodsk, Russia

shown little effect. Contrasted to existing solutions, the CR
strategy rewards longevity and stability of peers.
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1 Introduction

Single-resource exchange is a base component of P2P file-
sharing networks. BitTorrent [1] and the multitude of its
variants form one of the most demanded P2P protocol fam-
ilies [2]. Exchange in a BT-like system is based on bilateral
incentives [3]: file downloading is possible in return for
uploading to the same peer. A rational peer individually esti-
mates reputation of other peers using direct observations
of their provision. It is an approximated Tit-for-Tat strat-
egy [1, 4]: each peer ranks its neighbors according to their
direct provision. The BT strategy still suffers a certain level
of unfairness and non-optimal performance. Although peers
contribute upload bandwidth, there can be no appropriate
return in the download performance.

Cyclic Ranking (CR) method [5] extends the direct
observations with shared history in form of provision cycles.
Research [3, 6–8] showed that such exchange paths do
appear in P2P exchange due to its multilateral nature.
Moreover, P2P reputation systems benefit from the use of
structural ranking algorithms, such as EigenTrust [9] and
Distributed PageRank [10], where connectivity properties of
the network exchange influence the peer reputation.

This paper studies the applicability of the CR method
for constructing effective incentives in BT-like systems. We
contribute a novel CR strategy that provides multilateral
incentives for cooperation. In addition to direct observation
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of its neighbors, any peer can maintain locally a directed
graph consisting of provision cycles. They are constructed
by recommendations coming from reputable neighbors,
hence reflecting effective exchange chains in the network.
Links of the graph are weighted with local reputation of rec-
ommenders. The distributed construction allows the peers
to disseminate their local reputation through the network.
The peers run a variant of the PageRank algorithm on this
graph, evaluating in the numerical ranks the reputation that
captures exchange connectivity properties as well as direct
observations.

The CR strategy has following properties:

1) CR can be implemented as an extension of a known BT-
like strategy and incrementally deployed.

2) Provision cycles can be constructed individually for
any peer by collective work where the participation
has incentives and requires relatively small effort from
every good participant.

3) CR ranks of peers provide proper incentives for cooper-
ation, penalizing selfish and unstable peers and reward-
ing longevity and stability of peers.

4) CR ranks are resilient to false reports and collusion.

We implement several CR variants for extending the
known strategies—BitTorrent and FairTorrent. For the
evaluation we use an OMNeT-based simulator. We also
observed that the performance of BitTorrent and FairTorrent
depends on algorithmic implementation. Thus, one contri-
bution of the paper is a detailed description of BitTorrent
algorithms missing in related work.

The rest of the paper is organized as follows. Section 2
introduces background on P2P single-resource exchange
with bilateral incentives. Section 3 contributes the CR strat-
egy and explains its support of multilateral incentives. In
Section 4, we specify the algorithms of several BitTorrent
versions. Section 5 presents our simulation experiments and
initial findings. Section 6 concludes the paper.

2 Single-resource exchange

File-sharing in BitTorrent (BT) [1] and in its numerous vari-
ants applies single-resource (single-torrent) peer-assisted
exchange. The resource is the peer upload bandwidth in
exchange of file pieces [3]. For a given file, BT exchange
is based on a swarm of N = NS + NL peers: NS seed-
ers are file owners providing file pieces to others “for free”
and NL leechers are interested in downloading the file. Dur-
ing the exchange, if a leecher u has downloaded some file
pieces then u can upload them to other leechers. For absent

pieces, u requests other peers of the swarm. Eventually,
every leecher completes the file download.

The demand of every leecher is matched with available
supply at other peers. They are motivated to contribute
the bandwidth in a bilateral manner: download is possi-
ble in return for upload to the same peer. The objective
is reducing the download performance for free-riders and
other “parasite” participants. The fairness is supported on
the microscopic view [11]: u uploads to v similarly to u has
downloaded from v, based on u’s local estimations for v, for
all leechers u and v. An individual algorithm a leecher uses
in BT exchange is called a client. There are many implemen-
tations for practical use (e.g., Vuze (Azureus), μTorrent)
and for research (e.g., FairTorrent, PropShape, BitThief,
BitTyrant).

