Peer-to-Peer Netw. Appl. (2017) 10:954-982
DOI 10.1007/s12083-016-0455-2

@ CrossMark

HyCube: A distributed hash table based on a variable metric

Artur Olszak!

Received: 27 August 2015 / Accepted: 16 March 2016 / Published online: 22 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Distributed Hash Tables (DHT) proved to be
scalable decentralized systems providing efficient resource
location. This paper concentrates on efficiency and
resilience to node failures of DHT systems and presents a
novel model of a distributed hash table based on a hier-
archical hypercube geometry, called HyCube. The DHT
geometry, the choice of the metric defining logical distances
between nodes, and the routing algorithm have fundamen-
tal influence on routing efficiency and resilience. The use of
the one-dimensional model (placing the nodes logically on
aring) allows the nodes to maintain sets of references called
sequential neighbors - certain numbers of neighbors that are
the closest existing nodes in both directions on the ring.
Such a model yields a very high level of resilience to node
failures. The new approach, presented in the paper, employs
a variable multi-dimensional metric adopting the Stein-
haus transform. Routing, lookup and search algorithms are
discussed, as well as routing table nodes selection and self-
organization techniques. It is shown that the new approach
allows reaching a higher level of resilience to node failures,
as well as a shorter average routing path length than with
the use of the sequential neighbors sets.

Keywords Distributed hash table - Routing algorithm -
Lookup algorithm - Search algorithm - Failure resilience

B4 Artur Olszak
A.Olszak @ii.pw.edu.pl

Institute of Computer Science, Warsaw University
of Technology, Warsaw, Poland

@ Springer

1 Introduction

In recent years, we observe a growing interest in large-
scale distributed systems based on the distributed hash
table algorithm (DHT). DHT is a distributed system stor-
ing large amount of information in a way allowing efficient
lookup for the information being stored. DHT systems are
used to store key-value pairs, similarly to a hash table.
However, the key-value pairs set is stored in a distributed
manner and is shared among the nodes of the distributed
hash table (computers connected to the DHT network). Dis-
tributed hash tables provide efficient resource location, are
extremely scalable and have a lot of possible applications -
storing resources in a distributed way, distributed file sys-
tems [8], [14], communication, Internet telephony [32], live
data streaming [1] and many other. DHT systems are also
widely utilized for accomplishing efficient resource/service
discovery for grid computing systems [26, 31, 34].

The fundamental functionality provided by distributed
hash tables is efficient node/resource location - routing,
lookup and search. In DHT systems, every node is assigned
a unique identifier, used to locate the node in the virtual
ID space, and resources are usually stored by nodes which
are determined based on resource keys. The resource key
is typically a result of a hash function on the resource.
Because of the dynamic nature of DHT systems and the
stored key set changing continuously, most DHTs use some
variant of consistent hashing' to map keys to nodes. Most
often, the node ID space is isomorphic with the resource

IConsistent hashing is a hashing technique such that removing or
adding one node (a hash table slot) does not significantly influence the
key distribution among other nodes. Usually changes are required only
in the closest neighborhood. In traditional approaches, usually adding
or removing a hash table slot would cause the hashing algorithms to
remap all the keys.

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-016-0455-2&domain=pdf
mailto:A.Olszak@ii.pw.edu.pl

Peer-to-Peer Netw. Appl. (2017) 10:954-982

955

key space, and nodes responsible for resources (nodes in
which the resources are stored) are those whose identifiers
are the closest to the resource keys (among all nodes in the
DHT), according to a DHT-specific metric defining logical
distances between nodes. Thus, the resource lookup comes
down to lookup for the node(s) closest to the resource key.
DHT systems provide efficient node lookup and routing
messages between nodes. Even in very large systems, every
DHT node should be able to route messages to any other
node (recursive routing), or find the node responsible for
any resource (lookup - iterative routing) in a small number
of steps.

To support the lookup/routing, every node in a distributed
hash table maintains a list of references to other nodes in
the system - a routing table. The routing table is built in
a way that allows locating a node that is closer (than the
current node) to any arbitrarily chosen node in the DHT,
which consequently, allows decreasing the distance left to
the destination node in each routing/lookup step. Although
being founded on a common concept, individual distributed
hash table designs are based on different overlay network
geometries: tree [27, 30, 36], hypercube [28], ring [33],
XOR metric [22]. The overlay network is a virtual net-
work formed by the connections between DHT nodes, and
the geometry determines the connection graph structure -
constraints defining between which pairs of nodes connec-
tions may be established. Individual geometries, routing and
lookup algorithms, as well as the chosen metric defining
logical distances between nodes (and resource keys), yield
different resulting system properties: efficiency (routing
path length/number of lookup steps), the level of flexibility
in the next hop selection (to how many nodes in the rout-
ing table a message may be routed in each routing/lookup
step, preserving the routing convergence - decreasing the
distance left), flexibility in the neighbor selection (choosing
routing table nodes), resilience to node failures (ability of
the system to deliver messages in the presence of node fail-
ures), and the ability of the system to recover good routing
properties after node failures.

One of the most crucial characteristics of DHT systems
is static resilience - the ability of the system to deliver mes-
sages in the presence of node failures, with the recovery
mechanisms switched off. Static resilience is usually mea-
sured as a percentage of successful/failed routes and the
average path length increase (the number of routing steps) in
the presence of a given ratio of failed nodes - nodes that sud-
denly become unresponsive (do not respond to requests sent
to them). A node failure might be caused by a node leav-
ing the system without proper communicating that fact, not
allowing its neighbors to reestablish connections, a network
connection being broken, a node being overloaded and not
processing messages, or due to existence of malicious nodes
not processing requests according to the protocol. Static

resilience characterizes the network tolerance to failures
without the use of any maintenance/recovery mechanisms.
However, it also directly translates to the behavior of the
system under churn (the process of nodes joining and leav-
ing the system - connecting to and disconnecting from the
DHT [29]) - efficiency, ability to deliver messages, lookup
accuracy, data availability and many other. It usually takes
some time for the recovery and replication processes to react
to topology changes, so maintaining a high level of static
resilience is very important, especially in very dynamic sys-
tems, where the changes take place constantly. Moreover,
static resilience also indirectly affects the efficiency of the
system maintenance and recovery mechanisms. A different
approach for analyzing resilience of DHT systems, pre-
sented in [15], discusses fault-tolerance in the worst-case
joins and leaves scenario.

In [11], the authors discuss the influence of the geome-
try of distributed hash tables on their static resilience and
average path length. Different geometries provide different
degrees of flexibility in route selection (the number of nodes
to which messages may be routed in each routing step). The
authors prove that the flexibility in next hop selection is a
crucial factor influencing the static resilience of the system.
The flexibility determines how many other options remain
for the next hop (preserving routing convergence to the des-
tination), when the best next hop is down for any reason. If
there are few of them (or none in some cases), the routing is
very likely to fail very often under high failure rates.

Certain DHT architectures support the use of sequen-
tial neighbors sets - usually, sequential neighbors are some
number of successors and the same number of predeces-
sors of a node on a logical one-dimensional ring (which
requires single global ordering of the nodes). Sequential
neighbors, as an addition to the DHT-specific routing table
nodes (providing effective routing/lookup), provide a very
high level of flexibility in the next hop selection, as half
of the sequential neighbors are able to route any message
in either direction on the ring. That means that even under
a high rate of node failures, every node is able to route
any message, decreasing the distance left to the destina-
tion, unless all successors/predecessors fail. Some DHTs
naturally support the existence of sequential neighbors [33],
and other do not [22, 27, 28]. Due to many advantages
of maintaining such sets, the DHT designs, not support-
ing this concept naturally, are often modified to include the
support for sequential neighbors [30]. As presented in [11]
and [37], introducing sequential neighbors sets dramatically
increases the degree of flexibility in route (next hop) selec-
tion, making such systems highly resistant to node failures
and targeted node attacks. These factors indirectly influence
many other DHT characteristics, making them extremely
important for large-scale DHT systems. Although such a
one-dimensional model yields a high level of resilience to

@ Springer

956

Peer-to-Peer Netw. Appl. (2017) 10:954-982

node failures, it may lead to path length increases in the
presence of failures of many nodes. As the number of failed
nodes increases, next hops are more often found only in
the sequential neighbors sets, and at one extreme (routing
using only sequential neighbors), the expected path length
is proportional to the number of the nodes in the system.
The use of a multidimensional routing metric may signifi-
cantly decrease the expected path length when routing using
only the closest neighbors sets. However, by using a multidi-
mensional metric, the system loses the properties connected
with the existence of sequential neighbors - ensuring that a
certain number of closest nodes would match any potential
direction.

This paper presents the architecture of a distributed hash
table called HyCube. The presented model is based on a
hierarchical hypercube geometry (a multiple-level nested
hypercube, where vertices are lower-level hypercubes) and
employs a variable (modified by nodes on the route) multi-
dimensional metric adopting the Steinhaus transform [21].
Novel routing, lookup and search algorithms are discussed,
as well as routing table nodes selection algorithms, and
maintenance and recovery procedures. HyCube is scalable,
efficient and significantly outperforms existing solutions in
respect of resilience, routing and lookup efficiency under
dynamically changing conditions, despite not using the
sequential neighbors concept. A preliminary conception
of the described DHT was presented at a conference and
published in the conference proceedings [24]. This paper
presents the complete design of HyCube, including numer-
ous enhancements, supported by results obtained during
extensive simulations.

The rest of this paper is organized as follows. Section 2
presents the related work. Section 3 introduces the routing
architecture of HyCube. Section 4 describes the simulation
methodology used for obtaining the experimental results
presented in the paper. Sections 5 and 6 contain a study
leading to improvement of the routing performance and
resilience. The evaluation of the presented routing architec-
ture is presented in Section 7. The routing table node selec-
tion mechanisms used in HyCube are discussed in Section 8.
Section 9 describes algorithms used for locating nodes in
the system - lookup and search. Self-organization and recov-
ery algorithms are discussed in Section 10. Section 11
concludes.

2 Related work

There are currently several DHTs in use, and we observe
an increasing number of applications of the DHT systems.
This section briefly describes the most significant existing
DHT architectures (in the descriptions below, N denotes the
number of the nodes in the system).

@ Springer

Chord [33]is a DHT, in which nodes are logically located
on a ring with 2™ possible positions (identifiers). Routing in
Chord is based on passing messages to nodes being closer
on the ring to the destination node than the current node.
The routing tables are built in a way allowing decreasing the
distance left to the destination at least by half in each rout-
ing step. The expected path length in Chord is log, N. The
ring topology naturally supports the sequential neighbors
sets, mentioned in Section 1, which makes it very resistant
to node failures.

CAN (Content-Addressable Network) [28] is an example
of a distributed hash table built on a hypercube geometry.
The CAN nodes are located in a d-dimensional hypercube
(which in fact is treated as a d-dimensional torus - a ring
in each dimension). The hypercube is partitioned into so-
called zones (each node in the system has a zone assigned
to it), and messages are routed between the zones - in every
routing step, a message may be sent to a zone adjacent to
the current zone. The average path length between any two
nodes equals le - YN , where d is the number of dimen-
sions. The routing flexibility is, however, limited in such a
geometry, and the sequential neighbors sets cannot be used
to increase the node failure resilience.

There have been several works regarding improvements
of efficiency of CAN network. One of the approaches,
described in [25] introduces shortcut zones and additional
routing table nodes, corresponding to these zones. In [35],
another approach is presented, where the hypercube is split
into zones at multiple levels. The lowest-level zones cor-
respond to the CAN zones, and zones at higher levels are
so-called expressway zones - routing using these zones
allows messages to be routed further than with the use of
the regular CAN neighbors. In both solutions, introducing
additional zones, decreased the average path length between
nodes to O (log N).

Plaxton mesh [27] is a distributed hash table based on the
tree geometry. In Plaxton mesh, identifiers of nodes consist
of m d-bit groups. Every node maintains a routing table with
multiple levels. For a given node A, the routing table level i
represents node(s), which share first i initial groups of bits
of the identifier with A, and the routing table slot at j-th
position stores a node sharing i initial identifier groups with
A and having the next group of bits equal to j. Thus, in
every routing step, the routing algorithm is able to pass a
message to a node, which shares a longer prefix with the
destination node (in terms of bit groups) than the current
node (if such a node exists). The expected path length equals
log,a N. As there is no flexibility in the next hop selection
(in each routing step, the message may be routed to exactly
one node in the routing table), the level of static resilience
of the system in its pure form is very low.

Pastry [30] uses a routing algorithm based on the Plaxton
mesh, but, in Pastry, the distance between pairs of nodes is

Peer-to-Peer Netw. Appl. (2017) 10:954-982

957

defined as the distance on a ring. If a node sharing a longer
prefix with the destination node is not found in a certain
routing step, the message is routed to a node sharing the
same prefix length as with the current node (in terms of the
number of bit groups), but being closer to the destination in
terms of the metric (ring). In addition to the routing table,
every node maintains a set of closest nodes in either direc-
tion on the ring - the leaf set. A set built in this way is, in
fact, the sequential neighbors set, which ensures that, with
high probability, any message can be routed by any node,
decreasing the distance left to the destination, even if the
corresponding routing table slot is empty.

Tapestry DHT [36] is very similar to Plaxton mesh and
Pastry in terms of the routing architecture. Main differences
concern methods of ensuring locality, replication, as well as
joining, leaving, and recovery algorithms.

Another type of a DHT geometry is the “Butterfly”
geometry. An example of such a design is Viceroy [18].
In Viceroy, every node is assigned one of m levels, and a
unique ID - a real number from O (inclusive) to 1 (exclu-
sive). Each node at level / maintains two connections with
nodes at level / 4- 1. For a given node A, the first connection
is made with the node with the closest ID to A at level [+ 1
(like on a ring, all arithmetic is done modulo 1), and the sec-
ond connection is made with the node with the ID closest
to A+ 1 /21. In addition, nodes at levels / > 1 maintain a
connection to the closest node at level / — 1. The nodes also
connect to their successor and predecessor on their level-
ring, as well as the successor and predecessor on the ring
formed by all nodes at all levels. Routing proceeds in three
phases. In the first phase, a message is sent up to the top
level. Next, the routing proceeds to the bottom (using the
first or the second link depending whether the destination is
at a distance smaller or greater than 1/2'). When the lowest
level (level m) is reached, the search is performed using the
ring and level-ring links until the destination is reached. The
expected number of steps is O (log N).

