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Abstract
Growth in individual body size amongst different species can to a greater or lesser extent depend on environmental factors 
such as resource availability. Individual growth curves can therefore be largely fixed or more plastic. Classic theory about 
phenotypic plasticity assumes that such plasticity has associated costs. In contrast, according to dynamic energy budget 
theory, maintaining a fixed growth rate in the face of variable resource availability would incur additional energetic costs. 
In this article, we explore the simultaneous evolution of the degree of plasticity in individual growth curves and the rate 
of non-plastic, environment-independent individual growth. We explore different relations between possible additional 
energetic costs and the degree of growth curve plasticity. To do so, we use adaptive dynamics to analyze a size-structured 
population model that is based on dynamic energy budget theory to account for the energetic trade-offs within an individual. 
We show that simultaneous evolution of the degree of growth curve plasticity and the rate of non-plastic individual growth 
will drive these traits to intermediate values at first. Afterwards, the degree of growth curve plasticity might evolve slowly 
towards extreme values depending on whether energetic costs increase or decrease with the degree of plasticity. In addition, 
the analysis shows that it is unlikely to encounter species in which individual growth is entirely fixed or entirely plastic, 
opposing general assumptions in dynamic energy budget theory.
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Introduction

Individual body size strongly affects the physiology, 
morphology and life history of an individual (Calder 1996; 
LaBarbera 1989; Peters 1983). For example, body size is 
positively correlated with stress tolerance, fecundity, mating 
success and survival (Hone and Benton 2005; Kingsolver 
and Pfennig 2004; Blanckenhorn 2000; Peters 1983). This 
suggests that fitness increases with body size, and therefore, 
body size should be under strong selective pressure 
(Kingsolver and Huey 2008). Comparison between taxa 
indeed shows an increase in species body size throughout the 
history of life, a pattern that is known as Cope’s rule (Smith  

et al. 2016; Stanley 1973). However, this interspecific trend of  
increasing body size does not imply that intraspecific selection 
pressure always results in directional selection towards faster 
growth rates (Gotanda et al. 2015). On the contrary, trade-
off relations between individual growth rates and other life 
history processes such as fecundity and senescence often 
result in opposing selection forces (Rollinson and Rowe 
2015; Dmitriew 2011; Blanckenhorn 2000). This is likely 
to result in balancing selection towards an optimal growth 
rate and body size. The optimal growth rate is likely to be 
species and population-specific as it strongly depends on the 
environment and could shift with human impact or climate  
change (Gardner et al. 2011; Allendorf and Hard 2009).

Individual growth curves, that is the relationship between 
individual body size and age, are not only determined by 
genetic components, but in many species also show a strong 
plastic response to the environment. Environment-dependent 
changes in individual growth curves are observed in a 
wide range of ectothermic species ranging from Daphnia 
(McCauley et al. 1990) and fish (Zimmermann et al. 2018; 
Lorenzen and Enberg 2002) to amphibians and reptiles 
(Halliday and Verrell 1988), but it is even suggested that 
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some large fossil mammals were growing in body size at 
flexible rates (Köhler and Moyà-Solà 2009). This suggests 
that the growth curves of most ectotherms and early 
endotherms are or were at least partly plastic. In contrast, 
modern-day endotherms (e.g. birds and mammals) might 
be able to sustain a more constant growth curve due to the 
ability to maintain a strong homeostasis (Kooijman 2010). 
For example, female mice stop ovulating but maintain growth  
in body size if food is scarce (Perrigo 1990). Overall, this 
suggests that taxa not only differ in their growth rate but also 
differ strongly in the degree of plasticity in the individual 
growth curves. In this paper, we will explore a mechanistic 
way to study the simultaneous evolution of the degree of 
plasticity in individual growth curves.

The evolution of a trait and the plasticity herein is often 
considered in the context of a dynamic environment with 
a certain degree of unpredictability. As a consequence, 
phenotypic plasticity is argued to be able to both hamper 
and accelerate evolutionary change in a trait, while plasticity 
itself might be subject to selection as well (Perry et al. 2018; 
Levis and Pfennig 2016; Fusco and Minelli 2010). Plasticity 
decouples the phenotypic expression of a trait from the 
genotype of an individual and increases its dependence 
on the environment. Yet, the mechanisms that link a life 
history trait to the environment are often unknown and are 
likely to have a genetic basis as well. As a consequence, 
plasticity and evolution of a trait are found to influence each 
other in several ways (Pfennig et al. 2010; Crispo 2007). 
Plasticity could, for example, enable species to survive 
in new environmental conditions encountered through 
environmental change or radiation and in this way grant 
species more time to adapt to new environments (Levis and 
Pfennig 2016; Moczek et al. 2011; Price et al. 2003). On 
the other hand, canalization could cause a species to lose 
plasticity in a trait if the environment is relatively constant 
(Crispo 2007). Simultaneously, plasticity may also mask 
genotypes from selective forces which could reduce the 
total genetic change in a trait (Crispo 2007). In general, 
it is suggested that an intermediate degree of plasticity is 
expected to favour the evolution of a trait, while fluctuating 
environments favour a higher degree of plasticity (Levis and 
Pfennig 2016; Moczek et al. 2011; Fusco and Minelli 2010; 
Price et al. 2003). Although it is clear that the environment 
plays an important role in the evolution of plasticity, the 
mechanistic link between the environment and a trait often 
remains vague and unconsidered.

A way to obtain a more mechanistic underpinning of the 
evolution of phenotypic plasticity is to consider the energy 
expenses or costs that are associated with phenotypic plastic-
ity (Pigliucci 2005). The energetic costs of plasticity could 
arise from numerous mechanisms and processes and strongly 
depend on the trait (DeWitt et al. 1998). A useful way to 
disentangle the energetic expenses of expressing a plastic 

trait is to split these expenses into the costs of expressing 
the trait itself and the costs of maintaining plasticity in the 
trait (Murren et al. 2015). Energetic costs of expressing the 
trait itself can be considered the expenses that are needed to 
express a specific phenotype and are only paid when a phe-
notype is actually expressed. In contrast, energetic costs of 
maintaining plasticity in a trait are expenses that are always 
paid even if a phenotype is not expressed. This would for 
example include costs of monitoring the environment or 
costs of maintaining a complex genetic or chemical pathway 
to facilitate plasticity in a trait. Although maintaining plas-
ticity in a trait might bring additional expenses, plasticity 
can still increase the fitness of an individual as the benefits 
of plasticity can outweigh the costs for maintaining plastic-
ity. It is generally assumed that costs of maintaining plastic-
ity are low or have a very small impact on the evolution of 
plasticity (Auld et al. 2010), even though it is often difficult 
to disentangle the different costs of a plastic trait.

Dynamic energy budget (DEB) theory offers a useful 
way to formulate a mechanistic model about the energetic 
expenses regarding phenotypic plasticity in individual 
growth. DEB theory describes the allocation of assimilated 
energy to growth, reproduction and somatic maintenance 
costs within an individual and in this way links important 
life history processes (Jager et al. 2013; Kooijman 2010). 
DEB models inherently incorporate the costs of expressing 
a specific growth rate and include a trade-off with fecundity, 
because assimilated energy can only be spent once. Most 
DEB models use a �-rule, in which a fraction � of the 
assimilated energy is allocated to somatic growth and 
somatic maintenance, while a fraction 1 − � is allocated 
to reproduction (Jager et  al. 2013; Kooijman 2010), 
which implies that both the individual growth curve and 
individual fecundity depend on the food availability in the 
environment and are therefore entirely plastic. It is clear 
that most endothermic species deviate from the �-rule as 
these species maintain a relatively constant growth curve, 
which is prioritized over reproduction. This fundamental 
trade-off between growth and reproduction becomes 
especially apparent if individuals maintain a fixed growth 
rate under extreme conditions. This trade-off is very clear in 
ungulates which show delayed reproduction and decreased 
fecundity under reduced food conditions (Albon et al. 2000; 
Coulson et  al. 2000; Clutton-Brock et  al. 1987; Festa-
Bianchet et al. 1995; Skogland 1986). DEB theory assumes 
that the �-rule is a fundamental mechanism in individual 
energy allocation and that deviating from this rule requires 
additional mechanisms such as monitoring the environment 
and adaptive behaviour as well as more complex genetic and 
chemical systems to regulate energy allocation (Kooijman 
2010). These additional mechanisms are argued to induce 
additional costs for deviating from the simpler and more 
straightforward �-rule to maintain a more constant growth 
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rate. This assumption contrasts with the general assumption 
that plasticity in a trait is costly, such that an increase in the 
degree of plasticity implies higher costs (Pigliucci 2005). 
Whether costs increase or decrease with plasticity might, in 
the end, strongly depend on the type of costs and their link 
to the underlying chemical structure for energy allocation. 
Here, we therefore explore both the situation in which 
additional costs increase with plasticity and the situation in 
which costs decrease with plasticity.