A client divides runtime onto rounds, which are not syn-
chronized among peers. Typical BT clients use 10–20 s
rounds. FairTorrent [12] applies “more instant” strategy
where every upload action (sending a data block) starts the
next round. The similarity of upload and download is esti-
mated locally using direct observations from several last
rounds.

Each u tries to maintain nu connections (TCP) with other
peers in the swarm (e.g., nu = 50 in Vuze, nu = 80 in orig-
inal BT). Local routing table Tu stores all open connections
(nu = |Tu|). It represents the neighborhood that u knows.
The control traffic required for data exchange is minimal:
each peer transmits messages indicating the data blocks it
currently possess and messages signaling their interest in
the blocks of other peers.

A leecher u selects nbst neighbors v of the highest down-
load rates av (v’s provision history). Besides, u selects nuch
peers for optimistic unchoking. It aims at finding new neigh-
bors in the swarm that would offer good download band-
width. The original BT client unchokes peers randomly.
Some popular BT client implementations (e.g., Azureus), on
the other hand, make a weighted random choice that takes
into account the exchange history with a peer.

The nbst + nuch neighbors are active, and u uploads only
to them during the current round. For downloading u may
exploit all peers and consume as much as possible from
them.

The above strategy is described in terms of ranks. Com-
pleting round t , a peer u computes ranks rv(t + 1) that
numerically estimate the observed v’s provision. In round
t+1, provision of u to v depends on the rank-based arrange-
ment of neighbors. Table 1 shows ranks for BitTorrent
(BT), PropShare (PS), and FairTorrent (FT). For new join-
ing peers the direct rank is zero or can be set to a fixed small
value.



634 Peer-to-Peer Netw. Appl. (2018) 11:632–643

Table 1 Local direct ranks at a leecher u to arrange its neighbors

BT [1] rv = 1/(nbst + nuch) if v is one of the nbst best neighbors
(by av) or v is one of the nuch unchoked peers; rv = 0
otherwise.

PS [4] rv = av/
∑

w aw , where the sum is over all N peers
excluding u.

FT [12] Rank is deficit rv = av − bv , where av and bv are v’s
download to u and upload from u, respectively.

BTyr [13] Rank is share ratio rv = av/bv .

The reference BT client with equal ranks for the top
downloaders (active set) is not used in recent implementa-
tions.

The original BT strategy suffers from a certain level of
unfairness [12]. Although peers contribute upload band-
width, there can be no appropriate return in the download
performance. One of the reasons is optimistic unchoking.
Even making nuch = 1 does not properly restrain selfish
strategies of other peers (e.g., BitTyrant) [13]. Another rea-
son is the scarce granularity of contributing neighbors: small
nbst (typically, nbst = 4) and treating all active neighbors
equally in uploading. The PS strategy attempts to solve this
issue by considering all possible neighbors (up to N) and
splitting the peer’s upload bandwidth in proportion to the
contribution received in the previous rounds.

Peer behavior is subject to frequent changes, random or
strategic. The long-round strategies of BT and PS have slow
reaction (typical round is 30 s). Selfish peers can earn points
in t and become free-riders in t +1. In contrast, the FT strat-
egy does not fix round length: u changes v’s rank (deficit
counter) whenever observing any download/upload activity
of v. Thus, u reacts immediately to changes in v’s behav-
ior. On the other hand, changes can be occasional, e.g.,
due to intermittent network connectivity. The FT strategy
is short-term, not focusing on longevity and stability of the
participation.

3 Cyclic ranking

Bilateral incentives are less efficient than multilateral [3,
14]. Direct observations provide small coverage, so dis-
covery of good participants is slow. If peers share their
observations, then a peer can locally approximate the global
exchange activity for better reputation estimation. We apply
the cyclic ranking (CR) ranking method of [5, Ch. 10] and
develop a CR strategy for improving fairness and perfor-
mance in BT-like systems.

A BT swarm is an almost full-connected network—
each peer knows most of others. Considering only active
upload links for each peer u, the instant exchange topol-
ogy is a directed graph. A link u → v has weight cuv ,
e.g., deficit counter or download/upload ratio. Given this
global graph, a ranking algorithm [15] computes ranks esti-
mating the reputation of peers. The computation is either
1) centralized—a non-scalable solution for P2P, 2) dis-
tributed [10]—vulnerable to false reports, or 3) local—the
global knowledge assumption is unrealistic [5].