Kademlia [22] is a distributed hash table protocol which
bases its search algorithm on the so-called XOR metric. The
XOR metric defines the distance between any two nodes
as a result of the bit XOR operation on their identifiers.
Every node in the system maintains references to neigh-
bors in structures called k-buckets. The number of k-buckets
equals the number of identifier bits m, and i-th k-bucket
stores at most k nodes, whose distances are between 2!
inclusive and 2/*! exclusive. This means that nodes that
can be included in the i-th bucket must have a differing i-
th bit from the node’s ID, and the first i — 1 bits of the
candidate ID must match those of the node’s ID. With the
use of the XOR metric and k-buckets, the lookup procedure
quickly converges to the lookup key. The expected number
of steps is O (log N). The resources in Kademlia are stored
in k nodes closest to the resource key, so a node performing

a lookup for a resource searches for k closest nodes to the
resource key. Kademlia ensures its static resilience by the
increased number of stored references to other nodes (mul-
tiple references in k-buckets), and sending lookup messages
to multiple nodes in parallel. The Kademlia protocol gained
a great popularity and is nowadays the most popular DHT
used in variety of applications.

An interesting family of distributed hash tables are the
systems based on degree-optimal graphs. The problem of
degree-optimal graphs is formulated in [17]. Koorde [12]
is a distributed hash table based on Chord and de Bruijn
graphs [2]. The average path length between two nodes is
O (log N) if nodes maintain routing tables containing only
two nodes, and O(log N/loglog N) for routing tables of
size O (log N). Another DHT based on the de Bruijn graphs,
D2B [10], for a d-dimensional de Bruijn graph achieves the
average path length O (log; N) and the expected number of
references stored in the routing table O(d). Distance Halv-
ing [23] is one more important DHT utilizing de Bruijn
graphs. The graph structure is based on a dynamic decom-
position of the space into cells and assigning the cells to
nodes. The structure ensures the path length of O(log,; N),
where d is the node degree (constant). The path lengths in
these systems are therefore asymptotically even better than
in Plaxton mesh. However, the constant hidden within the
“0” notation and a smaller logarithm base cause that their
efficiency exceeds Plaxton mesh only when the number of
nodes is very large, in reality, difficult to reach. Moreover,
fault tolerance of the constant-degree DHTs in their pure
form is very limited.

Symphony [19] is another interesting distributed hash
table protocol based on a ring topology, which models the
small-world phenomenon [13] and creates links between
nodes in a probabilistic way. A node in Symphony estab-
lishes connections with its predecessor and successor on the
ring, and with k “long” links chosen according to a prob-
ability distribution, which makes the expected path length
0(% log2 N), where k is the number of the maintained
“long” links.

An extensive study regarding randomization in the con-
struction of the connection graphs is presented in [20].
The authors show that randomization of edges may reduce
the average length of shortest path between nodes, and
how neighbor-of-neighbor greedy routing algorithm (taking
neighbor’s neighbors into account in next hop selection) can
achieve asymptotically optimal expected route lengths.

Although the research is constantly being conducted in
the topic of distributed hash tables, majority of the cur-
rently used DHT systems and applications are based on
the architectures already mentioned in this section. The
recent research focuses mainly on extending DHT over-
lays with specific features, such as Sybil attack resistance
[16], resource discovery for grid computing [4, 26, 31, 34],

@ Springer

958

Peer-to-Peer Netw. Appl. (2017) 10:954-982

as well as adapting DHTs to particular environments or
applications [1], [9].

This paper is focused on improving general robustness
of DHTs and, as an effect, presents a novel DHT archi-
tecture. The architecture is conceptionally similar to the
solutions based on the tree geometry (Plaxton mesh, Pas-
try, Tapestry), however, extending the hierarchical geometry
with a possibility of employing a multidimensional routing
metric, which, together with the use of the variable Stein-
haus metric, yields significant improvement in the resilience
and performance of the system in the presence of node
failures.

3 System architecture of HyCube

This section presents the routing architecture of HyCube
- a distributed hash table system based on a hierarchical
hypercube geometry. Sections 3.1 and 3.2 introduce the
hierarchical hypercube concept and describe the structure
of routing tables maintained by nodes. Section 3.3 presents
the basic routing algorithm, which is analyzed in detail and
optimized in the subsequent sections.

3.1 Hierarchical hypercube geometry

The routing geometry of HyCube is a combination of the
tree geometry and the hypercube geometry. It is similar
to Plaxton mesh [27], but nodes are logically located in
vertices of a d-dimensional hierarchical hypercube. A hier-
archical hypercube is a hypercube whose vertices are also
(lower level) hypercubes. Vertices of the hypercubes at the
lowest level are positions which may be assigned to nodes.
Figure 1 presents the structure of an exemplary hierar-
chical hypercube with 3 dimensions and 2 hierarchy levels.
Node IDs are determined by their positions - the identifier
of a node is a string of d-bit groups determining positions of
the node in hypercubes at individual levels (starting with the
hypercube at the highest level). The position in a hypercube
at a particular level is a number built of bits corresponding
to the positions of the node in the hypercube in individual
dimensions. The length of the identifier equals d -/, where d
is the number of dimensions, and / is the number of levels.
The hierarchical hypercube and the tree geometries are
isomorphic. However, the geometry of HyCube has a dual
nature. Visualizing the structure as a hierarchical hypercube
gives an idea of the non-hierarchical, spatial arrangement of
nodes in a d-dimensional space - the numbers formed from
bits corresponding to individual dimensions relate to the
coordinates of the node in these dimensions in the system
of coordinates with the center in point 0. Thus, consider-
ing the ID space as a segment of Z¢ space (Z denotes the
set of integer numbers), the distance between nodes may be

@ Springer

101 111 101 111
101 111
101 001 0 11 100 7
1I501 011 001 011
000 010 000 010
101 111 101 111
100 11
100 114 0100 11
001 011 001 011
000 010 000 010
101 111 101 111
001 011
10p 11 100 11
001 011 | ~Joo1 011
000 010 000 010
101 111 101 111
00 11 01p 100 11
001 011 001 011
000 010 000 010

Fig. 1 A hierarchical hypercube (3 dimensions and 2 levels of
hierarchy)

defined by any metric applicable to Z¢, or R¢ (R - the set
of real numbers) as Z is a subset of R. However, the geom-
etry of HyCube should be seen as a d-dimensional torus
with the perimeter equal to 2/ in each dimension (the set of
coordinates in each dimension is treated as on a ring). That
means that after the point 2l 1, point 0 is located, and
all arithmetic is done modulo 2/, This fact is important in
determining distances between nodes - in every dimension
the distance is determined like on a ring - the shorter of the
distances in either direction.

In HyCube, the default number of dimensions is 4 and the
number of levels is 32, resulting in a 128-bit address space
(which allows avoiding conflicts of identifiers in majority
of applications).

3.2 Routing tables
3.2.1 Primary routing table

The primary routing table has the same structure as in Plax-
ton mesh. It has [levels (the number of hierarchy levels),
and, at each level, there are 29 slots (d - the number of
dimensions). In the primary routing table of a node X, the
slot j atlevel i (i > 0) contains a reference to a node that is
located in the same hypercube at level i 41 and in the hyper-
cube corresponding to the number j at level i (lower level).
At each level i > 0, one slot corresponds to the hypercube
in which the node X is located - this slot is left empty, as the
routing table contains a whole level corresponding to this
hypercube.

An exemplary primary routing table for a 2-dimensional
hierarchical hypercube with 6 hierarchy levels for node X =

Peer-to-Peer Netw. Appl. (2017) 10:954-982

959

112013 is presented in Table 1. For clarity, groups of bits are
represented by quaternary digits (base-4 numeral system).
The digits in bold represent the sub-hypercube addresses
corresponding to routing table slots at individual levels. The
underlined digits represent the hypercubes corresponding to
the routing table slots matching the hypercubes of node X
at individual levels.

3.2.2 Secondary routing table

The secondary routing table of a node X contains nodes
from adjacent hypercubes to the hypercube of node X in
each dimension, in both directions, at each level. An adja-
cent hypercube (at any level) is the one whose coordinate in
one dimension is greater or smaller by 1 than the coordinate
of the same level hypercube of X (modulo 2!), and coordi-
nates in all other dimensions are equal to those of X. The
secondary routing table does not contain nodes in slots at
the highest level, as hypercubes corresponding to them are
covered by the primary routing table. Also, one of the adja-
cent hypercubes at each level in each dimension is covered
by a primary routing table slot.

The secondary routing table increases the level of flex-
ibility in the next hop selection. If the distance between
nodes is defined by a metric in R space, it is very likely that
the secondary routing table contains nodes that are closer to
any arbitrarily chosen node. Furthermore, it provides addi-
tional shortcut references when a message is routed to a
node that is close in the RY space, but is not close in terms of
the Plaxton mesh distance. With the use of the primary rout-
ing table, routing a message between nodes sharing a short
ID prefix would require many steps of traversing the tree.

Table 2 presents an exemplary secondary routing table
for node X = 113012 (binary 01°01°11°00°01°10) - for a
2-dimensional hierarchical hypercube with 6 hierarchy lev-
els. For clarity, in this example, the IDs are represented as
binary numbers. Addresses of adjacent hypercubes corre-
sponding to the routing table slots are marked in bold, and
bits of addresses of adjacent hypercubes corresponding to
the particular dimension are underlined - the numbers built
of these bits are larger by 1 or smaller by 1 than the numbers
formed of the corresponding bits of X. All other hypercube

Table 1 The primary routing table for node 112013 (for a 2-
dimensional hierarchical hypercube with 6 hierarchy levels

0 1 2 3
Level 5 | 011033 - 231011 | 300232
Level 4 | 102223 - 121301 | 130001
Level 3 | 110113 | 111201 - 113302
Level 2 - 112101 | 112203 | 112312
Level 1 | 112003 - 112021
Level 0 -

address bits (the remaining dimensions) are equal to the
corresponding ones of X.

3.2.3 Neighborhood set (closest neighbors set)

In addition to the routing tables described above, nodes
maintain sets of closest to them (according to the chosen
metric) nodes existing in the system - called neighbor-
hood sets. These sets may allow finding a next hop (rout-
ing/lookup), decreasing the distance left to the destination,
even if there are no appropriate nodes in both routing tables.
Based on the same principle as sequential neighbors sets, the
closest neighbors sets are expected to increase the probabil-
ity of delivering messages in the presence of node failures.
Furthermore, at one extreme, when next hops are found only
in the nodes’ neighborhood sets, the expected path length
is O(YN) (N is the number of nodes in the DHT). For
sequential neighbors, the path length is proportional to N.
Assuming the same probability of dropping a message by a
single node along the path, the overall probability of drop-
ping the message is smaller when the number of routing
steps is smaller. If the probability of finding a next hop
equals p, the probability of successful routing a message by
k nodes equals p*, which, for any p < 1 drops sharply for
larger numbers of routing steps (k). The neighborhood sets
have also very good properties for supporting joining and
leaving procedures, as well as maintenance and recovery
algorithms. Moreover, their existence is crucial for search-
ing closest nodes for a given key (discussed in detail in
Section 9), as well as for replicating resources. The default
size of the neighborhood set is 16.

3.3 Basic routing algorithm

Let us consider routing a message from node X to node Y.
Every node R along the route first checks if there is a ref-
erence to the destination node in its neighborhood set, in
which case, the message is sent directly to that node. Other-
wise, the routing tables are searched for an appropriate next
hop - the node that shares at least one d-bit group longer
prefix of ID with Y (than with R) or shares the same number
of d-bit groups of the ID but is closer to Y than R in terms
of the chosen routing metric. The routing metric of HyCube
is discussed in Section 5. For the time being, let us assume
that routing converges according to the Euclidean metric.
The detailed algorithm is presented below:

1. Initially, the routing algorithm finds the slot in the pri-
mary routing table that corresponds to nodes sharing at
least one group of d bits longer prefix of ID with Y
than with the current node (R). In a hierarchical hyper-
cube, this slot corresponds to a hypercube in which the
destination node is located, at a lower level than the

@ Springer

960

Peer-to-Peer Netw. Appl. (2017) 10:954-982

Table 2 The secondary routing table for node 113012 (01°01°11°00°01°10) - for a 2-dimensional hierarchical hypercube with 6 hierarchy levels

Dimension 1

<—

%

117117107017 00711
01’01701’11701’01
01’01701710701710
01’01/01710711’00

0171170071010’ 01
0171170170100’ 01
01701711710’ 10’00
0101711700711’ 10

Dimension 0

— —
Level 5 - -
Level 4 | 01/00’01701700711 | 00700710701710"10
Level 3 | 01701’10’10'01"00 | 00700710”11701"01
Level 2 | 01701’10'01’11710 | 01’01711’01’01"01
Level 1 01’01’11’01’00’10
Level 0

lowest-level hypercube containing both, the current and
the destination node. If for the current node and Y, the
common prefix length equals 7, and the next d-bit group
of the ID of Y equals j, j-th routing table slot at level
! — 1 — i is used. If this slot is not empty, the message
is routed to the node found in the slot - increasing the
common prefix length with the destination node Y by at
least one d-bit group.

2. 1If no node is found in the appropriate primary routing
table slot, nodes sharing the same prefix length with Y
as with R (in terms of the number of bit groups), but
closer to Y in terms of the chosen metric, are also con-
sidered - both routing tables and the neighborhood set
are checked. From the set of nodes found, the node shar-
ing the longest prefix of the ID with Y (number of d-bit
groups) is chosen, and, if there are more than one such
nodes, the node closest to ¥ (according to the routing
metric) is chosen for the next hop.

The primary routing table supports routing based on
extending the ID prefix (in terms of d-bit groups) - tree-
based routing (Plaxton mesh), and the secondary routing
table supports finding a closer node in any dimension - such
nodes are likely to be closer to the destination node also in
terms of the Euclidean metric. Both routing tables and the
neighborhood set are used for determining the best possible
next hop, to which the message is routed.

It can be shown that the expected route length equals
[ogy,s N hops and, on average, [log,s N1-(2¢—1) slots are
populated in the primary routing table and ([logys N1—1)-d
in the secondary routing table (N is the number of nodes in
the network)?.

3.4 Acknowledging message delivery and detecting
duplicates

Optionally, after receiving messages (DATA messages - sent
at the application level), depending on configuration, nodes
may send acknowledgments (DATA_ACK messages) con-
firming receiving of the messages (either directly to the

2Based on the assumption that nodes are uniformly distributed in the
hierarchical hypercube

@ Springer

sending node, or routed via the system to the message
sender). When the sending node receives the DATA_ACK
message, it knows that the original message was success-
fully received and processed, and, when no acknowledg-
ment is received (timeout), the node might resend the mes-
sage (automatic resending may also be configured - up to
the defined maximum number of retries). In cases when the
acknowledgment mechanism is implemented at the applica-
tion level (beyond the scope of HyCube), the native HyCube
mechanism may be switched off.