In this research, we use a size-structured population 
model formulated by Croll and De Roos (2022) based on a 
DEB model describing growth and reproduction to explore 
the simultaneous evolution of the degree of plasticity 
in the individual growth curve and the rate of the non-
plastic part of individual growth. The DEB model provides 
a mechanistic way to incorporate the energy expenses 
and costs linked to plasticity in individual growth on an 
individual level. The translation of the individual energetic 
model to a size-structured population model allows us to 
analyze the model at the population level. Because we are 
interested in how the individual energetic model affects the 
evolution of plasticity, we study the model in an artificial 
and closed condition without external influences. As a 
consequence, fluctuations in the environment only arise 
due to changes in the structure of the consumer population, 
for example due to evolution of the individual traits or 
population dynamic cycles. In this way, individuals are able 
to use plasticity in growth to optimize their energy allocation 
schemes. With this model, we will explore the situation in 
which costs decrease with plasticity, which is in line with 
DEB theory, and contrast this with the scenario in which 
costs increase with plasticity, which is in line with general 
theory about plasticity.

Methods

Model formulation

In this study, we use a physiologically structured population 
model to describe the dynamics of a consumer population 
structured by age (a) and size (length � ). The individuals of 
the consumer population compete for a shared, unstructured 
resource (R). The energetics of individual consumers is mod-
elled with a DEB model that forms the core of the popula-
tion model. The details of this DEB model for individual 
energetics are presented by Croll and De Roos (2022), and 
here, we provide a concise overview of its main features.

In the underlying DEB model, consumer individuals are 
characterized by the energy stored in lean mass. In DEB 
theory, it is assumed that energy in lean mass scales with 
the mass of an individual. Likewise, the mass is assumed to 
scale with the volume, and the volume can be related to the 

cubed length (Kooijman 2010). As a consequence, energy 
in lean mass scales with length cubed ( �3).

We assume that individuals feed on a resource commu-
nity that follows semi-chemostat dynamics with a maximum  
density K and a turn-over rate � . Consumption of the 
resource scales with the surface area of an individual, which  
is assumed to be proportional to length squared ( �2 ). In  
addition, the consumption rate scales with the resource 
density following a scaled type  II functional response 
( f (R) = R

Rh+R
 , with a half saturation constant Rh ) and an 

ingestion scalar ( Imax).

In which n(t, a) represents the number of individuals at 
time t with age a. Consumed resources are assimilated in 
the guts, and the ingestion rate times the assimilation rate is 
given by � . Assimilated energy is divided between somatic 
processes and reproductive processes. Somatic processes 
include growth in body size and somatic maintenance costs, 
which are costs for maintaining the current individual state. 
Reproductive processes include the maturation of juveniles 
and the production of offspring by adults.

The model follows DEB theory in assuming that total 
energy allocation to somatic processes scales with individ-
ual surface area ( �2 ). This energy allocation rate to somatic 
processes is furthermore assumed to be a combination of 
a fixed energy allocation rate and an ingestion-dependent 
energy allocation rate. The fixed energy allocation rate is 
determined by a fixed scalar ( � ) and is therefore non-plastic. 
In contrast, for the ingestion-dependent allocation rate, we 
follow DEB theory by assuming that a fixed fraction � of 
assimilated energy is channelled to somatic processes. Since 
ingestion depends on the resource availability in the environ-
ment (following f(R)), this ingestion-dependent allocation 
is plastic. In other words, allocation to growth consists of 
a non-plastic part scaling with � and a plastic part scaling 
with the energy availability in the environment (f(R)). The 
balance between these two energy flows determines the 
level of plasticity in the energy allocation to somatic pro-
cesses. We introduce the parameter � to vary this balance 
from entirely fixed growth ( � = 0 ) to entirely plastic growth 
( � = 1 ). Energy allocated to somatic processes is first used 
to pay somatic maintenance costs because these costs are 
essential for the functioning of an individual (Kooijman 
2010). The somatic maintenance costs are independent of 
the environment and scale with the energy stored in lean 
mass and therefore with length cubed ( �3 ) and a mainte-
nance scalar (b). The remainder of the energy allocated to 
somatic processes is used for somatic growth. When there 
are no additional costs for plasticity, we assume that energy 
is converted to mass with a constant efficiency ( �m):

(1)
dR

dt
= �(K − R) − ∫

amax

0

Imaxf (R)�(t, a)
2n(t, a)da
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Note that the parameter � itself is constant and in particu-
lar does not depend on resource availability. This parameter 
provides, however, a mechanistic basis for varying levels 
of plasticity in the growth rate in body size and thus the 
growth curve of individuals, as it influences to what extent 
somatic growth depends on resource availability. The value 
of � varies between 0 and 1. Without growth curve plasticity 
( � = 0 ), energy allocation to somatic growth is determined 
by a fixed parameter ( � ) and is therefore independent of the 
environment. With full growth curve plasticity ( � = 1 ), this 
energetic model simplifies to the DEB model described by 
Jager et al. (2013), and energy allocation to somatic growth 
is entirely determined by the resource density in the environ-
ment (f(R)).

The assimilated energy not allocated to somatic pro-
cesses is allocated to maturation in juveniles and reproduc-
tion in adults. In our model, consumer individuals eventu-
ally mature when reaching a predefined size ( �J ). Adult 
consumers convert the energy not used for somatic pro-
cesses to reproductive energy ( Er ) with a constant conver-
sion efficiency ( �r):

From Eqs. (2) and (3), it is clear that assimilated energy 
might become insufficient to cover the energy required for 
somatic maintenance or non-plastic growth resulting in 
starvation. Under these conditions, individuals are forced 
to change their energy allocation scheme, which una-
voidably results in additional plasticity. The DEB model 
assumes that individuals will first prioritize somatic main-
tenance and then non-plastic growth over other processes. 
To do so, individuals have to reallocate energy from repro-
duction to somatic processes under starvation conditions. 
In addition, we assume that individuals will experience 
starvation mortality ( �s ) on top of the fixed background 
mortality ( �b ). We assume that the starvation mortality 
increases with the energy deficit scaled with a starvation 
scalar ( qs ). Starvation mortality ranges from 0 under nor-
mal conditions to immediate death ( �s = ∞ ) if individuals 
fail to pay all somatic maintenance costs. Previous imple-
mentations of the model showed that starvation conditions 
do not arise under equilibrium conditions. The population 
dynamic cycles in which starvation conditions arise only 
emerge in a limited parameter space and are driven by 
other mechanisms (De Roos et al. 1990; Croll and De Roos 
2022). As a consequence, the specific formulation of the 
starvation conditions plays a minor role in the ecological 
and evolutionary dynamics of the model. The equations 

(2)d�3

dt
= �m

(
��(�f (R) + (1 − �)� )�2 − b�3

)

(3)

dEr

dt
=

{
𝛾r
(
𝛼f (R)�2 − 𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁 )�2

)
if � > �J

0 if � < �J

for the energy dynamics and mortality under starvation 
conditions are therefore outlined in more detail in the sup-
plementary materials.

We reformulate the equation for growth (2) to describe 
the growth in length rather than the growth in length 
cubed. In addition, we use a conversion factor to translate 
the reproductive energy into the number of offspring. To 
express this model more succinctly, we use three compos-
ite parameters representing the ultimate asymptotic size 
under unlimited resource conditions ( �∞ =

��

b
 ), the time 

constant of growth ( rB =
�mb

3
 ) and the time constant of 

reproduction ( rF =
�rb

�
3

b

 ). Interesting to note is that 

(�f (R) + (1 − �)� )�∞ is the actual asymptotic size of an 
individual taking into account the energy allocation strat-
egy and environment of an individual. Individuals grow 
towards this asymptotic size with a rate rB.