3.1 Provision cycles

LetG = (N, L) be a directed graph that describes the global
exchange topology. It has no parallel links and self-loops.

A provision cycle is an exchange chain in the swarm,

u → w1 → w2 → . . . → wi → . . . → wl → u. (1)

Every link wi → wi+1 is “good” in the bilateral exchange,
i.e., wi+1 is a stable productive neighbor of wi . Cycles Eq. 1
exist in P2P economies [6, 7, 16]; they are short and have
reasonable interpretation.

A BT-like strategy uses 2-hop cycles u → v → u, which
are easily identifiable by direct observations.

3.2 Subjective cyclic graph

Let a node u create its own current local view of the
exchange topology, as in the BarterCast reputation mech-
anism [17]. Denote1 Gu = (Nu, Lu; C) the weighted u’s
subjective graph, which is a personalized and partial view
of G. In accordance with the basic CR method [5, Ch. 10],
Gu consists of provision cycles Eq. 1. Further let us call Gu

the u’s cyclic graph.
Consider how u can update its cyclic graph Gu based

on new cycles coming as recommendations from neighbors.
Let v recommend mv cycles

v → wj1 → . . . → wjlj → v, j = 1, . . . , mv, (2)

where wjl �= u for l = 1, . . . , lj . Denote wj0 = u and
wj,lj +1 = v.

3.2.1 Topology update

Construct 1 + mv cycles

u → v → u,

u → wj1 → . . . → wjlj → v → u, j = 1, . . . , mv.

1For the simplicity the notation does not show the dependence of C on
u.
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Fig. 1 Cyclic graph construction: a v recommends its cycles to u; b u

transforms the cycles and embeds them into its cyclic graph

(3)

The idea is illustrated in Fig. 1. The first cycle in Eq. 3
is the default 2-hop cycle. Peers wjl expand the u’s local
knowledge. (Though some of them can be already in Nu.)

Update Eq. 3 can be applied even if mv = 0 (no
recommendation from v). All cycles

u → v → u ∀ v ∈ Tu (4)

form the minimal cyclic graph that u can construct. Graph
Eq. 4 can be used for the initialization.

A cycle in Eq. 2 reflects a good provision chain observ-
able in the exchange topology (Fig. 1a). Update Eq. 3 intro-
duces new good provision cycles to the u-aware multilateral
exchange, and u becomes their head (Fig. 1b).

3.2.2 Reputation-aware link weights

Any indirect information from v is reputed by u in respect
to v’s provision. The local direct rank rv provides the
reputation bounds (see Table 1).

Update Eq. 3 defines 1+mv cyclic flows, where v → u is
the only common link. Let this u-incoming link have weight
rv . All the mv + 1 outgoing links and their succeeding links
are of uniform weights rv/(1 + mv). This way is similar to

flow-based reputation schemes, and leads to the circulation
flow of rv units started from u.

Algorithm 1 formulates our cyclic graph construction.
Any leecher u can perform it individually. The construction
is personalized: u can make own decision on how to com-
bine previous (rounds 1, 2, . . . , t − 1) and recent (round t)
observations.

On Step 1 the leecher u inherits selectively cycles found
previously (Gu(0) is empty). The selection problem is
beyond the focus of this paper. In our experiments, u

initializes Cu(t) = ∅.
The loop for v ∈ Nu(t) considers possible cycles coming

from the neighbors.
Step 3 evaluates initial node ranks rv(t) using direct local

ranks r∗
v (see Table 1) and exponential moving average with

degree 0 ≤ αr < 1. It makes a tradeoff between previ-
ous and recent behavior.2 If αr = 0 then the initial rank
and direct rank coincide, i.e., the case of BT-like algorithm.
If αr > 0 then rounds of low provision reduce rv(t), even
despite of high recent provision in t . Similarly, a new neigh-
bor v can achieve high rv(t) if v was a good provider for u

in few latest rounds τ < t . In our simulation experiments,
αr = 0.5.

On Step 4, all default 2-hop cycles are added3. Then
the link weights are updated with the initial v’s rank on
Step 5. They can be changed on further iteration of the cycle
(Steps 2–14) due to recommendations from other neighbors.