HyCube also implements message duplicate detection.
In case of receiving a message duplicate, the duplicate is
dropped. Message duplicates may be received as a result of
incorrect routing or network problems, or an ACK message
not being delivered. Duplicates are detected based on the
header of the message.

3.5 Number of dimensions versus number of levels

The address (node identifiers) space should be large enough
to prevent potential conflicts of identifiers (existence of two
nodes with the same ID). The size of the address space in
HyCube equals:

Nmax = 2(1.[(1)

which means that increasing the number of dimensions or
the number of hierarchy levels would increase the number
of possible identifiers that nodes may be assigned. How-
ever, the number or dimensions and levels of the hierarchical
hypercube influences the system characteristics.

Adding additional levels of hierarchy causes the address
space to increase, but it also proportionally increases the
number of routing table slots that nodes maintain. Moreover,
the pessimistic route length would also increase, as in the
pessimistic scenario, routing steps correspond to individual
routing table levels. Nevertheless, the expected route length
remains at the same level, because, on average, similar num-
ber of routing table slots would be populated (with high
probability the lower-level slots are empty).

Increasing the number of dimensions, on the other
hand, has a very strong impact on routing characteristics.
Although the routing tables grow sharply with the increase

Peer-to-Peer Netw. Appl. (2017) 10:954-982

961

of the number of dimensions, the routing algorithm is more
specific in selecting next hops - in each routing step, the
common prefix with the destination node ID is increased by
a larger number of bits, maintaining the same pessimistic
path length and decreasing the average path length. As
the base of the logarithm (Eq. 2) grows exponentially, the
expected path length is inversely proportional to the number
of dimensions:

1
logra N = 7 log, N 2)

However, the maintenance cost is significant, as the primary
routing table size grows exponentially with the number of
dimensions:

log, N- (29— 1)
B d

At one extreme, when the number of dimensions is equal
to the number of identifier bits (1 level of hierarchy), every
node would maintain references to all other nodes in the
system, and the routing table slots would correspond to all
possible values of node identifiers.

logoa N - 24 = 1) 3)

3.6 Prefix mismatch heuristic

In the final part of a route, when the message is already rel-
atively close to the destination node, the routing algorithm
may omit some nodes that are close to the destination, but do
not share the same long or longer prefix of ID with the des-
tination node than with the current node. This phenomenon
becomes more significant when a multidimensional metric
is used. That is why, like in [30], HyCube uses a heuristic
switching to routing based only on the distance left, when
a message is already in vicinity of the destination. Nodes
should therefore be able to determine how close the mes-
sage is to the destination in relation to the density of nodes
in the space. In HyCube, before choosing the next hop, each
node checks if the distance to the destination is shorter than
the average distance to the nodes in the neighborhood set
multiplied by the factor A:

dgest < avg(dneigh) <A “4)

If this condition is satisfied, all further nodes on the route
are chosen based only on their distance to the destination
node - they might not share the same long or longer prefix
of the identifier. All nodes from both routing tables and the
neighborhood set are checked and the closest node is chosen
for the next hop.

The prefix mismatch heuristic may be also enabled,
when no next hop is found with routing based on extend-
ing the common prefix length with the destination node.
This behavior may be configured by changing a system
parameter value. In many cases, the number of neighbor-
hood set nodes matching the destination is much larger if

the selection is based only on the distance. Obeying the pre-
fix condition is a much stronger constraint on the next hops,
and may cause more failed paths, especially in the presence
of many node failures. Thus, although the path length might
increase, by default, HyCube switches to routing based only
on the distance left whenever no next hop is found. To main-
tain routing convergence, the prefix mismatch heuristic is
followed by all subsequent nodes along the path.

The greater is the value of A, the longer parts of routes
will be determined based only on the distance left. The value
should be large enough to ensure high probability of mes-
sage delivery. However, too large values of A could cause
an increase in path lengths. Figure 2 presents the static
resilience of HyCube consisting of 10’000 nodes, using
the Euclidean metric, for several values of the A param-
eter®. For better readability, the failed paths figure was
scaled and cropped - the most significant differences were
observed below 70 % of failed nodes. The performed sim-
ulations indicated that the value A = 1.5 ensures good
static resilience, without increasing the average routing path
length.

4 Simulation methodology

To simulate the routing algorithm correctness, efficiency
and resilience, an event-driven distributed simulator (mul-
tiple simulator instances running nodes) was created - a
dedicated simulator that uses the real HyCube node library
created by the author, in which case there is no need for any
adjustments or modifications of the implemented algorithms
- only the default network (transport) layer (UDP/IP) was
replaced by a communication model based on JMS queues
maintained by individual simulator instances. The created
library and simulator were designed based on several guide-
lines presented in [3] - processing events for individual
nodes was performed by only a certain number of threads on
each simulator instance, which allowed simulations of very
large systems (even much larger than 100’000 nodes) to be
preformed on a limited number of physical machines.

The simulation scenario consists of the following steps.
First, a given number of nodes with random identifiers are
initialized, and each node joins the system by connecting
to a randomly chosen node already connected to the DHT.
When the DHT system is initialized, for varying numbers
of failed nodes and for different system variants (algorithms
used, parameter values), a given number of test messages
are sent between random pairs of nodes remaining in the
system. A node failure means removing the node from the

3The simulations were performed with forcing uniform distribu-
tion of neighborhood set nodes in terms of directions (discussed in
Section 6.1)

@ Springer

962

Peer-to-Peer Netw. Appl. (2017) 10:954-982

15 £
g
= 10 |
Q,
el
2
E 5
X
0=
0

70

% failed nodes

Fig. 2 Simulation results: static resilience of HyCube consisting of 10’000 nodes using Euclidean metric for different values of the prefix

mismatch heuristic factor A

network and waiting for other nodes to remove the refer-
ence from their routing tables (the mechanism described
in Section 8.1). During the simulation, the simulator regis-
ters the number of messages successfully delivered to the
destination, the number of failed routes, and calculates the
average route length.

While simulating different network variants (compar-
isons), for all simulations run in a batch, the same sets
of generated nodes (IDs) are used. They are connected to
the system in the same sequence, using the same bootstrap
nodes. Moreover, in order to eliminate differences in the
results caused by different random simulation runs and to
allow proper comparison of the simulated algorithms, the
sets of nodes removed from the system (node failures), as
well as the pairs of nodes between which test messages are
sent, are generated once and are used for all simulations
in the batch. When all DHT variants are simulated follow-
ing the same scenario, it is possible to conduct a detailed
comparative study of individual algorithms and parameter
values.

5 Routing metric

In DHT systems, distances between pairs of nodes are
defined by a certain metric, and the routing converges
according to this metric. The choice of the metric has a
great impact on the average route length and the probabil-
ity of message delivery. Choosing a one-dimensional metric
allows the use of sequential neighbors, which has proved
to greatly improve the static resilience. If the number of
sequential neighbors is s, half are predecessors and half are
successors of the node, any message would be dropped only
if all s/2 nodes in the appropriate direction failed. How-
ever, the use of sequential neighbors may cause a significant
increase in path lengths in the case of node failures, when

@ Springer

many routing table slots are empty, and a large number of
nodes along the paths are found in the sequential neighbors
sets. In HyCube, nodes are organized in a d-dimensional
space, which allows the use of any metric applicable to
R? space. In comparison with sequential neighbors, the
use of a multidimensional metric significantly decreases the
expected path length when routing using only neighbor-
hood sets. It can be shown that the expected path length is
proportional to /N, while for sequential neighbors, it is
proportional to N (N - the number of nodes in the DHT).
This fact becomes very important when considering net-
work properties under churn or in the presence of node
failures. However, by using a multidimensional metric, the
network loses some properties connected with the existence
of sequential neighbors. In a multi-dimensional space, it
is not trivial to ensure uniform distribution of the closest
neighbors set, ensuring that a certain subset of these nodes
would match any potential direction. For a ring topology
(sequential neighbors), there are only two possible direc-
tions, while for any number of dimensions larger than one,
the number of possible directions is infinite.

As the neighborhood set nodes play a crucial role in
maintaining high static resilience, the metric should provide
the highest possible level of flexibility in next hop selection
within the neighborhood set, which would directly translate
to the overall resilience of the system. Let us consider rout-
ing using only neighborhood sets and assume that in each
step, next hops are chosen only by the distance left to the
destination (without ensuring the prefix condition). When a
node chooses the next hop for a message, only a subset of
the neighborhood set is closer to the destination node than
the current node. It is crucial that the number of such nodes
be as large as possible, so even in the case of many node
failures, the message would not be dropped. The expected
ratio of the number of matching nodes to the number of
all nodes in the neighborhood set may be interpreted as the

Peer-to-Peer Netw. Appl. (2017) 10:954-982

963

probability that a message may be routed to a single node
in the neighborhood set. The following sections present a
study maximizing this probability.

5.1 Common metrics in R? space

The most common metrics in R? space are Minkowski
distances, defined by the following equation:

1
d—1 m
Ly(x,y) = (Z i —m'") Jm > 1)

i=0

where x; and y; are i-th coordinates of x and y. In partic-
ular, L is so-called Manhattan (or taxicab) distance, L; is
the Euclidean distance, and L, is the Chebyshev distance.
L1 defines the distance as a sum of distances in individual
dimensions (absolute values of differences of coordinates).
The set of points located in a constant distance from any
point X, in 2-dimensional space, forms a square rotated by
45°, as presented in Fig. 3. In a 3-dimensional space, these
points are located on an octahedron, and for spaces hav-
ing larger numbers of dimensions, the equal-distance points
are located on a cross-polytope (hyperoctahedron) having
its center in the point corresponding to the node ID, and ver-
tices located on lines parallel to the coordinate axes, passing
through point X. The Lo, metric is so-called “maximum”
metric. The distance between two points is defined as the
maximum of the distances in individual dimensions. In a
2-dimensional space, points being in equal distances to a
certain point X are located on edges of a square with the
center in the point corresponding to the X and edges par-
allel to the coordinate axes (Fig. 3). For larger numbers of
dimensions, equal-distance points are located on a cube (3
dimensions) or a d-dimensional hypercube. L, (Euclidean)
metric defines distance in a way that is the most natural and
intuitive, corresponding to the way of measuring distances

Fig. 3 Sets of points located in a constant distance from a node (L1,
L, and L, metrics)

in everyday life. Equal-distance points are located on a cir-
cle in 2-dimensional space, a sphere (3 dimensions) or a
d-sphere (d-dimensions).

If the Euclidean metric is used, the probability that a mes-
sage may be routed to a node in the neighborhood set may
be calculated as a function of &k = ‘71, where d is the dis-
tance left to the destination node and r is the distance from
the neighborhood set node to the current node. It is the ratio
of the number of points (possible nodes positions) that are
in the distance r from the current node and are closer to
the destination than d, to the number of all points being at
the distance r from the current node. Because coordinates
of nodes are integer numbers, nodes may take only certain
positions in the space. However, such accurate calculations
would obscure the picture. For simplicity, instead of the
number of positions, let us consider lengths of curves, areas
of the surfaces and their equivalents for higher dimensional
spaces, which is a good approximation, because normally
we are not interested in numbers of nodes within exact dis-
tances, but rather in a more general estimation in a certain
distance range. Figure 4 presents an exemplary visualization
for a 2-dimensional space. If r is the distance to a certain
node R being considered as the next hop, R is closer to
the destination than the current node only if it is located
on the dotted part of the circle of radius » (around the cur-
rent node). The situation is analogous for higher numbers of
dimensions (circle — d-sphere). The probability that a node
in the neighborhood set is closer to the destination (for 2, 3
and 4 dimensions) equals (formulas derived by the author):

. 1
arccos (%)

2d: P(k) — .
ad: P = 2arccos(ﬁ)—52iz<2arccos(ﬁ>>

The calculated probability values are visualized in Fig. 5.
The calculations show that the number of nodes in the
neighborhood set, to which a message may be routed,
strongly depends on k = %. The closer the message is

destination node .

current node

Fig. 4 Matching nodes for next hop selection (L, - Euclidean metric)

@ Springer

964

Peer-to-Peer Netw. Appl. (2017) 10:954-982

0.5 %

0.4 +

0.3 +

0.2 +

0.1

—x»— 2 dimensions

—a— 3 dimensions
—a— 4 dimensions

Fig. 5 Probability that a node in the neighborhood set is closer to the destination node than the current node (k = %)

to the destination node, the fewer appropriate nodes in the
neighborhood set. The phenomenon becomes more signifi-
cant as the number of dimensions increases. This fact has a
great impact on static resilience - fewer node failures may
cause the message to be dropped in the final parts of routing
paths.

L, (Euclidean) is the only metric (from Minkowski
distances) preserving distances between nodes after space
rotation. This causes some undesirable properties of metrics
Ly and L3 to L. For instance, if these metrics are used,
depending on the direction of the vector from the current
node to the destination, the expected numbers of nodes in
the neighborhood set to which the message may be routed
are different. Figures 6 and 7 present examples of different
scenarios of next hop selection (destination nodes located
in different directions relative to the current node) for L
and Lo, metrics. The bigger squares represent the points
being in the same distance from the destination node as the
current node, and the smaller squares represent the points
located in the distance from the current node, in which a
certain node R, being considered as the next hop, is located.
The message may be routed to R, decreasing the distance
left to the destination, only if it is located on the fragment
of the smaller square that is inside the bigger square. It
can be seen that the expected number of matching nodes
(closer to the destination than the current node) strongly
depends on the direction. For higher dimensional spaces,
this becomes an even more serious problem, as there might

destination
-~ node

" current node

5 6 7 8 9 10
k

d
r

be very few or no nodes matching certain directions. Due
to this fact, only L, metric will be considered in the further
discussion.

5.2 Steinhaus transform

In [6] and [7], the authors present the Steinhaus transform.

The terminology comes from the fact that this distance was

used in biological problems for the study of biotopes [21].

The theorem presented says that if D is a metric on a set X,

D’ is also a metric on X for any a € X, where:

D'(x, y) = 2D) ©)
D(x,a) + D(y,a) + D(x, y)

Applying a metric with the Steinhaus transform to every
route, setting the value of a to the ID of the source node,
causes the next hops to be chosen in such a way that they
are closer to the destination node and more distant from the
source node. Such an approach increases the expected num-
ber of neighborhood set nodes to which messages may be
routed in each routing step - although some closer nodes
(according to metric D) might be considered more distant
when the Steinhaus transform is applied, it allows sending
messages using more roundabout routes, while still being
convergent to the destination node.