The physiologically structured population model 
describes the dynamics at the level of the population 
(Table 1). At the core of the population model are three 
equations describing the energy surplus or deficit in growth 
( Fg(R,�) ), in reproduction ( Fr(R) ) and these two com-
bined in terms of length ( Ft(R,�) ). These terms indicate 
the amount of energy available for growth and reproduction 
and the amount of energy not used for somatic maintenance. 
As long as these terms are positive, individuals have suffi-
cient energy to grow and reproduce. As soon as one of these 
terms becomes negative, individuals do not have sufficient 
energy to grow, reproduce or cover somatic maintenance 
costs and experience starvation conditions. Although most 
equations in the population model are expressed in these 
terms for energetic surpluses or deficits, we have to derive 
some additional expressions to complete the model. Inte-
grating the individual fecundity ( �(R,�) ) at a given time 
(t) over the entire population results in the number of indi-
viduals at birth (n(t, 0)). The dynamics of the number of 
individuals at a given time and age (n(t, a)) is determined 
by the background mortality ( �b ) and starvation mortality 
( �s(R,�) ). For computational reasons, we also assume that 
individuals die when reaching a maximum age ( amax ), which 
might be a realistic assumption for some species. In general, 
this assumption barely affects the dynamics as it is set such 
that almost no individual reaches this age. Individuals are 
born with a fixed size ( �b ) and grow towards an asymptotic 
size determined by the energy assimilation to somatic pro-
cesses ( (�f (R) + (1 − �)� )�∞ ). If the energy allocation to 
somatic processes is highly plastic (high � ), the asymptotic 
size largely depends on the resource availability in the envi-
ronment ( f (R)�∞ ) and is therefore largely plastic. This then 
directly results in a plastic individual growth curve. In con-
trast, if the energy allocation to somatic processes is largely 
fixed (low � ), the asymptotic size is largely fixed ( ��∞ ) and 
the growth rate is largely independent of the environment.
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Besides the situation without additional costs associ-
ated with plasticity, we explore the situation in which 
additional costs are associated with growth curve plas-
ticity. We assume that these costs reduce the efficiency 
with which energy allocated to growth is converted into 
lean mass. We explore both the situation in which costs 
increase with individual growth curve plasticity and the 
situation in which costs decrease with growth curve plas-
ticity. We introduce a separate parameter ( cg ) to switch 
between these two situations ( cg = 1 and cg = 0 respec-
tively). In addition, we use the parameter cp to scale the 
costs with the level of growth curve plasticity ( � ). This 
results in an expression for the total costs of plasticity:

From this expression, it follows that the costs for plas-
ticity ( ct ) will increase ( cg = 1 ) from 0 to cp or decrease 
( cg = 0 ) from cp to 0 if plasticity in the growth curve ( � ) 
changes from 0 to 1. In other words, ct indicates the frac-
tion of energy allocated to growth that is used to cover 
additional costs for plasticity. This results in a reduction 
of the growth rate scalar from rB to rB(1 − ct).

(4)ct =
(
cg� + (1 − cg)(1 − �)

)
cp

Adaptive dynamics

We analyze the evolution of growth curve plasticity ( � ) and 
the non-plastic growth scalar ( � ) in the described model 
using the adaptive dynamics framework (Brännström et al. 
2013). This framework considers the invasion fitness of a 
rare mutant, which has a slightly different trait value com-
pared to resident individuals, in an environment determined 
by the resident population in equilibrium. Because the popu-
lation is in equilibrium, the environment only changes over 
evolutionary time and is therefore constant throughout the 
lifetime of an individual. As a consequence, growth curve 
plasticity in individual growth is not visible during the life-
time of an individual, but still affects the energy allocation 
of an individual. Mutant trait values that yield a positive 
invasion fitness can spread and take over the population, 
which results in a stepwise change in the trait throughout the 
population. Using this framework results in a fitness land-
scape which predicts the evolutionary trajectories towards 
and away from evolutionary singular strategies.

The adaptive dynamics framework assumes that the 
evolutionary timescale can be separated from the eco-
logical timescale. The derivation of the invasion fitness 

Table 1  Equations describing 
the population dynamics based 
on the model by Croll and De 
Roos (2022)

Population age-distribution dynamics
�n

�t
+

�n

�a
= −

(
�b + �s(R,�)

)
n(t, a)

n(t, 0) = ∫ amax
0

�(R,�(t, a))n(t, a)da

Energetic surpluses/deficits
Fg(R,�) = (�f (R) + (1 − �)�)�∞ − �

F
r
(R) =

(
�

(1−�)f (R)

�
+ (1 − �)

(
f (R)

�
− �

))
�∞

Ft(R,�) = Fg(R,�) + Fr(R) =
f (R)

�
�∞ − �

Length-age dynamics
��

�t
+

��

�a
= ⎧⎪⎨⎪⎩

rB(1 − ct)Fg(R,�) if Fg(R,�) > 0 and Fr(R) > 0

rB(1 − ct)Ft(R,�) if Fr(R) ≤ 0 and Ft(R,�) > 0

0 otherwise

�(t, 0) = �b

c
t

=
(
cg� + (1 − cg)(1 − �)

)
cp

Individual fecundity
�(R,�) = ⎧⎪⎨⎪⎩

rFFr(R)�
2 if �J < �, Fg(R,�) > 0 and Fr(R) > 0

rFFt(R,�)�
2 if �J < �, Fg(R,�) ≤ 0 and Ft(R,�) > 0

0 otherwise

Starvation mortality
�s(R,�) = ⎧⎪⎪⎨⎪⎪⎩

0 if Fg(R,�) > 0 and Fr(R) > 0

−qs
Fg(R,�)

Ft(R,�)
if Fg(R,�) ≤ 0 and Ft(R,�) > 0

−qs
Fr (R)

Ft(R,�)
if Fr(R) ≤ 0 and Ft(R,�) > 0

∞ if Ft(R,�) ≤ 0
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function therefore starts with defining the ecological 
equilibrium of a resident population with a given trait 
value ( � , �  ). In physiologically structured population 
models, the equilibrium conditions can be derived using  
the expression for the lifetime reproductive output of  
an individual (De Roos 1997). The lifetime reproduc-
tive output represents the average number of offspring 
an individual produces during its lifetime. In equilib-
rium, the resource density is constant, and individuals 
therefore do not experience starvation conditions. As a 
consequence, the lifetime reproductive output of an indi-
vidual in equilibrium ( LRO(R̃) ) is given by an expres-
sion in which only the scaled resource density ( f (R̃) ) is 
unknown (derivation in the Supplementary materials and  
Croll and De Roos (2022)):

Herein, we denoted the equilibrium value of a vari-
able with a tilde. In equilibrium, every individual should 
exactly replace itself and the lifetime reproductive out-
put should therefore be equal to one. This can be used to 
numerically compute the resource density in equilibrium 
( R̃ ). We refrain from calculating the consumer density 
in equilibrium as is done by Croll and De Roos (2022) 
because this is not necessary to compute the invasion fit-
ness of a mutant individual.