2If no previous ranking is available for v then let rv(t − 1) = 0.
3By default, cvw = 0 for any new link v → w added to Gu.
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Step 6 restricts the consideration of u to its best neigh-
bors, e.g., rv ≥ r̄ for a reasonable threshold r̄ . Only good
providers can recommend cycles to u and make u generous
for the peers that feed v. In the basic case, v recommends
its best neighbors w, resulting in 3-hop cycles u → w →
v → u at u. In our experiments we consider a simple case
when any leecher v recommends all cycles it knows. Steps
7–12 implement the topology and link weight update in Gu

based on incoming recommendations.
Importantly that v must donate some of its rank rv to

the link weight for other nodes in Gu. Thus u will upload
more to those peers (link weight increment on Step 10).
The sum weight increment to all mv links u → wj1 equals
rv(t)mv/(1 + mv), which is subtracted from the weight of
u → v on Step 12. Although this donation reduces the
direct upload from u to v, the latter expects provision benefit
from the recommended peers. Moreover, v-incoming links
can achieve additional weight due to recommendation from
other u’s neighbors if v has showed its good provision for
them. Taking into account all v ∈ Nv , the link weight is
made high if 1) many neighbors v recommend it, 2) rec-
ommenders are good (high rv), 3) recommenders provide a
moderate set of cycles (low mv).

3.3 Cyclic PageRank

Cyclic graph Gu represents knowledge on the u-aware
exchange topology. The graph can be used for personalized
local ranking (in respect to u) using known graph-based
(structural) algorithms such as PageRank [15, 18].

PageRank was introduced for ranking web pages. A link
from a page to another is an endorsement indicating the
quality of the latter page. The background model is a ran-
dom walk with probability of step u → v relative to link
weight cvw:

c̄vw = cvw /
∑

w′
cvw′ ,

forming the relative weight matrix C̄. At each step a node v

selects with probability c̄vw a link v → w to follow. Assum-
ing the steady state exists, the PageRank value pv is the
probability that the random walk is in v. The computation is
iterative:4

p(i+1)
v =

∑

w→v

c̄wvp
(i)
w , (5)

starting from initial values p
(0)
v and converging to pv .

Similarly to web pages, a link v → w in Gu is con-
sidered as indication of the quality of w for v. The idea
was previously exploited in distributed PageRank [10] and
EigenTrust [9], where cvw estimates u’s trust for v → w.

4As we shall see later, Cyclic PageRank does not require a damping
factor.

In contrast, Cyclic PageRank is not based on the global
exchange topology graph. The global graph assumption can
be inadequate for unique link weighting: the same link v →
w can easily appear good in respect to u1 and bad in respect
to u2. That is, a rational u is interested in personalized
knowledge (Gu).

For given Gu let us further call pv the cyclic rank values
(CR values), which are a non-negative real solution to

p = C̄Tp (6)

normalized with
∑

v∈Nu
pv = 1. Since Gu is always

strongly connected, no damping factor is needed for ensur-
ing the steady state existence and convergence in Eq. 5.
Rank pv becomes high when v appears in many cycles
(many w → v) with high link weights (c̄wv) and high-rank
predecessors (pw).

3.4 Analysis

Let us prove that in case of no recommendations Algo-
rithm 1 provides such ranks that coincide with direct
ranks rv .

Theorem 1 For minimal cyclic graph Gu the equality pv =
rv holds.

Proof Any minimal cyclic graph is defined by Eq. 4 for a
given weight matrix C. The probability of being in some
v ∈ Tu during random walking in Gu is simply determined
with the normalized solution to Eq. 6:

pv = cuv/
∑

w∈Tu

cuw.

Any weight cuv is initially equal to the local direct rank (see
Table 1), and pv coincides with the normalized rv .

A rational peer v is interested in that many peers recom-
mend it in their cycles. Such recommendations propagate
and increase the rank pv at v’s neighbors. This intuition
substantiates the incentives for peers to share cycles.