One important remark should be made regarding the
Steinhaus transform. In the case when x = y = a, Eq. 6
does not have a value (division by zero). Therefore, the

Fig. 6 Matching nodes for next hop selection (L metric)

@ Springer

Peer-to-Peer Netw. Appl. (2017) 10:954-982

965

destination
" node

- current node

Fig. 7 Matching nodes for next hop selection (Lo metric)

value of the distance should be considered O if x = y,
regardless of the value of a.

5.3 Variable metric adopting Steinhaus transform

The use of the Steinhaus transform yields very good rout-
ing parameters and very high static resilience for networks
containing relatively few nodes. However, for networks con-
taining much more nodes (denser), in final parts of routes,
the addend D(x, a) of the denominator in Eq. 6 (where x
is the current node), has less influence on the value of the
distance as its changes in individual steps are very small
compared to the value of the entire denominator. Thus, the
more nodes in the network, the lesser is the influence of
the Steinhaus transform on the static resilience. However,
a certain modification can be introduced - a variable met-
ric adopting the Steinhaus transform, where point a would
be changed by intermediate nodes along routes. The value
of a would initially be set to the source node ID, and sub-
sequent nodes, before choosing the next hops, would check
whether they are closer (in terms of the Euclidean metric)
to the destination than the current point a. In such a case,
point a would be updated - would be given the value of

0.2
0.1

the current node. Such a way of changing point a ensures
that the routing is convergent to the destination (there will
be no cycles on routes) and yields a very high level of
flexibility in the next hop selection along the whole route,
regardless of the network size. It is easy to notice that when-
ever the Steinhaus point has the value of the current node
ID, messages may be passed to any other node, decreas-
ing the Steinhaus distance left to the destination. With great
probability the node closest to the destination in terms of
the Euclidean metric is chosen. It may however not be a
node that is closer (Euclidean) to the destination. Never-
theless, in such a case, the subsequent next hop selections
would be more restrictive and converge to the destination
faster. The expected route length is still proportional to
YN, and, owing to the increase in the flexibility in the
next hop selection, the static resilience reached is even bet-
ter than in systems using sequential neighbors, which can
be seen in the simulation results presented in Section 7.
Figure 8 presents a comparison of simulation results per-
formed by the author - the probability that a message may be
routed to a node in the neighborhood set for different met-
rics for a 4-dimensional network containing 1’000 nodes.
The probability was calculated as the average fraction of

Euclidean metric

+
—h— Steinhaus metric

—m— Variable Steinhaus metric

Fig. 8 Simulation results: Probability that a message may be routed
to a node in the neighborhood set for Euclidean metric, Steinhaus met-
ric and variable Steinhaus metric (network containing 1’000 nodes) -

6 7 8 9 10

basic routing algorithm of HyCube. k is the ratio %, where d is the dis-
tance to the destination node, and r is the distance to the neighborhood
set node being considered

@ Springer

966

Peer-to-Peer Netw. Appl. (2017) 10:954-982

Fig. 9 Visualization of the influence of applying the Steinhaus trans-
form on the next hop selection. The destination node is represented by
the blue point, the current node is represented by the black point, and

neighborhood set nodes closer to the destination node than
the current node - gathered from nodes involved in rout-
ing 1’000 messages between random pairs of nodes. The
routing algorithm simulated did enforce the common ID
prefix length condition. For comparison, if messages were
routed using sequential neighbors in one-dimensional space
(ring geometry), the line would remain approximately at the
level 0.5, regardless of the distance left. With the variable
Steinhaus metric, the level of flexibility is higher than for
sequential neighbors. Any message would be dropped only
if all the matching nodes failed, and the probability of such
a case is significantly reduced with the use of the variable
metric.

Figures 9 and 10 visualize the influence of applying the
Steinhaus transform on the next hop selection. The destina-
tion node is represented by the blue point, the current node
is represented by the black point, and the red point is the cur-
rent point a. The green part denotes the points that are closer
to the destination node than the current node, according to
Steinhaus metric. It can be seen that the expected number of
nodes in the neighborhood set to which the message may be

the red point is the current point a. The green part denotes the points
that are closer to the destination than the current node, according to
Steinhaus metric

routed is much larger than with the use of the Euclidean met-
ric, and in case when the message was previously routed to a
more distant node, the next hop selection is more restrictive.

It should be noted that whenever the Steinhaus point is
equal to any of the node IDs between which the distance
is measured, the distance value equals 1, regardless of the
second argument value:

Dry)| = 2ot)) -1 o
L T D+ DGL D + Dy
, 2D(x, y)
D' (x, = =1 8
() a=y D&, y)+D(y,y)+ D(x,y) ®)

When calculating distances from multiple nodes to the des-
tination node, if the Steinhaus point is given the value of
the destination node ID, it is impossible to differentiate the
nodes, as all the distances are then equal to 1. The routing
algorithm is not exposed to such a situation - the Steinhaus
point value would be equal to the destination point only

*

*

Fig. 10 Visualization of the influence of applying the Steinhaus trans-
form on the next hop selection in the case when the message was
previously routed to a more distant node. The destination node is rep-
resented by the blue point, the current node is represented by the black

@ Springer

point, and the red point is the current point a. The green part denotes
the points that are closer to the destination than the current node,
according to Steinhaus metric

Peer-to-Peer Netw. Appl. (2017) 10:954-982

967

% failed paths
(Al
3

0 6—6—o0 ¢ : ; ; + + {
0 10 20 30 40 50 60 70 80 90
% failed nodes

Fig. 11 Simulation results: Static resilience (% failed paths) and aver-
age path length in the presence of varying numbers of random node
failures - basic routing algorithm with the use of closest neighbors

when the destination is already reached. However, any other
algorithm using Steinhaus distances, modifying the Stein-
haus point, should take that fact into account (e.g. search
algorithm, described in Section 9).

Figure 11 presents simulation results of static resilience
and path length increase in the presence of varying num-
bers of node failures for Euclidean metric, Steinhaus metric,
variable Steinhaus metric, and 1-dimensional metric using
sequential neighbors - with the use of closest neighbors
sets only, without enforcing the prefix condition (the rout-
ing converges only in respect to the routing metric). The
figure clearly shows the advantage of adopting the Stein-
haus transform. In particular, using the variable Steinhaus
metric yields significant decrease of failed paths rate. Rout-
ing with the use of sequential neighbors yields very poor
performance and resilience due to the fact that the average
number of hops (path length), in this case, is proportional
to the number of nodes in the system. For larger systems,
the results become much worse. For 10’000 nodes, the path
lengths (not covered by the figure) reach values exceeding
300 routing hops. Thus, sequential neighbors should not be
used for routing on their own without any shortcut routing
table support.

The simulation results of resilience and path length
increase for the basic routing algorithm (all routing tables

90 %

80 | ——

Fuclidean metric A
70 + Steinhaus metric
60 || —e— Variable Steinhaus metric
50 +
40 +
30 +
20 +
10 +
0 — = - . .
30 40 50 60 70 80 90

% failed nodes

% failed paths

Fig. 12 Simulation results: Static resilience (% failed paths) and aver-
age path length in the presence of varying numbers of random node
failures - basic routing algorithm (with the prefix mismatch heuristic

35 %

30 {7 Eu(?lldean
Steinhaus

25

—o— Var. Steinhaus
20 | —o— Seq. neighbors

15 |
10 |

avg. path length

&N

0 t t t t t t t t |

0 10 20 30 40 50 60 70 80 90
% failed nodes

sets only (without enforcing the prefix condition), network containing
10’000 nodes: Euclidean metric, Steinuaus metric, variable Steinhaus
metric and sequential neighbors

being used) of the system containing 10’000 nodes are
presented in Fig. 12. The variable Steinhaus metric still
has the best characteristics, although a longer average
path length is achieved, compared to the sequential neigh-
bors variant. However, for larger numbers of node fail-
ures, this increase is caused mainly by nonexistence of
direct short paths between pairs of nodes and forcing the
messages to be routed using more roundabout paths (for
other metrics, many of these messages would be simply
dropped).

Because using the variable Steinhaus metric increases the
average path length, especially for higher node failure rates,
another simulation was performed to test the behavior of
the system with the Steinhaus transform enabled only for
the final routing steps, when the prefix mismatch heuristic
is already applied. Theoretically, such a modification could
decrease the path length, preventing messages from being
routed to more distant areas (according to the Euclidean
metric) in initial steps, when the average hop distances are
much larger. The use of the Steinhaus transform is the most
important when the message is already in the proximity
of the destination node, and the probability of finding the
next hop in the neighborhood set drops sharply with the use
of the Euclidean metric. If the Steinhaus transform is used
only when the prefix mismatch heuristic is applied, it would

avg. path length
(S

3 t t t t t t t t >
0 10 20 30 40 50 60 70 80 90
% failed nodes

applied), 10’000 nodes: Euclidean metric, Steinuaus metric, variable
Steinhaus metric and sequential neighbors

@ Springer

968

Peer-to-Peer Netw. Appl. (2017) 10:954-982

70 1| —©— Var. Steinhaus metric
60 1 —8— Var. Stein. m. when PMH

50 +
40 +
30 +
20 +
10 +

% failed paths

! m

I I I
T T >

30 40 50 60 70 80 90
% failed nodes
Fig. 13 Simulation results: Static resilience (% failed paths) and aver-

age path length in the presence of varying numbers of random node
failures - basic routing algorithm (with the prefix mismatch heuristic

be enabled when the message gets close to the destination,
or when no next hop is found (which would also enable
the prefix mismatch heuristic, allowing the Steinhaus trans-
form to be used). Figure 13 presents the simulation results
- a comparison of the system with the variable Steinhaus
metric used in every next hop selection with the variant
enabling the variable Steinhaus metric only when the prefix
mismatch heuristic is already applied. The obtained results
prove that, indeed, the proposed modification decreases the
average path length. However, despite a significant decrease
of the average path length, the modification did not cause
any static resilience decrease.

5.4 Euclidean distance versus Steinhaus distance -
re-routing using regular metric

The final steps of routing with the use of a metric with the
Steinhaus transform applied may cause a message to be sent
to a node that is more distant from the destination than it
would be if the Steinhaus transform was not applied. There-
fore, when, at some point, a node on a route cannot find
the next hop in its routing tables and neighborhood set, it is
possible that the route is ended in a point (node) that is not
the closest one to the destination in terms of the Euclidean
metric. For some applications, if the destination node itself
cannot be reached, it is crucial to reach the closest possi-
ble node. Thus, HyCube introduces one more modification
- when a message cannot be routed by a node, the node tries
to route it again, based only on the Euclidean distance left to
the destination. All consecutive next hops after that should
be chosen in the same way. Such an approach will cause
that, in the case the message is dropped, a relatively close
node to the destination is reached. From the experiments
(for a network containing 10’000 nodes, with 50 % failed
nodes, routing using only neighborhood sets), it appears that
applying this phase in routing allows messages to be sent to
a closer node in about 80 % cases. Furthermore, as it can
be seen in Fig. 14, this additional phase of routing increases
the static resilience of the system.

@ Springer

avg. path length

0 10 20 30 40 50 60 70 80 90

% failed nodes

applied), 10’000 nodes, variable Steinhaus metric used only when the
prefix mismatch heuristic is already applied

There is, however, one drawback of such an approach
- the failed path lengths (undelivered messages) may pos-
sibly increase due to re-routing with another metric after
the next hop is not found. Nevertheless, messages usually
get relatively close to the destination node, and, in most
cases, only a small number of additional hops (if any) are
performed.

6 Further enhancements

This section presents several modifications of the rout-
ing algorithm, which lead to the increase of the level of
static resilience. The enhancements include ensuring uni-
form distribution of neighborhood set nodes, hypercube-
aware next hop selection and preventing storing the same
node in routing table slots corresponding to overlapping
hypercubes.

6.1 Uniform distribution of neighborhood set nodes

The neighborhood set should provide possibility to route
messages regardless of the direction in which the destina-
tion node is located. Therefore, it is important that nodes
in neighborhood sets be uniformly distributed in terms of
directions. There might be a scenario where some nodes
would have more closest neighbors in one direction and no
or very few neighbors in other directions. In such a case, the
nodes would not be able to route messages in all directions
(using neighborhood sets). The issue becomes more impor-
tant in the presence of node failures, when the number of
matching next hops should be as large as possible. When
using sequential neighbors concept, the problem might be
solved by splitting the set into two equal size sets - suc-
cessors and predecessors. In this case, half of the closest
nodes matches any message destination (successors or pre-
decessors depending on the direction on the ring). In a
multi-dimensional space, however, it is not trivial to ensure
uniform distribution of the closest neighbors set, ensuring

Peer-to-Peer Netw. Appl. (2017) 10:954-982

969

70 %
60 11—~ Var. Steinhaus metric
—8— Var. Steinhaus m. + FEucl.

50 +
40 +
30 +
20 +
10 +

% failed paths

50 60 70 80 90
% failed nodes

avg. path length
wt

3

0 10 20 30 40 50 60 70 80 90
% failed nodes

Fig. 14 Simulation results: Comparison of static resilience and path length increase of routing using the variable Steinhaus metric with and
without the additional phase - routing according to the Euclidean metric (network containing 10’000 nodes)

that certain subset of these nodes would match any poten-
tial direction (message destination). Uniform distribution of
nodes in terms of directions may be defined in a variety
of ways, and many different algorithms may be employed
to maximize this uniformity. Both, proximity and even dis-
tribution, should be considered, because ensuring uniform
distribution of nodes in respect of directions may cause
some more distant nodes to be included in neighborhood
sets and pass over some closer nodes. The key is to maintain
the good properties of neighborhood sets (as being the clos-
est existing nodes), and to make these good properties valid
regardless of the direction.

HyCube adopts a simple technique for ensuring uni-
form distribution of neighborhood set nodes in respect of
directions. The technique splits the space into fragments
(orthants* of the system of coordinates with the center at
the address of the node whose neighborhood set is consid-
ered) and attempts to ensure that the number of neighbors is
the same in each orthant. Within individual orthants, nodes
are chosen based on their distances. Such a solution is very
simple, efficient and does not require much computational
overhead. The simulations (Figs. 15 and 16) proved the
correctness of this technique.