To calculate the invasion fitness of a mutant, we con-
sider the lifetime reproductive output of a mutant indi-
vidual in an environment set by the resident population 
in equilibrium. We assume that the difference between 
the mutant trait value and the resident trait value is suf-
ficiently small to prevent mutant individuals from expe-
riencing starvation mortality in an environment set by 
the resident population in equilibrium. We can therefore 
use the same expression for the lifetime reproductive 
output for mutant and resident individuals (Eq. 5). A 
mutant trait value can spread through the population if 
the lifetime reproductive output of a mutant individual 
( LROm(R̃) ) exceeds the lifetime reproductive output of 
a resident individual in equilibrium ( LROr(R̃) ), which 
is always equal to one. The invasion fitness of a mutant 
can therefore be closely approximated by the natural 
logarithm of the lifetime reproductive output of the 
mutant in an environment set by the resident population 
in equilibrium, scaled by the average age at reproduc-
tion of a resident individual in equilibrium ( Tr ) (Metz 
and Leimar 2011):

(5)

LRO(R̃) = rFFr(R̃)∫
amax

ãJ

�̃(a)2e−𝜇bada

�̃(a) = �be
−rB(1−ct)a +

(
𝜙f (R̃) + (1 − 𝜙)𝜁

)(
1 − e−rB(1−ct)a

)
�∞

ãJ =
1

rB(1 − ct)
ln

((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − �b(

𝜙f (R̃) + (1 − 𝜙)𝜁
)
�∞ − �J

)

Note that the average age at reproduction of a resident 
individual in equilibrium ( Tr ) is always positive and there-
fore never affects the qualitative form of the fitness land-
scape. The local selection gradient represents the direction 
and rate of evolutionary change in a trait (Geritz et al. 1998). 
For the degree of growth curve plasticity ( � ) and the non-
plastic growth rate scalar ( � ), these selection gradients are 
therefore given as follows: 

 
The full expression for the selection gradients is given in 

the Supplementary material (Eqs. 16 and 17).
We refer to the collection of points at which one of the 

selection gradients is equal to zero as an evolutionary iso-
cline ( D𝜙(R̃) = 0 or D𝜁 (R̃) = 0 ). A singular strategy occurs 
if both selection gradients are equal to zero, which is at 
the intersection of an evolutionary isocline for the growth 
curve plasticity and an evolutionary isocline for the non-
plastic growth scalar. In this article, we explore the fitness 
landscape around these singular strategies without addi-
tional costs for growth curve plasticity ( cp = 0 ), if costs 
increase with growth curve plasticity ( cg = 1 ) and if costs 
decrease with growth curve plasticity ( cg = 0 ). We use gen-
eral root finding and curve continuation procedures imple-
mented in C (De Roos 2021) for the continuation of the 
isoclines ( LRO = 1 and D� = 0 or D� = 0 ) with respect to  
the growth curve plasticity ( � ) and the non-plastic growth 
scalar ( � ). In addition, we perform this analysis for two val-
ues of the somatic energy allocation scalar ( � ) because this 
parameter strongly influences the configuration of the fit-
ness landscape. Bifurcation over other parameters showed 
that the presented fitness landscapes cover all biologically 
relevant scenarios. In addition, we verify the evolutionary 
behaviour of the traits around the evolutionary isoclines in 
terms of convergence and evolutionary stability by plotting 
the sign of the invasion fitness for combinations of resident  
and mutant trait values in so-called pairwise invasibility  
plots (PIPs) (Geritz et  al. 1998). An evolutionary iso-
cline is convergence stable if evolution drives a trait value 
towards the isocline and evolutionary stable if evolution  
cannot drive the trait value away from the isocline in any 
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direction. For the model analysis, we will use a parameter 
set for Daphnia feeding on algae adapted from De Roos  
et al. (1990) (Table 2).

Dynamic simulations

To corroborate the evolutionary analysis using adaptive 
dynamics, we also carry out numerical simulations of both 
the ecological and evolutionary dynamics using the escala-
tor-boxcar-train method (EBT) (De Roos 1988), a numeri-
cal method specifically designed to study the dynamics of 
structured population models. During these simulations, the 
ecological dynamics and evolutionary dynamics occur at the 
same timescale, because every day new mutations occur dur-
ing a reproductive event. As a consequence, the composition 
of the consumer population changes constantly and is not 
in equilibrium. Similarly, the resource density therefore is 
not in equilibrium and changes due to the changes in the 
structure of the consumer population as well as population 
dynamic cycles (Croll and De Roos 2022). This results in 
more realistic conditions in which individuals have to deal 
with a constantly changing environment, which could affect 
the evolution of the level of growth curve plasticity.

In the EBT method, the population is subdivided into 
cohorts consisting of individuals born at approximately the 
same time. In our simulations, a new cohort will be formed 
once a day, and all offspring are always born with age 0 
and length �b . We split a cohort into multiple sub-cohorts 
consisting of genetically identical individuals such that the 
differential equations can be solved separately for every 

sub-cohort. When a new cohort is formed based on the 
reproductive output of the current population, we assume 
that a mutation occurs with probability pm for each trait 
and that this mutation has an effect of size dm on either 
the growth curve plasticity ( � ) or the non-plastic growth  
scalar ( � ). We assume that mutations can affect traits in 
both directions, resulting in either an increase or decrease 
in growth curve plasticity or an increase or decrease in non-
plastic growth rate, such that selection can drive these trait 
values in both directions. As a result, a fraction 1 − 4pm 
of the offspring will have the same trait values as the par-
ent cohort. In addition, four sub-cohorts with mutants are 
produced, which differ from the parent cohort in either the 
growth curve plasticity ( � − dm or � + dm ) or the non-plastic 
growth scalar ( � − dm or � + dm ). A fraction pm of the off-
spring is allocated to each of the mutant sub-cohorts. If the 
trait values of a mutant cohort fall outside the range of the 
allowed trait values ( 0 ≤ � ≤ 1 , 0 ≤ � ≤ 1 ), the trait values 
of the mutant sub-cohort are reset to the trait values of the 
parent cohort. Simulations are started from a population 
dynamic attractor for the resident population, obtained by 
running the model 5000 time steps with a given parameter 
set and a mutation probability of zero. Afterwards, simula-
tions are continued with a non-zero mutation probability 
until the number of cohorts, the average trait values and 
the resource density become constant with a precision of 
10−6 , which indicates that the population has reached an 
evolutionary and ecological attractor (which took at least 
5000 time steps). We will depict the evolving trait values  
of the simulated trajectories using black solid lines in the 

Table 2  Parameters used in the 
structured population model 
for Daphnia magna feeding on 
algae, derived from De Roos 
et al. (1990)

Parameters of the structured population model

� Growth curve plasticity Varied -
� Scalar of the non-plastic growth rate Varied -
� Somatic energy allocation scalar 0.3 or 0.9 -
�b Length at birth 0.8 mm
�J Length at maturation 2.5 mm
�∞ Asymptotic length under unlimited food conditions 20� mm
amax Maximum age 70 d
rB Time constant of growth 0.15 d−1

rF Time constant of reproduction 0.00714 mm−3 d −1

�b Background mortality rate 0.03 d−1

qs Starvation mortality scaling constant 0.2 d−1

Imax Maximum feeding rate per unit surface area 1.8 106 cells mm−2 ml−1 d −1

Rh Half saturation constant of functional response 0.14 106 cells ml−1

� Semi-chemostat renewal rate 0.5 d−1

K Maximum resource density 0.5 106 cells ml−1

cg Relation between costs and plasticity 0 or 1 -
cp Additional plasticity costs scalar 0.4 -
pm Mutation probability for a specific mutation 0.01 -
dm Mutation effect on trait 0.01 -
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same graphs as the fitness landscapes computed with adap-
tive dynamics.

Results

We first consider the situation in which maintaining a plas-
tic or non-plastic growth curve does not incur additional 
costs in the form of a reduced conversion efficiency ( cp = 0 , 
Fig. 1). We found two evolutionary isoclines for the degree 
of growth curve plasticity ( D𝜙(R̃) = 0 ) and two evolution-
ary isoclines for the non-plastic growth scalar ( D𝜁 (R̃) = 0 ). 
The first isocline for the growth curve plasticity ( D𝜙(R̃) = 0 ) 
occurs when the non-plastic growth scalar is equal to the 
scaled resource density in the environment ( 𝜁 = f (R̃) , Fig. 1, 
blue dashed line). At this isocline, the plastic growth rate is 
equal to the non-plastic growth rate and as a consequence, 
a mutation in growth curve plasticity does not affect the 
fitness of an individual. Selection in the non-plastic growth 
scalar will drive the population away from this evolutionary 
isocline for growth curve plasticity. We will therefore refer 
to this isocline as the trivial evolutionary isocline for growth 
curve plasticity ( � ). The direction of the selection gradient 

for growth curve plasticity is opposite at different sides of 
this trivial isocline for growth curve plasticity.

Similarly, an evolutionary isocline for the non-plastic 
growth scalar ( D𝜁 (R̃) = 0 ) occurs if growth is entirely plas-
tic ( � = 1 , Fig. 1 red dashed line). At this isocline, the life 
history and fitness of an individual are not affected by the 
non-plastic growth scalar. Evolution in growth curve plas-
ticity will drive the population away from this evolutionary 
isocline for some values of the non-plastic growth scalar. 
We therefore refer to this isocline as the trivial evolutionary 
isocline for the non-plastic growth scalar ( �).