By Algorithm 1, a neighbor v always becomes the last
node in the cycles. This property reduces pv if v’s cycles
consist of bad providers, so sacrificing v itself in the
case of false reporting. Attempts for recommending many
cycles (possibly consisting of sibling peers) lead to low link
weights, since the direct provision/consumption ratio rv is
partitioned among all cycles from v. Consequently, v is
interested to recommend a moderate set of good cycles.

3.5 CR-extended BT-like exchange

There are different options of integrating CR into BT
exchange, depending on how cycles are accumulated and
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how much they can affect the behavior of peers. By leverag-
ing shared history in BT-like systems, the peers make more
long-sighted decisions, possibly at the expense of immedi-
ate rewards. We explore different options by evaluating two
strategies: CR-BT and CR-FT.

CR-BT represents a conservative approach, utilizing CR
in a very unobtrusive manner. It extends the vanilla Bit-
Torrent algorithm by modifying only two choices made by
peers (which are normally given less attention to): optimistic
unchoking and peer selection.

BT optimistic unchoking aims at discovering better peers
by choosing nuch random peers to unchoke at every round.
CR-BT modifies this stochastic mechanism using the prob-
ability distribution relative to the peer CR ranks. The
probability of v being unchoked by u becomes

πv = pv/
∑

w

pw. (7)

Note that Eq. 7 cannot use the local ranks rv from Table 1,
since rv are available for active peers only. In contrast, cyclic
graph Cu contains peers that are observed directly or from
(indirect) recommendations of good neighbors.

In BT selection, u chooses in the whole swarm a few
peers to which an active connection is maintained. The CR-
BT strategy selects the peers based on their CR ranks pv .
This bolsters the effect of the CR-BT unchoke, as the peers
connecting to u are also more likely to esteem u (in terms
of CR), and thus unchoke.

CR-FT is an extension of FairTorrent, capturing its ultra
reactive chokeless model. An FT peer chooses the next
packet to transmit based on the instant deficits (local ranks
rv) of its neighbors. A CR-FT peer prioritizes the CR rank-
ing pv over the deficit and chooses v∗ of the highest CR
rank among all peers that u knows:

v∗ = argmax
v

{pv}. (8)

The CR-FT strategy relies therefore on the shared history (if
u accumulated it already), rewarding peers that have con-
tributed to the network as a whole, not only recently to u (its
current neighbors).

4 Algorithms / methodology

The purpose of the simulations is to discover the behavior of
the proposed schemes compared to existing ones, and asses
their benefits and suitability for different scenarios. Specif-
ically, we look at the base performance of the different

algorithms in terms of completion times for individual peers
in order to see how the algorithms change the incentives for
peers to behave in different ways.

4.1 Simulator description

We observed that behavior of different BitTorrent versions
depends a lot on the details of algorithms for peer selec-
tion and bandwidth allocation which are often hidden in the
implementation details. Therefore, we see it as an important
contribution to list all key algorithms explicitly to facilitate
reproductivity of experiments and comparison with future
BitTorrent enhancements.

We implemented those algorithms using an OMNeT++
simulator framework-based BIT-SIM simulator. The BT
swarm simulator consists of a Tracker and a group of peers.
The peers were assigned one of the following roles accord-
ing to each simulator’s parameters which are described
below: a seeder, leecher, selfish or unstable.

All connections between peers and the tracker are con-
structed using identical bandwidth-limited data links, creat-
ing a homogeneous network. To enforce a strict total uplink
bandwidth limit independently of the number of peer con-
nections, the simulator uses a queuing system for packet
transmission; each peer would transmit using only a single
data link at a time, ensuring that the total uplink bandwidth
equals that of the individual links.

The data processing events were completed without arti-
ficially introduced delay (all processing is instantaneous in
the simulation’s timeframe).

4.2 Client behavior

The BitTorrent clients’ behavior can be divided into the fol-
lowing phases: 1) a periodic timer, 2) when receiving data,
3) when transmitting data, 4) when receiving a new peer
connection.

All BT leecher peers’ timers follow the following pat-
tern. During initialization, each peer would be assigned a
unique identifier and register with the tracker. After that,
and every 30 minutes, peers would request a list ppot of
100 active peers from the tracker, which is constructed by
randomly selecting peers from all known to the tracker
pall (Algorithm 2). After acquiring ppot , and every 5 min-
utes, peers would discard peers already connected, creating
a list of potential new peers pnew. From this list, peers
would be selected using the function SelectP eer(), and
a connection would be attempted to be established until
the total number of peer connections is 50 or pnew is
empty.
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In BT and FT, the SelectP eer() will uniformly select
a random peer. In CR-BT and CR-FT, the peer will be
randomly selected using its cyclic rank value as weight
(Algorithm 3).