An interesting fact was observed when comparing the
path length increase of results obtained from simulations
with the routing tables enabled and disabled (Fig. 15 com-
pared to Fig. 16). When the uniformity of neighborhood
set nodes arrangement is forced, the average path length
gets decreased when messages are routed using only neigh-
borhood set nodes. However, when the routing tables are
used for finding next hops, the decrease is no longer visible
(only for higher node failure rates). For lower failure rates,
we even observe a slight increase in the path lengths. The
obtained path length decrease (Fig. 15) is caused by larger
distance decreases (to the destination node) in individual

4An orthant is the generalization (in d-dimensional Euclidean space)
of a quadrant (2-dimensional space)

routing hops - the average neighborhood set node distance
is larger. However, it may also lead to performing additional
routing hops in the final part of the route, if the destination
node is not included in the neighborhood set despite being
close enough to be included if the uniform distribution was
not forced. When most of the routing steps are found in the
routing tables (routing tables enabled, at low node failure
rates), the path length decrease resulting from faster conver-
gence to the destination is lower than the average increase in
the final part of the route. The observed path length increase
(Fig. 16) is, however, insignificant.

6.2 Hypercube-aware next hop selection

When the routing algorithm cannot find a node sharing a
longer ID prefix with the destination node than with the cur-
rent node, a node sharing the same long prefix, but closer to
the destination according to the chosen metric is selected as
the next hop. When the message is routed within a hyper-
cube corresponding to the common prefix length according
to the distance only, it is completely independent of the
hypercube hierarchy at lower levels. It is however possi-
ble to introduce one more criterion in next hop selection.
If the message was routed to a node sharing the largest
possible number of common bits in the first different digit
(group of d bits), this would be the node in the closest pos-
sible hypercube at a lower level. If there were more than
one such nodes, the next hop would be then chosen by the
remaining distance (among the nodes with the same number
of common bits in the first different digit). Theoretically,
such an approach would increase the probability of finding
the next hop sharing longer prefix (in terms of entire bit
groups) by the next node(s) on the path - with the support of
secondary routing tables. The simulation results presented
in Fig. 17 confirmed that, indeed, the static resilience is
slightly increased (although a slight path length increase
was also observed) when the number of common bits in the
first different digit of the next hop address is given a priority
over the distance left.

@ Springer

970

Peer-to-Peer Netw. Appl. (2017) 10:954-982

100 %
90 | —e— Closest nodes
80 || —.3— Balanced orthants

72}

f,d 70

2 60

B 50

: o

®]
20 +
10

% failed nodes

Fig. 15 Simulation results: Influence of ensuring uniformity of neigh-
borhood set nodes arrangement in terms of direction (the algorithm
ensuring balanced orthants) on static resilience - routing using only

6.3 Routing table slots overlapping

Hypercubes corresponding to slots of primary and sec-
ondary routing tables may contain nodes that are covered
by a slot at a lower level in the secondary routing table. If
multiple different routing table slots contain the same node,
when the node fails, all these slots become unusable. That
is why, ideally, the routing tables should contain references
to different nodes for all such overlapping hypercubes.

To overcome the overlapping problem, for the secondary
routing table, it is enough to consider a node as a candidate
for a matching routing table slot only if the corresponding
adjacent hypercube is the lowest-level hypercube containing
that node (for individual dimensions and directions). That
would ensure that no secondary routing table slot would
contain nodes that are located in overlapping lower-level
adjacent hypercubes.

As far as the primary routing table slots are concerned,
it may also be easily verified whether a certain node is cov-
ered by a lower-level secondary routing table slot (let us
denote by Y its identifier, and by X the ID of the node whose
routing table is being considered). X and Y are in adjacent
hypercubes at levels/ — 1 — j to/ — 1 — i if and only if all
k < i first digits (d-bit groups) of X and Y are equal, and i-
th to j-th digits differ on one (the same for all these digits)

70 x
60 11—~ Closest nodes
—&— Balanced orthants

50 +
40 +
30 +
20 +
10 +

0t : : >
60 70 80 90

% failed nodes

% failed paths

20 30 40 50 60 70 80 90

12 ¢
<= 10 +
=
&0
o
g g
<
=
2 6l
o0
5 4l

2

0 10 20 30 40 50 60 70 80 90
% failed nodes

closest neighbors sets without enforcing the prefix condition, with the
additional phase - routing according to the Euclidean metric, network
containing 10’000 nodes

bit - this bit corresponds to the dimension in which the two
hypercubes are adjacent. / is the number of levels, and d is
the number of dimensions of the hierarchical hypercube. If
! — 1 — j is smaller than the corresponding primary rout-
ing table level of Y, [r71, that means that Y is located in
an adjacent hypercube at a lower level than /g7 and is thus
covered by a lower-level secondary routing table slot. There
might also be a case that Y is not in an adjacent hypercube in
any dimension at any level - if the first different digit (d-bit
group) of X and Y differs on more than one bit.

Figure 18 presents the influence of preventing routing
table slot overlapping on static resilience. As expected, such
a modification has a positive impact on static resilience, as
it avoids situations when a failure of a single node would
cause multiple routing table slots to become empty. A slight
decrease in the average path length was also observed,
as there are more potential matching next hops (possibly
closer).

This modification, however, should not be applied to the
neighborhood set, because the neighborhood set is crucial
for maintaining high resilience and should always contain
the closest nodes (as discussed in the previous sections).
Thus, the neighborhood set might contain some nodes that
are also included in routing tables. Furthermore, when con-
sidering a candidate for routing tables, no check whether the

7,,

<

=

B0

=i

2

=

5]

&

2

@
3 : : : : : : : —>
0 10 20 30 40 50 60 70 80 90

% failed nodes

Fig. 16 Simulation results: Influence of ensuring uniformity of neighborhood set nodes arrangement in terms of direction (the algorithm ensuring

balanced orthants) on static resilience (network containing 10’000 nodes)

@ Springer

Peer-to-Peer Netw. Appl. (2017) 10:954-982

971

70 x
60
50
40
30
20

% failed paths

ot 1 : >
60 70 80 90

% failed nodes

—o— Prefix increase only
| | —=— C. bits in first diff. digit

avg. path length
ot

3

0 10 20 30 40 50 60 70 80 90

% failed nodes

Fig. 17 Simulation results: Influence of respecting the number of common bits in the first different group on static resilience and path length

increase (network containing 10’000 nodes)

node is in the neighborhood set should be performed. The
neighborhood set is continuously updated, and such a check
might very soon be “out-of-date”, while still having left the
routing table slot empty. Therefore, due to its properties,
the neighborhood set should be built independently from the
routing tables.

7 Evaluation of static resilience and routing
performance - comparison with sequential
neighbors (Pastry)

The evaluation of HyCube was conducted in comparison
with Pastry DHT, which is based on a similar geometry, uses
sequential neighbors sets and is able to efficiently locate
nodes/resources by routing a single message. Systems built
on Kademlia protocol base their search algorithms and their
resilience on increasing the routing state and at the cost of
the number of messages being exchanged (messages being
sent to multiple nodes in parallel). Thus, although HyCube
also supports a search method based on sending queries to
multiple nodes (see Section 9), the routing efficiency and
resilience were compared to a system using routing-based
node location - Pastry.

30 x

20 |

10 +

% failed paths

0 : : >
60 70 80 90

% failed nodes

Figures 19 and 20 present experimental results obtained
in simulations of HyCube and Pastry for systems contain-
ing 1’000 and 10’000 nodes. The properties evaluated were
the static resilience and the average route length (based only
on successful routes). To present simulation results for the
same sizes of routing tables, results for HyCube with the
secondary routing table switched off were also included.
Because Pastry is supported by sequential neighbors sets,
and routing in HyCube is based on the variable Steinhaus
metric, for both DHTs, very high levels of static resilience
were observed. Although for lower rates of failures, Pastry
achieves slightly shorter path lengths (due to HyCube apply-
ing more roundabout routes with the use of the Steinhaus
metric), HyCube achieves much better resilience for higher
failure rates. Furthermore, for higher failure rates, the path
lengths achieved by HyCube are significantly shorter due to
the use of a multidimensional metric. It should also be noted
that for HyCube, a larger number of longer successful routes
were included in the average path length calculation - to
nodes to which only roundabout paths exist. As the number
of failed nodes increases, next hops are more often found
only in the closest neighbors sets, in which case, the path
lengths increase. As discussed at the beginning of Section 5,
with the use of a multidimensional metric, the average

—o— Overlapping r. tables

| | —8— Prev. r.t. overlapping

avg. path length
(S

3 t t t t t t t t >
0 10 20 30 40 50 60 70 80 90
% failed nodes

Fig. 18 Simulation results: Influence of preventing routing table slots overlapping on static resilience and path length increase (network containing

10’000 nodes)

@ Springer

972

Peer-to-Peer Netw. Appl. (2017) 10:954-982

100
90 +|—8— HyCube (RT1+RT2)
80 1 HyCube (only RT1)
01 o
60 +
50 1
40 +
30 +
20 +
10 +

Pastry

% failed paths

03 P} = } |
& & ¥ T |

30 40 50 60 70 80 90

% failed nodes

avg. path length

2 I I I

0 10 20 30 40 50 60 70 80 90
% failed nodes

Fig. 19 Simulation results: Comparison of static resilience and average path length increase for varying rates of random node failures in HyCube

and Pastry (1’000 nodes)

distance decrease (distance left to the destination node) is
much more significant with each routing hop. For sequential
neighbors, the expected length of a successful path grows
sharply with the growth of the number of nodes, while the
probability of a message delivery decreases exponentially in
relation to the expected path length - a sequence of multi-
ple independent experiments (binomial distribution). It can
be seen (Figs. 19 and 20) that the superiority of the vari-
able Steinhaus metric over sequential neighbors gets more
and more distinct with the growth of the network size (the
number of nodes).

8 Routing table nodes selection

For systems with a certain degree of flexibility in neigh-
bor selection, additional priorities may be applied to choose
nodes, based on some other criteria. In [11, 37] and [5],
several common routing table node selection techniques are
discussed. These techniques are useful, for example, for
building topologies exploiting physical proximity between
nodes (PNS), or taking into account node liveness informa-
tion and maintaining connections to nodes that are likely
to remain in the system for longer (LNS). The mechanism
used in HyCube is a variant of the LNS approach, which, at

100 %
90 1| —8— HyCube (RT1+RT2)
HyCube (only RT1)

Pastry

—o—

% failed paths
at
S

0& & = = :
30 40 50 60 70 80 90

% failed nodes

the same time, provides means to remove failed nodes from
routing tables.

8.1 LNS (liveness node selection) in HyCube

HyCube uses a variant of LNS which bases the neigh-
bor choice on node liveness information discovered locally,
working together with a background process checking
node’s responsiveness. However, the HyCube LNS imple-
mentation does not calculate the liveness information based
on the node’s join and leave times. Every node periodically
sends keepalive (PING) messages to all the nodes in its rout-
ing tables and updates the stored nodes’ liveness values.
The value is increased when the node responds to the PING
message (sending a PONG message), and is decreased if
the keepalive response is not received (timeout). The initial
liveness value (new nodes) is defined by the system param-
eter Lipir, and the values are updated as follows (author’s
definition):

LZLprev‘p+(1_P)'Lmax 9)

if the keepalive confirmation (PONG message) was received,
or:

L=Lprev'p (10)
8 %

= 7

3]

5 9]

= 5

<

Q

o 4]

%37
2 + + + + + + : : |
0 10 20 30 40 50 60 70 80 90

% failed nodes

Fig. 20 Simulation results: Comparison of static resilience and average path length increase for varying rates of random node failures in HyCube

and Pastry (10’000 nodes)

@ Springer

Peer-to-Peer Netw. Appl. (2017) 10:954-982

973

when the keepalive fails (no PONG message is returned).
L prey is the previous value of liveness, L is the new, updated
liveness value, L,,,, and p are system parameters. When L
falls below the threshold value Ljeqcrivare (System param-
eter), the node is marked as deactivated and is not used
in the routing procedure until L falls below the threshold
value Lyemove (parameter), in which case the node is per-
manently removed from routing tables, or until L reaches
above Lgeactivate again. Whenever the value of L is below
the value of the parameter L;.pjqc., when possible, the cur-
rent node in the routing table slot is replaced by a new
node, whose value L is then given the initial value L;,;;.
The value of L for any node removed from the routing table
should however be stored by nodes for some time to prevent
replacing new nodes that temporarily fall below L;epiace
with nodes that were permanently unresponsive. The values
0 < p < 1 (update coefficient), Lyeactivares Lrepiace and
Lyemove determine the sensitivity of the algorithm, and L4
defines the maximum value of L. This technique provides
a good way to keep long-living responsive nodes in routing
tables and eliminate failed or overloaded nodes that are not
able to handle requests. Reasonable values of p, Ljeactivates
Lyepiace and Lyemove should be chosen to prevent the algo-
rithm from removing nodes from routing tables in case of
temporary delays in sending responses by nodes, but still,
to be able to efficiently remove failed nodes. If L,y = 2,
the values of Lj,i; = 1.5, p = 0.5, Lgeactivate = 1,
Lyepiace = 0.5 and Lyepope = 0.05 are good defaults as
they allow avoiding failed paths due to temporary nodes’
unresponsiveness, at the same time allowing unresponsive
nodes to be replaced by new nodes. Using these default
values would cause deactivating nodes after a single failed
keep-alive, however, not replacing/removing them imme-
diately. The parameter values (as well as the keep alive
interval) may be fine-tuned depending on the system charac-
teristics. The flexibility in next hop selection guaranteed by
HyCube ensures that no significant increase in failed paths
rate, nor the average path length, is observed even if large
portions of nodes temporarily do not respond to keep-alive
messages and are deactivated.

8.2 HyCube mixed mode node selection

The LNS technique described above allows replacing a rout-
ing table node only when its value of L drops below L;pjace
(or when L reaches L;,¢pmove, in Which case the node is
removed). In some cases, however, it would be desirable
to take another criterion (or criteria) into account, like for
example proximity or any application specific measure. To
achieve that, the condition L < L;epjace may be relaxed,
and the neighbor selection could be based on a function
measuring both factors - the liveness and the second fac-
tor (algorithm-specific). The author proposes the following

definition of the liveness fulfillment factor:

L —Lyep €L
- : SgH(L - Lreplace) (1D

Fact; = ‘

Lreplace
where the exponent e; determines the exponential growth of
Facty depending on the difference L — L;¢pjqce- Depending
on the algorithm, this factor may be used to calculate overall
criteria fulfillment at a node level, improvement of the cri-
teria fulfillment for a new node, relative to current node(s),
or may be used in calculating the quality function value for
a set of nodes (for example for the neighborhood set). An
exemplary neighbor selection criterion at a node level might
be a weighted sum of two factors:

Q=a«a-Facty, + B - Factyx (12)

where Factxy may be any neighbor selection algorithm
specific function.