The second evolutionary isocline for the growth curve 
plasticity and the non-plastic growth scalar ( D𝜙(R̃) = 0 , 
D𝜁 (R̃) = 0 ) occur on the same manifold in the parameter 
space in absence of additional costs for growth curve plastic-
ity (Fig. 1, purple line; see Eqs. 16 and 17 for corroboration 
that these isoclines coincide when cp = 0 ). This manifold 
represents a collection of singular points. All combinations 
of trait values on this manifold have the same fitness which 
results in evolutionary neutrality on the manifold. None-
theless, the singular points on the manifold are invasion 
and convergence stable against mutants with trait values 
which are not on the manifold (Figs. 6 and 7). The manifold 

Fig. 1  Selection gradients and evolutionary trajectories for the evo-
lution of the growth curve plasticity ( � ) and the non-plastic growth 
scalar ( � ) without additional costs for plasticity ( c

p
= 0 ) for � = 0.3 

(left) and � = 0.9 (right). Blue, red and purple arrows show the selec-
tion gradient for the growth curve plasticity ( � ), non-plastic growth 
scalar ( � ) and combination of both respectively. Blue, red and purple 
lines indicate evolutionary isoclines for the growth curve plasticity 
( � ), non-plastic growth scalar ( � ) and overlapping instances of these 
isoclines. Solid lines represent evolutionary isoclines which are con-

vergence and evolutionary stable for the parameter under considera-
tion. Because these isoclines overlap in this situation, these lines form 
a manifold that is evolutionary neutral for all parameter combinations 
on the manifold and evolutionary stable against invasion of mutants 
with parameter combinations not on the manifold. Dashed lines rep-
resent evolutionary isoclines which are evolutionary neutral for the 
parameter under consideration. Black lines show the average trait val-
ues from time simulations of evolutionary trajectories starting at the 
parameter values marked with a dot
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therefore forms a collection of evolutionary endpoints with 
the same fitness. We will refer to this manifold as the main 
ESS-manifold. Time simulations revealed two different 
evolutionary trajectories towards this main ESS-manifold 
(Fig. 1, black lines). If the initial point of the trajectory 
and the main manifold occur at the same side of the trivial 
evolutionary isocline for growth curve plasticity, selection 
will drive the growth curve plasticity and the non-plastic 
growth scalar directly towards the main manifold. On the 
other hand, if the initial point of the trajectory and the main 
ESS-manifold occur at opposite sides of the trivial evolu-
tionary isocline for growth curve plasticity, selection will 
first drive the growth curve plasticity and non-plastic growth 
scalar towards the trivial isocline for growth curve plastic-
ity. At this isocline, the direction of selection for the growth 
curve plasticity changes and selection drives the growth 
curve plasticity and the non-plastic growth scalar towards 
the main ESS-manifold.

Introducing a cost increasing with growth curve plasticity 
( cg = 1, cp = 0.4 ) changes the location of the evolutionary 
isoclines in the parameter space relatively little but does so 
differently for the evolutionary isoclines of the growth curve 
plasticity and the non-plastic growth scalar (Fig. 2). First of 
all, the trivial evolutionary isocline for growth curve plastic-
ity (Fig. 2, almost horizontal blue line) slightly curves when 

growth is not entirely non-plastic ( 𝜙 > 0 ), which makes this 
evolutionary isocline an evolutionary attractor when only 
considering the evolution in growth curve plasticity (Figs. 6 
and 7). In addition, the main isocline for growth curve plas-
ticity shifts away from the main isocline for the non-plastic 
growth scalar (Fig. 2, red and blue curved lines). As a conse-
quence, selection on the non-plastic growth scalar will drive 
the population away from the main isocline for growth curve 
plasticity, while close to the main isocline for the non-plastic 
growth scalar, the selection gradient for the growth curve 
plasticity is negative. As a result, the growth curve plasticity 
and the non-plastic growth scalar will first evolve towards 
the main isoclines, similar to the situation without additional 
costs for growth curve plasticity (Fig. 2, black lines). But as 
soon as the population trait values are between these main 
isoclines, the trait values will remain between these isoclines 
and slowly evolve towards lower growth curve plasticity. 
Interestingly, selection gradients and the time series reveal 
that the initial evolution towards the main isoclines is much 
faster compared to the evolution towards low growth curve 
plasticity between the main isoclines (length of arrows in 
Fig. 2 and Supplementary videos).

Introducing a cost decreasing with growth curve plas-
ticity ( cg = 0 , cp = 0.4 ) shifts the location of the iso-
clines in the opposite direction compared to the situation 

Fig. 2  Selection gradient and evolutionary trajectories for the 
evolution of the growth curve plasticity ( � ) and the non-plastic 
growth scalar ( � ) with costs increasing with growth curve plastic-
ity ( c

g
= 1, c

p
= 0.4 ) for � = 0.3 (left) and � = 0.9 (right). Blue, red 

and purple arrows show the selection gradient for the growth curve 
plasticity ( � ), non-plastic growth scalar ( � ) and combination of both 
respectively. Blue and red lines indicate evolutionary isoclines for 

the growth curve plasticity ( � ) and the non-plastic growth scalar ( � ). 
Solid lines represent evolutionary isoclines that are convergence and 
evolutionary stable for the parameter under consideration. Dashed 
lines represent evolutionary isoclines that are evolutionary neutral for 
the parameter under consideration. Black lines show the average trait 
values from time simulations of evolutionary trajectories starting at 
the parameter values marked with a dot
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in which costs increase with growth curve plasticity 
(Fig. 3). The trivial isocline for growth curve plasticity 
remains an evolutionary attractor when only considering 
the evolution of growth curve plasticity (Figs. 6 and 7). 
Although sometimes very slightly, costs decreasing with 
plasticity decreases the distance between the trivial and 
the main isoclines for growth curve plasticity if growth 
is not entirely plastic ( 𝜙 < 1 , blue lines Fig. 3). For some 
parameter settings, this can even cause these isoclines to 
collide and form a single isocline in the relevant param-
eter space (Fig. 3b). In this situation, evolution always 
drives the population towards a relatively high degree of 
growth curve plasticity. Furthermore, we see again that 
the evolution of the non-plastic growth scalar drives the 
population away from the main isocline for growth curve 
plasticity, but this time, the selection gradient for growth 
curve plasticity is positive around the main isocline for 
the non-plastic growth scalar. As a consequence, evolu-
tion will drive the population first towards the main iso-
clines, from which the population evolves between these 
isoclines towards a higher level of growth curve plasticity. 
The directional evolution between the main isoclines will 

eventually stop when the non-plastic growth scalar reaches 
a physiological maximum or minimum value. Again, the 
evolution towards the main isoclines is relatively fast com-
pared to the evolution between the main isoclines (length 
of arrows in Fig. 3 and Supplementary videos).

Discussion

We studied the combined evolution of plasticity in indi-
vidual growth curves and the non-plastic growth rate. To 
do so, we modelled a size-structured consumer popula-
tion feeding on a single shared resource. In this model, 
plasticity in individual growth curves ( � ) determines 
the fraction of the individual growth rate that depends 
on the scaled resource availability in the environment 
(f(R)), while the non-plastic growth rate is determined 
by an environment-independent scalar ( �  ). Additional 
costs scaling with plasticity ( ct ) were incorporated as 
a reduction in the conversion efficiency from energy to  
lean mass. This might be plausible under the assumption 
that these costs result from an increase in the chemical 

Fig. 3  Selection gradient and evolutionary trajectories for the 
evolution of the growth curve plasticity ( � ) and the non-plastic 
growth scalar ( � ) with costs decreasing with growth curve plastic-
ity ( c

g
= 0, c

p
= 0.4 ) for � = 0.3 (left) and � = 0.9 (right). Blue, red 

and purple arrows show the selection gradient for the growth curve 
plasticity ( � ), non-plastic growth scalar ( � ) and combination of both 
respectively. Blue and red lines indicate evolutionary isoclines for 

the growth curve plasticity ( � ) and the non-plastic growth scalar ( � ). 
Solid lines represent evolutionary isoclines that are convergent and 
evolutionary stable for the parameter under consideration. Dashed 
lines represent evolutionary isoclines that are evolutionary neutral for 
the parameter under consideration. Black lines show the average trait 
values from time simulations of evolutionary trajectories starting at 
the parameter values marked with a dot
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complexity of the regulatory mechanism, but other costs 
associated with plasticity, such as additional monitor-
ing of the environment, are more likely to increase the 
somatic maintenance costs of an individual. This would 
result in a more complex equation for individual growth  
in which the growth scalar ( rB ) and the asymptotic size 
( �∞ ) respond in opposite directions to a change in addi-
tional costs. The implementation of costs as increased 
somatic maintenance costs results in the same evolution-
ary patters as costs incorporated as a decreased conver-
sion efficiency (Supplementary information).