Selecting which data requests to respond to is done either
through choking (ignoring requests) or recipient selection.
FT and CR-FT does not use choking, instead they accept
all requests, but respond to these selectively. BT and CR-
BT use choking, but respond to all requests they accept.
In order to select which peers to unchoke, or the next
request to respond to, both the number of bytes received and
transmitted is recorded for each peer.

Selection of the peers to unchoke in BT and CR-BT is
done every 10 seconds (Algorithm 4). BT uses the peers’
performance (bytes received from the peer) during the last
10 seconds as criteria, while CR-BT uses the peers’ ranks.
Each round, four peers are unchoked, with a fifth chosen
randomly (BT) or based on the ranks (CR-BT) each 30
seconds (using SelectP eer() defined earlier).

In contrast, FT and CR-FT unchoke all peers that express
interest. In BT and CR-BT, requests are responded to in the
order they arrive.

The FT algorithm uses the total deficit for each peer,
i.e., the difference between the number of bytes sent
and received over the lifespan of the connection, to
select the next request to respond to (Algorithm 5). The
first request from the peer with the lowest deficit is
chosen.

CR-FT chooses the first request by the peer with the
highest rank value (Algorithm 6).
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4.3 Malicious- and misbehaving nodes

The selfish nodes operate identically to normal leechers of
the selected algorithm (including connection establishment,
when requesting pieces, the choke mechanism), except
when receiving a piece request from a peer. The requests are
simply discarded without informing the requestor.

Unstable nodes also operate identically to normal leech-
ers, but initiate periods when no packets (of any kind) are
sent or received, simulating a client who either logs off
unexpectedly for some time, or has a bad network con-
nection (Algorithms 7). The packets, which include piece
requests, data blocks and control packets, are discarded
completely during the periods of instability. The instabil-
ity is triggered by a timer which is set to fire after a
time T ∫ = unif orm(T ∫min, T ∫max), following the last
period of instability. The instability lasts for a time T � =
unif orm(T �min, T �max).

After the simulation, the completion times for unstable
nodes are calculated using only the periods of stability. This

provides us with comparative values that highlight only the
effect of the unstable behavior.

4.4 Round-robin seeder

Seeders use the choking mechanism, as BT and CR-BT,
to select which peers are provided data. Up to 4 peers
are unchoked each 10 seconds in a round-robin manner
(Algorithm 8).

5 Simulation

We evaluated the CR strategies using a simulator devel-
oped with the OMNeT++ tool [19]. Different set-ups
allow comparing the performance to regular BT and
FT strategies when the proportions of different types
of peers are varied. We also simulated mixed-strategy
networks in order to determine the benefits in gradual
deployment.

5.1 Model

The model focuses on evolution of an N-size swarm. Given
a swarm, its primary client strategy is fixed. The file size
is F . Let all peers be classified into types i = 0, 1, . . . , n,
where type i = 0 represents seeders and types i > 0
represent leechers of different behavior. The type ordering
is partial in terms of the selfishness level, i.e., for some
i < j we cannot assert that type j is more selfish than
i.
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Table 2 Basic types of peer behavior

Name Description

Seed It has all data and altruistically provides them to
others in a round-robin fashion.

Good It follows the primary client algorithm (strategy),
i.e., BT, CR-BT, FT, or CR-FT.

Unstable It alternates good behavior and inactivity. The
periods follow exponential distributions with
means 1/λgood and 1/λinact, which are typically
5..10 minutes long.

Lazy
free-riding

It does not upload to other peers and does not
advertise having data. Appears always as a newly
arrived peer to others.

Deceptive
free-riding

Appears as a normal good peer (wrt. choking, data
advertising), except that it never uploads the data
it is requested of. Disguises itself as a peer with
very low upload capability.