9 Lookup and search procedures

The previous section concentrated on the geometry and the
routing algorithm of HyCube. From the DHT perspective,
two other algorithms are also of a great importance - lookup
and search. Instead of routing a message, in many cases, it
is more adequate for a node to find a node or nodes that
are the closest ones in the system to a given key (node
ID) and communicate with these nodes directly. Because
lookup and search algorithms are performed by multiple
nodes, the whole lookup/search process will be referred to
as lookup/search procedures. Lookup is a procedure per-
formed by a node that results in finding the node closest to
a given ID, while search results in finding a requested num-
ber of closest nodes to the given key in the system. During
the lookup/search procedure, the initiating node communi-
cates with other nodes in the system, retrieving information
about their neighbors. Using the references returned, the
searching node makes decisions which nodes should be con-
tacted next, until the closest nodes are found. No message is
routed further, and, in each step, the decision which nodes
should be contacted next is made locally. The lookup and
search procedures are crucial for serving fundamental DHT
functions - storing and retrieving resources. This section
describes the lookup and search algorithms of HyCube
DHT, proposed by the author, and presents the results of
performed simulations confirming their correctness.

In both, lookup and search procedures, the initiating node
may require the requested nodes to return multiple refer-
ences to nodes closest to the specified key. The routing
tables are searched exactly as described in Section 3.3 - the
next hop selection finds the requested number of best next
hops, according to the same criteria. If multiple references

@ Springer

974

Peer-to-Peer Netw. Appl. (2017) 10:954-982

are supposed to be returned by the next hop selection algo-
rithm, the prefix mismatch heuristic (Section 3.6) or falling
back to Euclidean routing (Section 5.4) is applied only when
no nodes are found at all. Often, the next hop selection
algorithm might not be able to find as many nodes fulfill-
ing the next hop criteria as requested. In such cases, if at
least one node is found, the next hop selection is consid-
ered successful, and the node/nodes found are returned to
the requestor.

9.1 Lookup procedure

In the node lookup procedure, as opposed to routing, next
hop selection is made by the initiating node. Nodes receiv-
ing the lookup request do not route the message, but they
send back (to the initiating node) a reference to a node or
nodes that are the best next hop candidates. However, the
decisions regarding the next node selection are made locally.
This is sometimes referred to as iterative routing, as opposed
to recursive routing. To ensure that the procedure is conver-
gent to the lookup node, next hops must satisfy the same
conditions as in the routing procedure, i.e. they must share
a longer prefix with the destination node than with the pre-
vious node or share the same prefix length but be closer
to the lookup node than the current node. The metric used
is the same as the one used in routing, and the prefix mis-
match heuristic also applies whenever a node close enough
is reached. When the lookup node is found, it may then be
contacted directly, and application-specific operations may
be performed. Although node lookup requires more network
traffic, and the overall lookup latency is greater (the num-
ber of messages exchanged is at least doubled), the main
advantage of such an approach is the possibility of returning
and sending the lookup request to another node whenever
any node requested does not return closer references. This
reduces the risk of a route failure due to any single node
not being able to route the message, and additionally makes
it possible to find the lookup node using more roundabout
paths. The node lookup procedure is initiated with three
parameters:

key - the ID of the lookup node

e [- the maximum number of nodes returned by interme-
diate nodes

e y - the number of temporary nodes stored during the
lookup

During the whole lookup, the initiating node maintains a
set I containing y closest (Euclidean) nodes found so far.
The lookup procedure consists of two phases:

1. Initially, I is filled with at most y closest nodes (to

the lookup node ID) from local routing tables and the
neighborhood set (variable Steinhaus metric), and the

@ Springer

initial lookup request is sent to the closest node found.
After receiving a response from the requested node
(max. B references), I' is updated so that it contains
y closest (Euclidean) nodes from the nodes currently
stored in I" and the returned nodes, and the next request
is sent to the node returned. If, however, no node is
returned, the next request is sent to the closest node
in I" that has not been yet requested. For every node
stored in I", virtual route information is maintained - the
Steinhaus point and flags indicating whether the pre-
fix mismatch heuristic has already been enabled for this
virtual route and whether the Steinhaus transform has
been switched off (no closer nodes found with the use
of Steinhaus transform). Initially, for all nodes found
in local routing tables, the Steinhaus point is set to
the ID of the initiating node, and the prefix mismatch
heuristic flag is set based on the analysis of the local
neighborhood set. These values are included in every
lookup request, and the requested nodes should take
these parameters into account during next hop selec-
tion (local closest nodes search). Every requested node,
during the next hop selection, updates the Steinhaus
point for the virtual route if it is closer to the des-
tination (Euclidean) than the current Steinhaus point,
determines (based on its neighborhood set) whether it
is close enough to the lookup node to enable the pre-
fix mismatch heuristic (which then remains enabled for
this virtual route), and whether the Steinhaus transform
should not be applied any more (no closer nodes found
with the use of Steinhaus transform). The updated
parameter values are sent back to the requestor within
the lookup response message. The procedure continues
until the lookup node reference is returned, or until no
new nodes are returned.

2. When the lookup node is not found (the lookup request
has been sent to all the nodes in I" and no closer nodes
were returned), the lookup procedure is repeated on the
current set I", but is based on the Euclidean metric (no
Steinhaus transform), and the prefix mismatch heuris-
tic is enabled. Because for certain nodes (virtual routes)
in I, the prefix mismatch heuristic might have already
been enabled and the Steinhaus transform might have
already been disabled, there is no need of sending addi-
tional requests to them. The closest node found after
this phase is considered to be the closest node in the
DHT.

The initial lookup (local), in addition to the closest
nodes found in the local routing tables, should also consider
adding the initiating node (itself) to I, as it may be one of
the closest nodes to key. If the initiating node ID is one
of the y closest nodes found locally, it should be placed in
I". Furthermore, the initiating node ID may be returned by

Peer-to-Peer Netw. Appl. (2017) 10:954-982

975

any intermediate node (for any virtual route after changing
the metric to Euclidean, the initiator node ID may become
closer than the current node). No additional local search is
however required in the first phase, as it was already per-
formed initially. However, when this node ID (self) is still
in I' after switching to the second phase (Euclidean metric
and prefix mismatch heuristic in use) a local search should
be performed with the prefix mismatch heuristic enabled
and based only on the Euclidean distances. Otherwise, some
potential references to closer nodes (stored locally) might
be omitted.

When 8 = 1 and y = 1, the node lookup procedure
creates one virtual route that is exactly the same as if the
message was routed. By increasing 8 and y, in case of
failures, the procedure is capable of returning and creat-
ing alternative routes, and allows sidestepping inconsistent
fragments of the connection graph.

9.2 Search procedure

The purpose of the search procedure is locating k nearest
nodes to a given key (identifier) in terms of the Euclidean
metric. Search is a basic functionality of a distributed hash
table - it is used for storing and retrieving resources and
when a new node joins the network. The closest nodes
search, like the node lookup procedure, is managed locally
by the initiator, which sends search requests to nodes and
analyzes the responses. The decisions to which nodes next
requests should be sent, are made by the initiating node. The
search procedure is initiated with the following parameters:

key - the ID for which k nearest nodes should be found
k - the number of closest nodes to the key to be found
o - the number of closest nodes to which search requests
are sent (parallelism factor)

e - the maximum number of nodes returned by interme-
diate nodes (8 > k)

e y - the number of temporary nodes used during the
search (y > k;y > «)

e ITN - “ignore target node” - determines whether the
set of & nodes should contain the exact match (the node
with the identifier equal to the requested key) or not

During the whole search, the initiating node maintains a
set [containing at most y nodes, closest (in terms of the
Euclidean metric) to key found so far. The initiating node
sends search requests to the closest nodes and processes
the responses received. After receiving a response from any
node (to which a search request has been sent), the set I is
updated so that it contains at most y nodes closest to key
(Euclidean). The search procedure consists of two phases:

1. In the first phase, the set I' is initially filled with
maximum y nodes from local routing tables and the

neighborhood set, that are the closest to key (variable
Steinhaus metric). In the consecutive steps, the initiat-
ing node sends the search request to nodes in I" which
have not yet been requested and are within « closest
nodes to key found so far. After receiving a search
request, the receiving node looks for at most 8 nodes
closest to key in its routing tables and neighborhood
set. As opposed to the lookup procedure, the closest
B nodes returned in the search procedure do not have
to satisfy the prefix condition, and do not have to be
closer to key than the current node. However, the rout-
ing tables are searched for 8 nodes sharing the longest
prefix with key, and among the nodes sharing the same
prefix length, the choice is made based on the distance
to key (with the use of the variable Steinhaus metric if
the prefix mismatch heuristic is already switched on).
Upon receiving a search response, the initiating node
updates I" with the nodes returned, so that it contains
the closest (Euclidean) nodes to key from the nodes cur-
rently stored in I" and the newly returned nodes. For
every node in I', the current Steinhaus point is stored,
as well as a flag indicating whether the prefix mis-
match heuristic has already been applied for finding the
node. These values are included in search requests sent
to nodes, and the local searches are performed based
on these parameters. These parameters may be modi-
fied by the nodes processing search requests (updating
Steinhaus point if the current node ID is closer to key
than the current Steinhaus point, and enabling the pre-
fix mismatch heuristic based on the local neighborhood
set), and the updated values are included in the search
responses. The first search phase finishes when none of
a currently closest to key nodes returns any node closer
to key than the most distant node in I" - all @ closest
nodes in I" have been already requested and returned the
responses (or the requests timed out).

2. The second search phase is a repetition of the first
phase, however, requests are sent to all the nodes in
I', the prefix mismatch heuristic is enabled, and only
the Euclidean metric (no Steinhaus transform) is used
in local searches. The search is finished when none of
the nodes in I returns any node closer to key than the
most distant node in I". The result of the procedure is k
closest nodes to key from I".

The second search phase (without the use of the Stein-
haus transform) is extremely important, because during the
search, nodes are allowed to return also more distant nodes
to the key than themselves. There would never be a situa-
tion in which no node is found in the routing tables (unless
the routing tables are empty, in which case switching to
Euclidean routing would as well return no nodes). Thus, the
routing tables would never be searched for nodes closest in

@ Springer

976

Peer-to-Peer Netw. Appl. (2017) 10:954-982

terms of the Euclidean metric (finding no nodes is the condi-
tion for switching off the Steinhaus transform), which could
lead to omitting some nodes that are close to key.

The initial search (local), in addition to the closest nodes
found in the local routing tables, should also consider
adding the initiating node itself to I' (if the initiating node
ID is one of the y closest nodes found locally), as it might be
one of the closest nodes to key in the system. Furthermore,
a reference to the initiating node may be returned by any
requested node, in which case, no additional local search
is required in the first search phase, as it was already per-
formed initially. However, when this node ID (self) is still in
I" after switching to the second phase (Euclidean metric and
prefix mismatch heuristic in use), a local search should be
performed again with the prefix mismatch heuristic enabled
and based only on the Euclidean distances. Otherwise, some
potential references to closer nodes (stored locally) might
be omitted.

The value of y should be at least equal to k. However,
it may be greater than k£ to allow more roundabout search
paths. Especially, for small values of &, such roundabout
paths are important so that the procedure finds also the
nodes that are located in the hierarchical hypercube on the
opposite side of the point key than the initiating node.

Whenever a local search (next hop selection) is per-
formed by a certain node for the key equal to its own
identifier (which would update the value of the Steinhaus
point to the value of key - it would be the closest point
reached so far), the search should be continued without
the use of the Steinhaus transform (all virtual routes start-
ing from this node). If the value of the Steinhaus point is
equal to the key (destination), as described in Section 5.3:
D'(x,y) = D(x,a)+2[?((y)'c,!ay))+D(x,y) = 1, regardless of the
distance D(x, y). This fact would make it impossible to
differentiate nodes based on the distance to key. Such a sce-
nario would never happen during the lookup procedure, as
finding the exact match would immediately return it, and
no further lookups would be performed. However, it is very
important when considering the search procedure.

If the parameter /TN is set to true, the value of this
parameter is included in every request message, and all local
searches (next hop selections) should skip the exact match.
This parameter is useful when a node performs a search for
closest nodes to its own identifier. In such a case, returning
a reference to itself would make no sense. There is also no
need to re-check local routing tables after switching to the
second search phase, because when the distance equals 0,
the initial local search would be performed with the prefix
mismatch heuristic enabled, and the Steinhaus metric would
not be applied anyway.

As opposed to the lookup procedure, in the search pro-
cedure, the initial values of the Steinhaus points (for initial
nodes in I" found locally) are not set to the initiating node

@ Springer

ID, but to the IDs of the initial search nodes themselves.
If the initiating node is closer to key than the requested
node (at one extreme equal to key, in which case the
Steinhaus transform would never be applied), the influ-
ence of using the Steinhaus transform could possibly be
reduced.

9.3 Resilience of the lookup and search procedures

The results of performed simulations show that both, lookup
and search procedures presented, are able to find the closest
nodes to a given key even in the presence of many node fail-
ures. Figures 21, 22, 23 and 24 present the results obtained
from simulations of the accuracy of lookup and search pro-
cedures in the presence of varying rates of random node
failures, for varying values of «, 8, ¥, and k = 8 (for search
procedure). During the simulations, 1’000 lookups/searches
for random node IDs were performed by randomly selected
nodes, and the number of closest nodes missed was saved
for every lookup/search. For the lookup procedure, the
“missed nodes” value in the figures is the average number of
closer nodes existing in the system than the node returned by
the lookup procedure. For the search procedure, it denotes
the average total number of nodes missed - nodes closer
than the most distant node found, not included in the search
result. Two independent simulations have been performed -
for networks consisting of 1’000 and 10’000 nodes.

The simulations confirmed that increasing the value of
y has a great influence on resilience of lookup and search
procedures, especially for higher rates of node failures,
which is caused by allowing returns and continuing the
lookup/search using different nodes. The changes of 8 have
less effect on the resilience, especially for § > 2. More-
over, for higher values of y (> 4), the resilience achieved
for the search procedure does not change significantly with
the increase of the number of nodes, which proves very good
scalability of the system.

10 Self-organization

Previous sections discussed the architecture of HyCube and
its behavior in static conditions. In practice, large-scale dis-
tributed hash tables are highly dynamic systems and should
be backed by the support of algorithms for joining/leaving
the network, as well as maintenance and recovery processes,
maintaining good routing properties under dynamically
changing conditions.