We analyzed the model using the adaptive dynam-
ics framework (Brännström et al. 2013) by defining an 
expression for the invasion fitness based on the lifetime 
reproductive output of mutant individuals in an equilib-
rium of the resident population. We furthermore corrobo-
rated the results of the adaptive dynamics approach using 
numerical simulations of the ecological and evolution-
ary dynamics. Evolution will always drive the population 
uphill towards a peak in the invasion fitness, which is 
a singular strategy. Because we consider the consumer 
population in a one-dimensional environment consisting 
of a single resource community, a peak in the invasion 
fitness corresponds to a minimum in the resource density 
(Supplementary materials, Eqs. 18–20). In our model, a 
decrease in resource density can only be caused by an 
increase in consumption by the entire population, from 
which it follows that evolution on the growth curve plas-
ticity and the non-plastic growth scalar actually optimize 
the resource consumption by the consumer population. 
Individuals with a degree of growth curve plasticity and 
non-plastic growth rate closer to the singular strategy also 
have a higher lifetime reproductive output in an environ-
ment without competition (Croll and De Roos 2022). 
This shows that evolution not only optimizes the energy 
consumption of the population but also the efficiency of 
energy allocation at an individual level.

In our model, evolution always ends on the main 
evolutionary isoclines. These main evolutionary isoclines 
occur when a trait value yields the most optimal energy 
allocation scheme, when only considering evolution in 
that specific trait. At these main isoclines, individuals 
most optimally divide the assimilated energy between 
growth and reproduction (Croll and De Roos 2022), and 
these isoclines are always convergence and evolutionary 
stable in our model when considering the evolution in 
only one trait (Figs. 6 and 7). The main isoclines for the 
growth curve plasticity and the non-plastic growth scalar 
occur at the same combinations of parameter values if no 
additional costs for maintaining a plastic or non-plastic 
growth curve are included (Fig. 1). As a consequence, the 

strategies on this main ESS-manifold are invasion stable 
against strategies outside the manifold but evolutionary 
neutral for points on the manifold. As a consequence, 
combined evolution will drive both the growth curve 
plasticity and the non-plastic growth scalar towards this 
main ESS-manifold, and evolution can end in a wide 
range of strategies on this main ESS-manifold depending 
on the strategies present in the population at the start of 
the trajectory. The incorporation of costs that increase 
or decrease with growth curve plasticity slightly shifts 
the location of the main isoclines such that combined 
evolution will eventually drive the population towards 
one of the extreme ends of these isoclines (Figs. 2 and 3).  
Logically, if costs increase with growth curve plasticity, 
the population will end up between the main isoclines at 
the side with the lowest degree of growth curve plasticity. 
If costs decrease with growth curve plasticity, the 
population will end up between the main isoclines at the 
side with the highest degree of growth curve plasticity. 
General theory about plasticity assumes that energetic 
costs for maintaining plasticity increase with the degree 
of plasticity, which limits the evolution of plasticity 
(Pigliucci 2005). This corresponds with the evolution 
towards a low level of growth curve plasticity if energetic 
costs increase with plasticity. In contrast, DEB theory 
assumes that the �-rule is a fundamental mechanism  
in all organisms and that a deviation from this rule is 
costly (Kooijman 2010). Under this assumption, growth 
curves are entirely plastic, and a decrease in growth curve 
plasticity would result in an increase in energetic costs. 
This corresponds with the evolution towards a high degree 
of growth curve plasticity if energetic costs decrease with 
plasticity found in our model. In other words, assumptions 
about the energetic costs for maintaining plasticity based 
on DEB theory and classic theory about plasticity result 
in contradicting conclusions about the evolution of  
plasticity in individual growth curves.

Our model clearly shows the contribution of different 
types of expenses scaling with plasticity to the evolution 
of growth curve plasticity. In our model, the expenses 
of expressing a plastic growth curve are determined by 
the individual energy allocation schemes, which depend 
amongst others on the plastic growth energy allocation 
constant ( � ). The individual energy allocation schemes 
determine the global location for the main isoclines in 
the parameter space. For example, at low values of the 
plastic growth energy allocation constant ( � ), the main 
isoclines occur at relatively high values of the non-plastic 
growth scalar (Figs. 1a, 2a and 3a). In this situation, the 
non-plastic growth rate exceeds the plastic growth rate. In 
contrast, at high values of the somatic energy allocation 
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scalar ( � ), the main isoclines occur at relatively low 
values of the non-plastic growth scalar (Figs. 1b, 2b and 
3b). In this situation, the plastic growth rate exceeds the 
non-plastic growth rate. We could therefore state that the 
individual energy assimilation schemes and therewith the 
expenses for expressing a specific growth rate determine 
the global position of the main isoclines. In addition, the 
simulated trajectories show that evolution towards these 
main isoclines is relatively fast. In contrast, costs that are 
directly linked to the degree of growth curve plasticity 
determine the final destination of the evolutionary process. 
For example, if additional costs increase with plasticity, 
the population will evolve towards lower plasticity, while 
if costs decrease with plasticity, the population will evolve 
towards a higher degree of growth curve plasticity (Figs. 2 
and 3). In addition, the selection gradient and the simulated 
trajectories show that evolution along these main isoclines 
is much slower than evolution towards the main isoclines. 
We could therefore argue that individual energy allocation 
schemes and expenses for expressing a specific growth rate 
determine the global evolutionary trajectory for growth 
curve plasticity, while the exact way additional costs scale 
with the growth curve plasticity determines the precise 
endpoint of evolution. This adds to the general hypothesis 
that costs for maintaining plasticity only play a minor role 
compared to costs for expressing a trait in the evolution  
of plasticity because a major part of the evolutionary 
trajectory is determined by the energy trade-off within an 
individual (Auld et al. 2010).

Several energetic costs might be involved in maintain-
ing growth curve plasticity. We assumed a linear rela-
tionship between the costs for maintaining growth curve 
plasticity and the degree of growth curve plasticity. As a 
consequence, evolution drives the growth curve plasticity 
to one of the extreme values along the main isoclines. A 
non-monotonic relation between the costs for maintaining  
growth curve plasticity and the degree of growth curve 
plasticity is likely to alter the relative location of the main 
isoclines. For example, if costs for plasticity would increase 
towards extreme values of the growth curve plasticity, we 
expect balancing selection along the main isoclines to drive 
the growth curve plasticity towards intermediate values. 
In contrast, if costs for plasticity would decrease towards 
extreme values of the growth curve plasticity, we expect 
disruptive selection along the main isoclines to drive the 
growth curve plasticity towards one of the extreme values  
depending on the starting conditions.

We also found two trivial evolutionary isoclines that 
occur at very specific conditions in our model. Such an iso-
cline occurs for the growth curve plasticity ( � ) if the plas-
tic growth rate and the non-plastic growth rate are equal 

( f (R̃) = 𝜁 , Fig. 1), because in this case, a shift in growth 
curve plasticity does not affect the total growth rate of an 
individual. As a consequence, individuals with different 
degrees of growth curve plasticity have the same fitness, 
and growth curve plasticity will not change due to selec-
tion. This trivial isocline for growth curve plasticity is not  
an evolutionary endpoint, because evolution of other traits 
such as the non-plastic growth scalar could easily drive 
the population away from these strategies. Nonetheless, 
the occurrence of this trivial manifold for growth curve 
plasticity suggests that the selection pressure on the level 
of phenotypic plasticity becomes stronger if a change in  
growth curve plasticity has a larger impact on the pheno-
type of an individual.