Aggressive
free-riding

As a lazy free-rider, but u seeks to connect to more
peers (up to nu = 500) increasing its exposure
to seeders and optimistic unchoke. Aggressively
polls the tracker for new peers. For the BT strategy
it coincides with BitThief client [20].

The basic set of types for our experiments is shown
in Table 2 (n = 5). It can be easily extended, e.g., Bit-
Tyrant client [13] allows benefit (if possible) by deviating
strategically from the strict bilateral balance.

Let Ni be the number of peers of type i in the swarm,
N = ∑n

i=0 Ni . At the start of any simulation the population
size parameters N and (Ni)

n
i=0 are fixed. Among N peers

the n types are assigned at random.
Throughout the simulation, the parameters remain con-

stant. Any seeder stays in the swarm forever. After complet-
ing a download, the leecher is replaced by a new peer of the
same type. Therefore the model reflects a stable regime of
exchange, and we focus on evolutionary long-term charac-
teristics of fairness and performance.

The basic performance metrics are summarized in
Table 3. Clearly Bi = Li/Ti . Applying Little’s law, we
yield Ni = λiTi , where λi is the departure rate5 of leechers
of type i. Contrasting Li to F estimates the fairness.

The model supports sequential event-driven sampling.
An event is a departure of next leecher u due to download
completion. If u is of type i then the next sample for every
metric (Ti(u), Li(u), and Bi(u)) is calculated.

Comparison of swarms with different primary strategies
evaluates improvements in the fairness and performance.
Intuitively, an efficient strategy makes 1) T low for good
leechers and higher for leechers with more selfish behavior,
2) L comparable with or less than F for good leechers.

5The departure and arrival rates are equal since Ni is fixed.

Table 3 Performance metrics

Symbol Description

Ti The average download completion time (sec) for a leecher
of type i > 0, i.e., leecher lifetime. For a given leecher u

we also use Ti(u) or T (u).

Li The total amount (KB) that a leecher of type i > 0
has uploaded on average being in the swarm. For a given
leecher u we also use Li(u) or L(u).

Bi The average upload throughput (KB/sec) that a peer of type
i contributes during the exchange. For a given peer u we
also use Bi(u) or B(u).

5.2 Experiments

Our BitTorrent simulator is based on the work described
in [21]. The implementation was ported to OMNeT++ 4.2.2,
adding additional logging capabilities, configurable peer
and seeder behavior, and the latest versions of BT algo-
rithms (including FairTorrent).

The experiments consist of more than 600 individual sim-
ulations, each implements a swarm for sharing a 650MB
torrent file.

Each simulation was run five times, with different role
assignments, using a homogeneous network (bandwidth and
peer capabilities). The bandwidth of each peer was limited
only on outgoing (provisioning) traffic, and had a set delay
of 300ms.

The cycle distribution for the CR strategies is imple-
mented using custom BitTorrent extension packets. The
cycles (and ranks) were updated periodically every 60 sec-
onds, with the cycle length limited to 5 nodes.

5.3 Analysis

We measured the base performance of the CR strategy in
networks without selfish or unstable peers. Figure 2 shows
that both CR-BT and CR-FT perform as well or better than
their counterparts with regards to the average download
completion time for leechers. The improvement is roughly
10% between BT and CR-BT throughout the simulations.
The impact of CR-FT was more diverse, showing 10..24%
shorter times in restricted networks (low bandwidth and
Nseeder), while performing as well as normal FT in others.
On the other hand, the CR strategies increase the variation.

Our simulations showed that CR decreases the average
download time for good leechers by 2.6% (Fig. 3) when
there are selfish peers. Nevertheless, CR has no substantial
impact on discouraging specifically selfish behavior com-
pared to FT, as the slightly shorter completion times can
be attributed to the general swarm efficiency improvement
seen earlier. Compared to BT, the CR strategy does show
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Fig. 2 Average completion
times in dependence on the
share of seeders and bandwidth
for N = 100

(a) Bandwidth 2MB/s (b)

Fig. 3 Average completion
times in presence of selfish
peers: bandwidth 200KB/s,
Nseeder = 10, N = 100

(a) Good nodes (b) Selfish nodes

Fig. 4 Average completion
times in presence of unstable
peers. The periods of inactivity
are subtracted. Bandwidth
200KB/s, Nseeder = 3, N = 30

(a) Good nodes (b) Unstable nodes

Fig. 5 Average completion
times depending on the share of
CR-FT leechers

(b) Bandwidth 200KB/s,(a) Bandwidth 2MB/s,
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noticeable improvement, increasing the completion times
for selfish peers by 15..32%.