The algorithms described in this section are based on
nodes exchanging information about references stored in
routing tables and neighborhood sets. When a node receives
a notification about existence of some other peer or receives
references maintained by some other node (requested for

Peer-to-Peer Netw. Appl. (2017) 10:954-982

971

13 %
% 12 +5:177:1
30| B=Ly=2
Ee) 9+ %ﬁ:277:2
g 8||-eo-f=2+=4
BT B8=4y=2
S o5 e B=4y=4
—
o 4 +
Q
E 3¢
=] 2+
2z 11

0 —s—

Number of missed nodes

(=N
B

10 20 30 40 50 60 70

% failed nodes

% failed nodes

Fig. 21 Simulation results: Accuracy of the lookup procedure for varying rates of random node failures, 1’000 nodes

example in the recovery or joining process, or generated by
the notifying node itself), it should analyze the node and
check if the reference should be stored in the routing tables
or the neighborhood set. Every node is analyzed as a candi-
date to the neighborhood set and appropriate routing table
slots. For the primary routing table, this is the slot at the
level calculated based on the common prefix length with
the node (I — 1 — commonPrefixLength, | - the num-
ber of hierarchy levels) at the position equal to the first
different digit (group of d bits, d - the number of dimen-
sions). For the secondary routing table, the slot corresponds
to the lowest-level hypercube containing the analyzed node,
adjacent to the hypercube of the analyzing node. A sim-
ple check may be performed to verify this condition: nodes
X and Y are in adjacent hypercubes at levels — 1 — j to
I — 1 — i if and only if i first digits (d-bit groups) of X
and Y are equal, and i-th to j-th digits (numbered start-
ing from 0) differ on one (the same for all these digits) bit
- this bit corresponds to the dimension in which the two
hypercubes are adjacent, and only the slot at the lowest level
should be considered (to prevent placing the same nodes
in overlapping routing table slots at different levels). Fur-
thermore, depending on settings, additional rules described
in Section 6.3 may apply to prevent storing nodes in the

30 x

——fB=1v=1

w0
(]
'§25 B=1y=2
< 20 | —a-=2,v=2
E 15+ |=p=4,v=2
ks ——B=4,v=4
5 10 |
el
E 5l
Z,

0 & B—& £

0 10 20 30 40 50 60 70

% failed nodes

primary routing table slots overlapping with the lower-
level secondary routing table slots. For selecting nodes
within individual routing table slots and within the neigh-
borhood set, the algorithms described in Sections 8 and 6.1

apply.
10.1 Maintenance and recovery

Maintenance is a process of ensuring good system proper-
ties that takes place continuously (ensuring the relevance of
routing tables, updating information about neighbors). The
maintenance mechanism used in HyCube is directly con-
nected with the routing table neighbor selection (described
in detail in Section 8.1). Every node periodically sends
keepalive messages to all the nodes in its routing tables, and,
depending on whether the keepalive response is received or
not, the node’s liveness value is updated. Based on the live-
ness value, the routing table reference may be skipped in the
next hop selection (to avoid failed paths), may be replaced,
or removed from the routing tables.

Recovery is a process of repairing the network topology
and propagating necessary information over the network on
account of a topology change (new nodes joining/leaving
the system), topology breakdown (node failures) or attacks.

Number of missed nodes

40 50 60 0 80 90
% failed nodes

80 90 30

Fig. 22 Simulation results: Accuracy of the lookup procedure for varying rates of random node failures, 10’000 nodes

@ Springer

978

Peer-to-Peer Netw. Appl. (2017) 10:954-982

8- a=4,=4,v=8
—— a=4,4=8,v=38
—a— a=8=8,v=16
—%—a=8,=16,v=16

|
T

|
T

|
T

|
T

|
T

|
T

1.5

Number of missed nodes
o
ot -

=

10 20 30 40 50 60 70
% failed nodes

Number of missed nodes
© = N W A OO N
.
-

¢
$

Fig. 23 Simulation results: Accuracy of the search procedure for vary

It is a crucial element of the design of highly dynamic
systems. There are two main approaches to the network
recovery - reactive and periodic recovery. The reactive
approach immediately reacts to failures - loss of a reference
in the routing table, while, in contrast, periodic recovery
simply processes the recovery procedure every certain time
interval, and the process takes place independently of the
routing table change detection. The authors of the study
presented in [29] claim that there is little difference in effi-
ciency of periodic and reactive recovery. However, there is a
large difference in the bandwidth consumed under different
churn rates. Reactive recovery appears to be very efficient,
and periodic recovery is wasteful if there is no churn. How-
ever, as the churn increases, reactive recovery becomes very
expensive.

The proposed recovery technique, employed by HyCube,
is a periodic procedure, run every specified time inter-
val (parameter value). The value of the interval should be
adjusted depending on the DHT nature. The higher is the
level of churn, the recovery should be run more often, while
if the system has a very stable nature, this interval might be
larger. The recovery algorithm in HyCube proceeds in two
phases:

8- a=4,=4,v=8
—6— a=4,=8,v=38
—~— a=8,=8,7v=16
—%—a=8,=16,v=16

|
T

|
T

|
T

|
T

|
T

|
T

% failed nodes

ing rates of random node failures, 1’000 nodes

1. In the first phase, the node sends a recovery request to
all nodes in its routing tables, which it turn return their
routing tables to the requesting node. Upon receiving
the responses, the requesting node processes the ref-
erences returned and updates its routing tables and
neighborhood set.

2. In the second recovery step, the node performing the
recovery sends a notification (NOTIFY message) about
its existence to all nodes in its neighborhood set and
routing tables (immediately after sending the recovery
requests). The notification is also sent to the routing
tables nodes to spread the information about the node to
more distant parts of the hypercube. However, to limit
the overhead, the maximum number of the routing table
nodes to which notification is sent should be limited -
the message would be sent to a limited number of nodes
(random selection from all routing table nodes).

Because such an approach may lead to exchanging a
large number of messages and also increase processing
overhead at the node level, neighborhood set recovery - a
variant of the recovery was introduced. Nodes performing
the neighborhood set recovery send the recovery requests
only to nodes in their neighborhood sets, which dramati-

Number of missed nodes
=
-

<

10 20 30 40 50 60 70
% failed nodes

Number of missed nodes
© ~ N W A O O 1 ®©
.
-

o B
]
[}

1 0 % <- : I : f
30 40 50 60 70 &0
% failed nodes

Fig. 24 Simulation results: Accuracy of the search procedure for varying rates of random node failures, 10’000 nodes

@ Springer

Peer-to-Peer Netw. Appl. (2017) 10:954-982

979

cally decreases the network traffic and processing overhead.
In addition to the recovery interval, HyCube allows defining
the recovery plan - determining a sequence of recovery vari-
ants (for individual recovery runs, successive recovery types
from the recovery plan are performed - following a cycli-
cal pattern). Full recovery has better properties in terms of
keeping the routing tables up-to-date. However, especially
for larger networks, the overhead is significantly larger.
Although there might be situations in which the neigh-
borhood set is completely corrupt, and sending recovery
requests to the routing table nodes would return much more
nodes, usually it is sufficient to repeat the neighborhood set
recovery instead. Therefore, the neighborhood set recovery
is the default recovery method used in HyCube.

To spread the information about the node in an even
greater degree, it is possible to send a notification also to
every node to which a reference is returned in recovery
responses. However, this approach proved to generate enor-
mous network traffic, as well as very high nodes’ processing
overhead. Performed simulations proved that notifying all
neighborhood set nodes and 16 random routing table nodes
during every recovery does not significantly increase the
overhead, and, if the recovery procedure is run frequently
enough, it is sufficient to properly propagate the informa-
tion about the node’s existence. Furthermore, depending on
configuration, nodes may process the recovery request mes-
sages as notifications (analyze the sender as a routing table
candidate), in which case, a notification message does not
have to be later sent to the nodes to which the recovery
requests were sent.

Figure 25 presents the simulation results (numbers of
failed routes) for a network initially containing 10’000
nodes in the presence of varying numbers of random node
failures (routing messages between the nodes left in the
DHT), after processing the recovery procedure by every
node 0, 1, 2, 3, 4 and 5 times. The results obtained prove
the correctness and very good efficiency of the recovery
mechanism.

60 %
—«— 50% failed nodes
50 1 60% failed nodes
é 40 | —o— 70% failed nodes
g —a— 80% failed nodes
E 30 —46— 90% failed nodes
8
50 20 ;7
10
0 A S——
0 1 2 3 4 5

Number of recovery process runs

10.2 Joining the system (connecting to the DHT)

When a new node joins the existing DHT, it should have
knowledge about any node already connected to the system.
HyCube implements two different approaches for joining
the system. One of them is based on routing a JOIN message
through the system to the node closest to the new node’s ID,
and the routing tables are formed by the references returned
by intermediate nodes along the path (including also them-
selves), as well as the closest node. The second method is
based on searching for the nodes closest to the new node’s
ID, which form initial routing tables for a new node. The
routing approach requires much less overhead - a smaller
number of messages are exchanged. However the search
method is not vulnerable to any single node possibly caus-
ing the join message to be dropped. This section presents
both techniques as well as the evaluation of their efficiency.

10.2.1 “Route-join” procedure

The route-join procedure is based on the joining mechanism
presented in [30]. To initiate the route-join procedure, the
joining node should send a “join” request (JOIN message)
to any node already participating in the system. The mes-
sage is routed to the closest possible node to the joining
node’s ID (however, omitting the exact match, as the mes-
sage would be possibly routed back to the joining node). All
intermediate nodes send back (directly to the joining node)
JOIN_REPLY messages that contain all references stored by
them in their routing tables. Every node returned is analyzed
by the joining node and its routing tables are updated based
on the criteria described in Sections 8 and 6.1. As the mes-
sage gets closer to the new node ID, references returned are
more likely to be good candidates for the neighborhood set.
Furthermore, as the common prefix length with the joining
node ID increases, more and more routing table slots corre-
spond to the same hypercubes as the one of the joining node,

8,,

% failed paths
S

0 - & & 8
0 1 2 3 4 5

Number of recovery process runs

Fig. 25 Simulation results: Recovery procedure efficiency - numbers of failed routes for a network initially containing 10’000 nodes in the
presence of varying numbers of random node failures, after processing the recovery procedure by every node: 0, 1, 2, 3, 4 and 5 times

@ Springer

980

Peer-to-Peer Netw. Appl. (2017) 10:954-982

so more and more references returned by the intermediate
nodes might be also used for building the routing tables. For
that reason, it is a good idea to disable the prefix mismatch
heuristic for JOIN messages (the behavior is configured by
a system parameter).

10.2.2 “Search-join” procedure

In the search-join procedure, the joining node initially
retrieves all references from routing tables from a known
node connected to the system. The references returned are
used to perform a search (Section 9.2) for the closest nodes
to the joining node ID with certain values of parameters o,
B, Vi %joins Bjoin and Vjoin (System parameters), and the
ITN (ignore target node) parameter set to true. The value
of k is not important, because all nodes returned by inter-
mediate nodes are processed (updating the routing tables).
Initially, the set I" is filled with y closest (Euclidean) nodes
retrieved in the initial phase - from the bootstrap node.
Afterwards, the search procedure proceeds as described in
Section 9.2.

Because the node performing the search is the node
whose identifier is being looked for, to allow the use of the
Steinhaus transform, the initial values of Steinhaus points
should not be set to the joining node ID (Euclidean met-
ric would be then used for local next hop selections), but
should be given the values of IDs of the initial nodes them-
selves (only for the initial nodes returned by the bootstrap
nodes - for any nodes added to I later, the Steinhaus point is
updated based on the information contained in the response
message that contained the node reference).

10.2.3 Evaluation of the join procedures

Figure 26 presents the static resilience (simulation results)
obtained for the system built using the route-join and search-
join procedures. The join procedures in these simulations
were supported by a single run of the recovery procedure
(by every node after joining), because join mechanisms

90 %
80 +
70 +
60 +
50 +
40 +
30 +
20 +
10 +
0 B & e = f 4 - |
20 30 40 50 60 70 80 90
% failed nodes

—a— Route join

—B8— Search join

% failed paths

themselves are usually not able to provide enough nodes to
properly fill the routing tables. The closest nodes found are
useful to serve as an initial neighborhood set and may match
several routing table slots, but the recovery is still required
to obtain additional references. Furthermore, the recovery
procedure spreads the information about the joining node
in the network. In real systems, the levels of resilience are
much higher due to the fact that the recovery procedure is
executed in the background at certain time intervals, which
helps populating routing tables and spreading the infor-
mation about new nodes. However, stopping the recovery
background process (executing it only once by every node
after joining) allowed an accurate comparison of both join-
ing techniques. The comparison, however, didn’t indicate
significant difference between the route-join and search-
join procedures in terms of static resilience (a very slight
advantage of the search-join technique), and slightly shorter
path lengths were achieved for the route-join. However, the
search-join technique has been chosen as the default join
mechanism in HyCube because of its resistance to a sin-
gle node possibly causing the join message to be dropped.
With the background recovery mechanism switched on, the
differences in path lengths would be quickly eliminated.
With one or more additional runs of the recovery proce-
dure, the simulations show no differences between the two
techniques.

Detailed simulations of the search-join showed that very
good properties are reached (while still limiting the unnec-
essary overhead) for the values of 8 and y equal to the size
of the neighborhood set size, and « = y /2. These values
may be decreased if the recovery process is conducted in a
regular time interval after joining.

10.3 Leaving the system

The maintenance and recovery mechanisms should be able
to maintain connection graph consistency and keep rout-
ing tables of nodes up-to-date, ensuring good routing
and searching properties. However, these algorithms have

7,,

avg. path length

3 ! ! ! ! ! ! ! ! |
0 10 20 30 40 50 60 70 80 90
% failed nodes

Fig. 26 Simulation results: Efficiency of route join and search join procedures - static resilience simulated after creating the system with the

recovery procedure run once by every node after joining - 10’000 nodes

@ Springer

Peer-to-Peer Netw. Appl. (2017) 10:954-982

981

certain “inertia” and react with a certain delay. A simple
solution to overcome this problem is sending the leave infor-
mation (LEAVE message) to all neighbors in the leaving
node’s neighborhood set. Such LEAVE messages should
contain the list of neighborhood set nodes of the leaving
node, and the nodes receiving it should remove references
to the LEAVE sender from the routing tables and the neigh-
borhood set, and process all the nodes included in the
message to immediately fill the lost routing table or/and
neighborhood references.