It is also suggested that phenotypic plasticity can mask 
genotypes from selective forces and therefore hamper the  
evolution of a trait (Crispo 2007; Price et al. 2003). It 
could be argued that this occurs at the trivial isocline 
for the non-plastic growth scalar ( �  ). This trivial iso-
cline occurs if growth is entirely plastic ( � = 1 , Figs. 1, 
2 and 3). As a consequence, the individual growth rate 
does not have a non-plastic component that is scaled by  
the non-plastic growth scalar and selection does not affect 
the non-plastic growth scalar. This only occurs at an 
extreme condition in the model, and it is likely that evo-
lution in another trait such as the degree of growth curve 
plasticity will drive natural populations away from this 
trivial isocline. It is therefore unlikely that growth curve 
plasticity will entirely mask a non-plastic part of growth 
from evolutionary pressure. Nonetheless, the occurrence 
of this trivial isocline for the non-plastic growth scalar 
suggests that the selection pressure on the non-plastic 
growth rate decreases with an increasing degree of growth 
curve plasticity.

In this study, we focused on the effect of an individual 
energetic mechanism on the evolution of growth curve  
plasticity. We therefore chose to consider a structured 
consumer population feeding on a single resource in  
closed conditions. In the adaptive dynamics analysis, 
the resource is in population dynamic equilibrium and 
therefore does not fluctuate during the lifetime of an 
individual. As a consequence, evolution results in the 
optimization of individual life histories through optimi-
zation of the individual energy allocation scheme. Inter-
estingly, this suggests that plasticity in growth might 
evolve even when the environment is constant, although  
the same optimal energy allocation scheme could argu-
ably be achieved through the evolution of other individual 
traits such as the plastic energy allocation constant ( � )  
as well. During the dynamic simulations, the resources 
were not in equilibrium and followed transient dynamics. 
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Changes in the resource density occur through popula-
tion dynamic cycles (Croll and De Roos 2022) as well as 
changes in the structure of the consumer population. It is 
generally expected that fluctuations in the environment 
would favour a more plastic life history strategy (Levis 
and Pfennig 2016; Moczek et al. 2011; Fusco and Minelli  
2010; Price et al. 2003). Surprisingly, the results from 
the dynamic simulations seem to barely differ from the 
predictions from the adaptive dynamics framework. This 
might suggest that optimization of the individual life his-
tories is a stronger selective force for the level of growth 
curve plasticity than environmental fluctuations. It is 
important to note that in our model, all fluctuations in 
the environment are generated by the system itself. It is 
likely that externally driven fluctuations in the environ-
ment have a stronger effect on the level of growth curve 
plasticity. These fluctuations could for example cause 
different types of starvation dynamics depending on the 
underlying energy allocation schemes of an individual 
(Croll and De Roos 2022). Whether and how external 
environmental fluctuations would affect the evolution of 
growth curve plasticity in combination with a mechanis-
tic description of individual energy allocation is still an 
open question, and our model offers a suitable framework  
to study this.

This study can at least inform us about the evolution 
of plasticity in the light of the optimization of individual 
energy allocation dynamics. Our model supports the sug-
gestion that taxa are likely to strongly differ in the plastic-
ity in their growth curves and the non-plastic growth rate. 
It is generally suggested that growth curves of ectotherms 
are largely plastic while growth curves of endotherms are 
largely static (McCauley et al. 1990; Lorenzen and Enberg 
2002; Zimmermann et  al. 2018; Halliday and Verrell  
1988; Köhler and Moyà-Solà 2009; Kooijman 2010).  
An explanation of this could be that costs decrease with 
plasticity in ectotherms, because they need additional 
chemical or genetic mechanisms to maintain a con-
stant growth curve. In contrast, endotherms have strong 
homeostasis and therefore might need additional mecha-
nisms to monitor the environment (Kooijman 2010). If 
these mechanisms are costly, costs might increase with 
plasticity, which could explain evolution towards lower 
plasticity in growth curves. Interestingly, our model sug-
gests that it is possible for a population to evolve towards 
entirely non-plastic growth curves, while a strategy with 
entirely plastic growth curves is not evolutionary stable. 
This contrasts with DEB theory which argues that a �
-rule mechanism for energy allocation is most efficient 
for individuals (Kooijman 2010). Independent of this,  

our model suggests that it is unlikely that growth curves 
are entirely plastic or entirely non-plastic in most spe-
cies, because even if maintaining a plastic or non-plastic 
growth curve induces additional costs, evolution is likely 
to drive plasticity towards intermediate values at first, 
after which the evolution towards extreme values is very 
slow. It is more likely to find species with an intermedi-
ate degree of growth curve plasticity on the trajectory 
towards more extreme values. Similarly, the total growth 
rate of individuals is most likely at intermediate values, 
due to the trade-off with other life history characteristics 
such as reproduction in this model (Gardner et al. 2011; 
Allendorf and Hard 2009). Unfortunately, it is hard to 
disentangle the plastic and non-plastic components of 
individual growth curves and the evolution herein for  
a specific species as the difference between plastic and 
non-plastic growth only becomes visible under extreme 
conditions. Therefore, there might even be more variation 
in individual growth rates and the plasticity herein than  
we currently expect.

Appendix A: Additional analysis

Energy dynamics under starvation

From Eqs. (2) and (3), it is clear that the energy flow can 
become insufficient to cover demand-driven processes such 
as maintenance costs and growth. This would lead to starva-
tion conditions which require a rechannelling of the assimi-
lated energy. Three different types of starvation conditions 
can be distinguished.

Under supply-driven starvation, the energy supplied to 
somatic processes is insufficient to cover somatic main-
tenance costs ( 𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁 )�2 < b�3 ). Under this 
condition some of the energy is reallocated from repro-
ductive processes to cover somatic maintenance costs. As 
a consequence, somatic growth stops and reproduction 
is reduced. In contrast, under demand-driven starvation 
the assimilated energy is insufficient to cover the energy 
demand by non-plastic growth and somatic maintenance 
( 𝛼f (R)�2 < 𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁 )�2 ). Under this condi-
tion we assume that all energy is used to cover the energy 
demand by non-plastic growth and somatic maintenance 
as these are both demand-driven processes determined 
by the internal state of an individual. As a consequence 
reproduction stops and growth is reduced. Under severe 
starvation conditions, assimilated energy is insufficient to 
cover somatic maintenance costs ( 𝛼f (R)�2 < b�3 ) and both  
growth and reproduction stop immediately. This results in  
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the following equations for energy allocation to growth  
and reproduction: 

Additionally, we assume that starvation conditions lead 
to an increase in mortality. We assume that starvation mor-
tality scales with the energy deficit of an individual and a 
starvation mortality scalar ( qs ). Under extreme conditions 
it can even occur that the assimilated energy is insufficient 
to cover somatic maintenance costs ( 𝛼f (R)�2 < b�3 ). We 
assume that individuals will starve instantaneously under 
these extreme starvation conditions. This results in the 
following expressions for the starvation mortality:

Together this results in the formulation of the popu-
lation dynamics under supply-driven ( Fg(R,�) < 0 ), 
demand-driven ( Fr(R) < 0 ) and severe ( Ft(R,�) < 0 ) star-
vation conditions in Eq. (1) in the main text.