The most interesting results were observed when intro-
ducing unstable peers. This had little effect on the per-
formance of BT, CR-BT and FT; the figures for unstable
peers were indistinguishable from good peers (when sub-
tracting the periods of inactivity). In contrast, CR-FT shows
very strong reaction, especially in low-bandwidth networks
(Fig. 4). The completion time for unstable peers increases
by 32% on average, in some cases by as much as 50%. Sta-
ble peers experience shorter times as the share of unstable
peers is increasing.

The increase for unstable peers is explained by the CR
ranks. They decrease during inactivity, leaving the peers
less likely of being served. The stable peers having stable
ranks naturally benefit from this drop. As the number of
unstable peers increases, the number of better ranked peers
competing for the same resource decreases, leading to better
service.

Finally, we experimented with mixed swarms consisting
of leechers following both BT and the CR strategies. Over-
all, in a network with only good leechers, the completion
times remained stable even though the share of CR-nodes
varied (Fig. 5a). This suggests that the CR strategy (espe-
cially CR-FT) is beneficial even when sparsely deployed.
However, in the presence of unstable nodes (Fig. 5b), the
performance of CR-FT peers depends on the number of
leechers implementing the strategy. The completion times
for CR-FT leechers increase as the share of them decreases,
suggesting that a wide deployment is required to efficiently
discourage unstable behavior.

6 Conclusion

Bilateral single-resource exchange in P2P sharing systems,
which is based on direct observations, can be effectively
extended with additional indirect information that comes
from multilateral exchanges. This information is repre-
sented by provision cycles, which naturally exist in such
systems as previous studies showed. We applied the Cyclic
Ranking method and proposed an advanced peer strategy
(CR strategy) for BitTorrent-like systems. The CR strat-
egy can be implemented there as an extension allowing
incremental deployment. These properties are confirmed by
implementation for BitTorrent and FairTorrent.

Our initial experiments showed that rational peers have
certain incentives for using the CR strategy. In a net-
work with selfish peers, CR slightly reduces the average
download time for good leechers and significantly punishes
selfish peers. In presence of unstable peers, CR is the only

strategy that punishes the instability and encourages the sta-
bility. The overhead of cycle collection was estimated at few
percent of bandwidth, thus not affecting the download rate
noticeably. The limitations of our work include a simple
churn model using the unstable peers and homogeneous net-
work topology. In future work, we plan to extend the model
to include multiple swarms per a single client.

Acknowledgments The work of D.Korzun is financially supported
by the Ministry of Education and Science of Russia within project
no. 2.5124.2017/8.9 of the basic part of state research assignment for
2017–2019. Andrei Gurtov was supported by the Center for Industrial
Information Technology (CENIIT).

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

1. Cohen B (2003) Incentives build robustness in bittorrent. In:
Proceedings of the 1st workshop on economics of peer-to-peer
systems

2. Dhungel P, Wu D, Ross KW (2009) Measurement and mitigation
of BitTorrent leecher attacks. Comput Commun 32(17):1852–
1861. [Online]. Available: doi:10.1016/j.comcom.2009.07.006

3. Aperjis C, Freedman MJ, Johari R (2011) Bilateral and multilat-
eral exchanges for peer-assisted content distribution. IEEE/ACM
Trans Netw 19:1290–1303

4. Levin D, LaCurts K, Spring N, Bhattacharjee B (2008) BitTorrent
Is an auction: analyzing and improving BitTorrent’s incentives.
SIGCOMM Comput Commun Rev 38:243–254

5. Korzun D, Gurtov A (2013) Structured peer-to-peer systems:
fundamentals of hierarchical organization, routing, scaling and
security. Springer

6. Anagnostakis KG, Greenwald MB (2004) Exchange-based incen-
tive mechanisms for peer-to-peer file sharing. In: Proceedings
of the 24th international conference on distributed computing
systems (ICDCS’04), ser. ICDCS ’04. IEEE Computer Society,
pp 524–533
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