11 Conclusion

This paper presented a novel distributed hash table model,
based on the hierarchical hypercube geometry and a vari-
able metric adopting the Steinhaus transform - HyCube. In
[11], it was proved that maintaining sequential neighbors
sets dramatically improves the static resilience, as they pro-
vide a very high level of flexibility in next hop selection.
As the flexibility in route selection directly translates to the
level of static resilience, systems incorporating the sequen-
tial neighbors concept to their designs (e.g. Pastry) present
extremely good routing properties and very high resistance
to node failures and changes of the overlay structure. The
use of the variable Steinhaus metric, discussed in the paper
(Section 5), results in an even higher level of flexibility in
next hop selection than provided by sequential neighbors.
The number of the neighborhood set nodes to which mes-
sages may be routed (maintaining routing convergence), in
most cases, significantly exceeds the number of matching
sequential neighbors. The experimental results (Section 7)
confirmed that the new approach results in a much higher
level of resilience to node failures, as well as a signifi-
cantly shorter average routing path length than the use of
sequential neighbors sets (Pastry). Furthermore, the pre-
sented distributed hash table provides means of efficient
key/identifier lookup and search (Section 9). The proposed
lookup and search algorithms proved to be efficient and
accurate even in the presence of high node failure rates.
Although static resilience characterizes the system tol-
erance to node failures without the use of any recovery
mechanisms, it also directly influences the behavior of the
system under churn. Although the routing table node selec-
tion mechanism presented in Section 8.1 proved to quickly
eliminate failed nodes from the routing tables, and the
recovery mechanism (Section 10.1) efficiently rebuilds lost
connections, in systems where nodes are constantly joining
and leaving, the routing tables of individual nodes always
contain a certain number of failed nodes, as the maintenance
and recovery mechanisms react with some delay. Therefore,
it is even more appropriate to assume that such systems
constantly work at a certain level of node failures. The

static resilience also affects the efficiency of the recovery
processes, as well as the procedures of joining the sys-
tem (discussed in Section 10), which are very important
aspects of real-life large-scale dynamic systems. The sim-
ulations demonstrated the correctness and effectiveness of
the presented techniques.

The experimental results indicated that HyCube is effi-
cient (route lengths), scalable and much more resilient to
node failures than solutions exploiting the sequential neigh-
bors concept. Moreover, during the study, a library imple-
menting the protocol was created, resulting in a ready to use,
efficient and credible implementation of a distributed hash
table.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

1. Bhattacharya A, Yang Z, Zhang S (2010) Temporal-DHT and Its
Application in P2P-VoD Systems. Proceedings of the 2010 IEEE
International Symposium on Multimedia (ISM ’10) pp 81-88,
doi:10.1109/ISM.2010.21

2. de Bruijn N (1946) A combinatorial problem. Koninklijke Neder-
landse Academie van Wetenschappen Proceedings 49:758-764

3. Buchmann E, Bohm K (2004) How to Run Experiments with
Large Peer-to-Peer Data Structures. Proceedings of the 18th
International Parallel and Distributed Processing Symposium
(IPDPS04) doi:10.1109/IPDPS.2004.1302938

4. Cheema AS, Muhammad M, Gupta I (2005) Peer-to-peer discov-
ery of computational resources for grid applications. Proceedings
of the 6th IEEE/ACM International Workshop on Grid Computing
pp 179-185, doi:10.1109/GRID.2005.1542740

5. Chun BG, Zhao BY, Kubiatowicz JD (2005) Impact of Neigh-
bor Selection on Performance and Resilience of Structured
P2P Networks. Proc of the 4th International Workshop on
Peer-To-Peer Systems (IPTPS 2005), LNCS 3640 pp 264-274,
doi:10.1007/11558989_24

6. Clarkson KL (2006) Nearest-Neighbor Searching and metric
space dimensions MIT press. Nearest-Neighbor Methods for
Learning and Vision: Theory and Practice

7. Deza M, Laurent M (1997) Geometry of Cuts and Metrics,
Algorithms and Combinatorics, vol 15. Springer, Verlag. ISBN
978-3-642-04295-9

8. Druschel P, Rowstron A (2001) PAST: A large-scale, per-
sistent peer-to-peer storage utility. Proceedings of the Eighth
Workshop on Hot Topics in Operating Systems pp 75-80,
doi:10.1109/HOTO.2001.990064

9. Fersi G, Louati W, Jemaa MB (2013) Distributed Hash
table-based routing and data management in wireless
sensor networks: a survey. Wirel. Netw 19(2):219-236.
doi:10.1007/s11276-012-0461-0

10. Fraigniaud P, Gauron P (2006) D2b: A De Bruijn Based Content-
addressable Network. Theor. Comput. Sci. - Complex networks
355(1):65-79. doi:10.1016/j.tcs.2005.12.006

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1109/ISM.2010.21
http://dx.doi.org/10.1109/IPDPS.2004.1302938
http://dx.doi.org/10.1109/GRID.2005.1542740
http://dx.doi.org/10.1007/11558989_24
http://dx.doi.org/10.1109/HOTO.2001.990064
http://dx.doi.org/10.1007/s11276-012-0461-0
http://dx.doi.org/10.1016/j.tcs.2005.12.006

982

Peer-to-Peer Netw. Appl. (2017) 10:954-982

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Gummadi K, Gummadi R, Gribble S, Ratnasamy S, Shenker
S, Stoica I (2003) The impact of DHT routing geometry
on resilience and proximity. Proceedings of the 2003 confer-
ence on applications, technologies, architectures, and protocols
for computer communications (SIGCOMM °03) pp 381-394,
doi:10.1145/863955.863998

Kaashoek M, Karger D (2003) Koorde: A simple degree-optimal
distributed hash table. Proc of Second International Workshop
on Peer-to-Peer Systems, (IPTPS’03), LNCS 2735 pp 98-107,
doi:10.1007/978-3-540-45172-3_9

Kleinberg J (2000) The Small-World phenomenon: an algo-
rithmic perspective. Proceedings of the thirty-second annual
ACM symposium on Theory of computing pp 163-170,
doi:10.1145/335305.335325

. Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton P,

Geels D, Gummadi R, Rhea S, Weatherspoon H, Weimer W,
Wells C, Zhao B (2000) Oceanstore: an architecture for global-
scale persistent storage. ACM SIGPLAN Not 35(11):190-201.
doi:10.1145/356989.357007

Kuhn F, Schmid S, Wattenhofer R (2010) Towards worst-case
churn resistant peer-to-peer systems. Distrib. Comput 22(4):249—
267. doi:10.1007/s00446-010-0099-z

Lesniewski-Laas C, Kaashoek MF (2010) Whanau: A Sybil-proof
Distributed Hash Table. Proceedings of the 7th USENIX Confer-
ence on Networked Systems Design and Implementation NSDI” 10
8-8

Loguinov D, Kumar A, Rai V, Ganesh S (2003) Graph-
theoretic Analysis of Structured Peer-to-Peer Systems: Routing
Distances and Fault Resilience. Proceedings of the 2003 Confer-
ence on Applications, Technologies, Architectures, and Protocols
For Computer Communications (SIGCOMM ’03) pp 395-406,
doi:10.1145/863955.863999

Malkhi D, Naor M, Ratajczak D (2002) Viceroy: a scalable and
dynamic emulation of the butterfly. Proc of the 21st ACM Annual
Symposium on Principles of Distributed Computing (PODC ’02)
pp 183-192, 10.1145/571825.57 1857

Manku GS, Bawa M, Raghavan P (2003) Symphony: Distributed
hashing in a small world. Proceedings of the 4th USENIX Sym-
posium on Internet Technologies and Systems USITS’03 4:10-10
Manku GS, Naor M, Wieder U (2004) Know Thy Neigh-
bor’s Neighbor: The Power of Lookahead in Randomized
P2P Networks. Proceedings of the Thirty-sixth Annual ACM
Symposium on Theory of Computing STOC’04 pp 54-63,
doi:10.1145/1007352.1007368. ISBN: 1-58113-852-0
Marczewski E, Steinhaus H (1957) On a certain distance of
sets and the corresponding distance of functions. Collect. Math
6(1):319-327. ISSN 0010-1354

Maymounkov P, Mazieres D (2002) Kademlia: A Peer-to-peer
Information System Based on the XOR Metric. Proc of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS ’02) pp
53-65, doi:10.1007/3-540-45748-8_5

Naor M, Wieder U (2003) Novel Architectures for P2P Appli-
cations: The Continuous-discrete Approach. Proceedings of the
Fifteenth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA’03 pp 50-59, doi:10.1145/777412.777421
Olszak A (2010) HyCube: A DHT routing system based on
a hierarchical hypercube geometry. Proceedings of the 8th
International Conference on Parallel Processing and Applied
Mathematics (PPAM 2009), Part II, LNCS 6068 pp 260-269,
doi:10.1007/978-3-642-14403-5_28

Park C, Kim K, Lee J, Kim P (2007) Improved CAN rout-
ing using additional neighbors. The 9th International Confer-
ence on Advanced Communication Technology 2:1457-1461,
doi:10.1109/ICACT.2007.358630

@ Springer

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Pirro G, Talia D, Trunfio P (2012) A DHT-Based semantic over-
lay network for service discovery. Futur. Gener. Comput. Syst
28(4):689-707. doi:10.1016/j.future.2011.11.007

Plaxton C, Rajaraman R, Richa A (1999) Accessing
Nearby Copies of Replicated Objects in a Distributed
Environment. Theory of Computing Systems pp 241-280,
doi:10.1007/s002240000118

Ratnasamy S, Francis P, Handley M, Karp R, Schenker S (2001)
A scalable Content-Addressable network. Proc of the 2001 confer-
ence on Applications, technologies, architectures, and protocols
for computer communications (SIGCOMM °01) pp 161-172,
doi:10.1145/383059.383072

Rhea S, Geels D, Roscoe T, Kubiatowicz J (2004) Handling churn
in a DHT. Proceedings of the USENIX 2004 Annual Technical
Conference 127-140

Rowstron A, Druschel P (2001) Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems.
Proc of the 18th IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware 2001), LNCS 2218 pp
329-350, doi:10.1007/3-540-45518-3_18

Shen H, Xu CZ (2012) Leveraging a compound graph-based DHT
for multi-attribute range queries with performance analysis. IEEE
Trans. Comput 61(4):433-447. doi:10.1109/TC.2011.30

Singh K, Schulzrinne H (2004) Peer-to-peer internet telephony
using SIP. Tech. Report CUCS-044-04, Department of Computer
Science. Columbia University Press, New York

Stoica I, Morris R, Karger D, Kaashoek M, Balakrishnan H (2001)
Chord: A scalable Peer-to-peer lookup service for internet appli-
cations. Proc of the ACM SIGCOMM 2001 Technical Conference
pp 149-160, doi:10.1145/383059.383071

Trunfio P, Talia D, Papadakis C, Fragopoulou P, Mordacchini M,
Pennanen M, Popov K, Vlassov V, Haridi S (2007) Peer-to-Peer
Resource Discovery In Grids: Models and systems. Futur. Gener.
Comput. Syst 23(7):864-878. doi:10.1016/j.future.2006.12.003
Xu Z, Zhang Z (2001) Building Low-maintenance Expressways
for P2P Systems. HPL-2002-41 Technical Report

Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD, Kubiatowicz
JD (2004) Tapestry: A resilient global-scale overlay for ser-
vice deployment. IEEE J. Sel. Areas Commun 22(1):41-53.
doi:10.1109/JSAC.2003.818784

Zhu Y, Yang X (2006) Implications of Neighbor Selection
on DHT Overlays. Proc of the 14th IEEE International Sym-
posium on Modeling. Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS ’06) pp 197-206,
doi:10.1109/MASCOTS.2006.27

Artur Olszak received the
M.Sc. degree in Computer
Science from Warsaw Univer-
sity of Technology (The Fac-
ulty of Electronics and Informa-
tion Technology) in 2008, and
the Ph.D. degree in Computer
Science at the Institute of Com-
puter Science, Warsaw Uni-
versity of Technology in 2015.
His research concentrates on
parallel and distributed com-
puting architectures, environ-
ments, tools and algorithms,
especially on large-scale dis-
tributed architectures.

http://dx.doi.org/10.1145/863955.863998
http://dx.doi.org/10.1007/978-3-540-45172-3_9
http://dx.doi.org/10.1145/335305.335325
http://dx.doi.org/10.1145/356989.357007
http://dx.doi.org/10.1007/s00446-010-0099-z
http://dx.doi.org/10.1145/863955.863999
http://dx.doi.org/10.1145/1007352.1007368
http://dx.doi.org/10.1007/3-540-45748-8_5
http://dx.doi.org/10.1145/777412.777421
http://dx.doi.org/10.1007/978-3-642-14403-5_28
http://dx.doi.org/10.1109/ICACT.2007.358630
http://dx.doi.org/10.1016/j.future.2011.11.007
http://dx.doi.org/10.1007/s002240000118
http://dx.doi.org/10.1145/383059.383072
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1109/TC.2011.30
http://dx.doi.org/10.1145/383059.383071
http://dx.doi.org/10.1016/j.future.2006.12.003
http://dx.doi.org/10.1109/JSAC.2003.818784
http://dx.doi.org/10.1109/MASCOTS.2006.27

	HyCube: A distributed hash table based on a variable metric
	Abstract
	Introduction
	Related work
	System architecture of HyCube
	Hierarchical hypercube geometry
	Routing tables
	Primary routing table
	Secondary routing table
	Neighborhood set (closest neighbors set)

	Basic routing algorithm
	Acknowledging message delivery and detecting duplicates
	Number of dimensions versus number of levels
	Prefix mismatch heuristic

	Simulation methodology
	Routing metric
	Common metrics in Rd space
	Steinhaus transform
	Variable metric adopting Steinhaus transform
	Euclidean distance versus Steinhaus distance - re-routing using regular metric

	Further enhancements
	Uniform distribution of neighborhood set nodes
	Hypercube-aware next hop selection
	Routing table slots overlapping

	Evaluation of static resilience and routing performance - comparison with sequential neighbors (Pastry)
	Routing table nodes selection
	LNS (liveness node selection) in HyCube
	HyCube mixed mode node selection

	Lookup and search procedures
	Lookup procedure
	Search procedure
	Resilience of the lookup and search procedures

	Self-organization
	Maintenance and recovery
	Joining the system (connecting to the DHT)
	``Route-join'' procedure
	``Search-join'' procedure
	Evaluation of the join procedures

	Leaving the system

	Conclusion
	Open Access
	References