Derivation of ecological equilibrium

In equilibrium the density of the resource is constant ( ̃R ). 
As a consequence, starvation conditions can not occur in 
equilibrium (Croll and De Roos 2022). Therefore, we can 
simplify the differential equation for the number of indi-
vidual at a given age in equilibrium ( ̃n(a)):

(8a)

d�
3

dt

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝛾
m
(1 − c

t
)
�
𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁)�2 − b�

3
�

if b�3 < 𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁)�2 < 𝛼f (R)�2

𝛾
m
(1 − c

t
)
�
𝛼f (R)�2 − b�

3
�

if b�3 < 𝛼f (R)�2 < 𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁)�2

0 otherwise

(8b)

dE
r

dt

=

⎧
⎪⎪⎨⎪⎪⎩

𝛾
r
𝛼((1 − 𝜅)f (R) + (f (R) − 𝜅𝜁 ))�2

if b�3 < 𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁 )�2 < 𝛼f (R)�2

𝛾
r

�
𝛼f (R)�2 − b�

3
�

if 𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁 )�2 < b�
3 < 𝛼f (R)�2

0 otherwise

(9)

𝜇s =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if b�3 < 𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁 )�2 < 𝛼f (R)�2

qs
b�3−𝜅𝛼(𝜙f (R)+(1−𝜙)𝜁 )�2

𝛼f (R)�2−b�2

if 𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁 )�2 < b�3 < 𝛼f (R)�2

qs
𝜅𝛼(𝜙f (R)+(1−𝜙)𝜁 )�2−𝛼f (R)�2

𝛼f (R)�2−b�3

if b�3 < 𝛼f (R)�2 < 𝜅𝛼(𝜙f (R) + (1 − 𝜙)𝜁 )�2

∞ if 𝛼f (R)�2 < b�3

(10)
𝜕n

𝜕a
= −𝜇bñ(a)

Because the number of individuals at birth in equilibrium 
( ̃n(0) ) is constant, this equation can be solved explicitly:

Similarly, the differential equation of the growth rate in 
equilibrium simplifies to:

We solve this differential condition by using the boundary 
condition of the length at birth ( �(0) = �b):

By substituting the length at maturation ( �J ) in this equa-
tion, we can rearrange the equation to express the age at 
maturation ( aJ):

With an explicit expression for the density at age, the size 
at age and the age at maturation, we can evaluate the integral 
of the individual fecundity to sum the reproductive rate of all 
adults resulting in the number of individuals at birth:

We can divide both sides of this expression by the number 
of individuals at birth in equilibrium ( ̃n(0) ). This yield the 
expression for the lifetime reproductive output in equilib-
rium given in Eq. 5.

Mathematical expressions of the selection gradients

The explicit expressions for the selection gradients are 
derived by differentiating the function LRO(R̃) (Eq. 5) with 
respect to � and � , respectively, resulting in:

(11)ñ(a) = ñ(0)e−𝜇ba

(12)
𝜕�

𝜕a
= rB

(
1 − ct

)((
𝜙f (R̃) − (1 − 𝜙)𝜁

)
�∞ − �

)

(13)
�̃(a) = �be

−rB(1−ct)a +
(
𝜙f (R̃) + (1 − 𝜙)𝜁

)(
1 − e−rB(1−ct)a

)
�∞

(14)ãJ =
1

rB(1 − ct)
ln

((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − �b(

𝜙f (R̃) + (1 − 𝜙)𝜁
)
�∞ − �J

)

(15)

ñ(0) = ∫
amax

0

𝛽(R̃, �̃(a))ñ(t, a)da = ∫
amax

aJ

rFFr(R̃)ñ(0)e
−𝜇ada

(16)

D𝜙(R̃) =
rF
(
f (R̃) − 𝜁

)
�∞

Tr(R̃)LROm(R̃)

[
∫

amax

ãJ

(
2

(
1 − e−rB (1−ct )a

)
Fr(R̃) − �̃(a)

)
�̃(a)e−𝜇bada

+

(
�J − �b

)
Fr(R̃)�

2

J
e−𝜇b ãJ

rB(1 − ct)
((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − �b

)((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − �J

)
]

−
(2cg − 1)cprFFr(R̃)

Tr(R̃)LROm(R̃)

(
�
2

J
ãJe

−𝜇b ãJ

(1 − ct)
+ 2rB

((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − �b

)

∫
amax

ãJ

�̃(a)e−𝜇bae−rB (1−ct )aada

)
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The lifetime reproductive output of the resident in equi-
librium ( LROr(R̃) ) is always equal to one and therefore 
cancels out in these equations. The numerator of the frac-
tion before the squared brackets represents the effect of a 
change in � or � on the asymptotic size of an individual. The 
term between the squared brackets represents the effect of a 
change of the asymptotic size on the fecundity, size and age 
at maturation of an individual. Note that the terms between 
squared brackets in both selection gradients are equal. The 
second term of the selection gradient for the growth curve 
plasticity deals with the additional costs scaling with plastic-
ity and only occurs if there is a cost for maintaining a plastic 
or non-plastic growth curve ( cp ≠ 0 ). An isocline arises if 
the selection gradient is equal to zero. If there are no addi-
tional costs scaling with plasticity ( cp = 0 ) the second term 
of the selection gradient for growth curve plasticity is equal 
to zero. In this case it is clear that the selection gradient 
for growth curve plasticity is equal to zero ( D𝜙(R̃) = 0 ) if 
the non-plastic growth scalar is equal to the scaled resource 
density ( 𝜁 = f (R̃) ) or if the term between square brackets is 
equal to zero. Similarly, the selection gradient for the non-
plastic growth scalar is zero ( D𝜁 (R̃)=0) if the growth curve 
plasticity is equal to one ( � = 1 ) or if the term between 
squared brackets is equal to zero. Setting the term between 
square brackets equal to zero thus yields a manifold at which 
the isoclines for the growth curve plasticity and non-plastic 
growth scalar overlap as long as there are no additional costs 
for maintaining a plastic or non-plastic growth rate.

Deriving the isoclines becomes somewhat more com-
plicated if additional costs for maintaining a plastic or a 
non-plastic growth curve are involved ( cp ≠ 0 ). It is at least 
clear that costs increasing with plasticity ( cg = 1 ) decrease 
the selection gradient for growth curve plasticity ( D𝜙(R̃) ), 
while costs decreasing with growth curve plasticity ( cp < 0 ) 
increase the selection gradient for growth curve plasticity 
( D𝜙(R̃)).

We can also derive the derivative of the lifetime reproduc-
tive output with respect to the resource density:

(17)

D𝜁 (R̃) =
r
F
(1 − 𝜙)�∞

T
r
(R̃)LRO

m
(R̃)

[
∫

amax

ã
J

(
2

(
1 − e

−r
B
(1−ct )a

)
F
r
(R̃) − �̃(a)

)
�̃(a)e−𝜇bada

+

(
�
J
− �

b

)
F
r
(R̃)�2

J
e
−𝜇

b
ã
J

r
B
(1 − c

t
)
((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − �

b

)((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − �

J

)
]

(18)

𝜕LRO(R̃)

𝜕R̃
=
𝜕LRO(R̃)

𝜕f (R̃)

𝜕f (R̃)

𝜕R̃

𝜕LRO(R̃)

𝜕f (R̃)

=
r
F
�∞

𝜅 ∫
a
max

ã
J

(
2𝜙𝜅

(
1 − e

−r
B
(1−c

t
)a
)
F
r
(R̃) + (1 − 𝜙𝜅)�̃(a)

)
�̃(a)e−𝜇b

a
da

+
r
F
𝜙�∞

(
�
J
− �

b

)
F
r
(R̃)�2

J
e
−𝜇

b
a
J

r
B
(1 − c

t
)
((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − �

b

)((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − �

J

)

𝜕f (R̃)

𝜕R̃
=

R
h(

R̃ + R
h

)
2

All terms in the derivative of the lifetime reproductive 
output with respect to the resource density in equilibrium 
are positive. This shows that an increase in resource den-
sity will always result in an increase in the lifetime repro-
ductive output of an individual.

Now we will consider the change in resource density 
( R̃ ), growth curve plasticity ( � ) and non-plastic growth 
scalar ( � ) over evolutionary time ( � ). We assume that eco-
logical time is relatively fast compared to evolutionary 
time and therefore assume that the population is always in 
ecological equilibrium and therefore the lifetime reproduc-
tive output is always equal to one ( ̃LRO = 1 ). As a conse-
quence, the lifetime reproductive output does not change 
over evolutionary time and changes in the resource den-
sity, growth curve plasticity and non-plastic growth scalar 
are always due to evolutionary change:

We can rearrange these expressions using the chain rule 
and the inverse function theorem:

Because the derivative of the lifetime reproductive out-
put with respect to the resource density is always positive, 
these expressions show that a change in resource density 
due to a shift in a trait value is opposite to the change 
in lifetime reproductive output. The isoclines studied in 
this article occur at a maximum of the lifetime reproduc-
tive output with respect to the trait value of interest. This 
maximum in lifetime reproductive output thus corresponds 
with a minimum in resource density. This shows that evo-
lution in this system minimizes the resource density in 
the system which can only occur through maximizing the 
consumption by the consumer population.

Costs as part of the somatic maintenance

It could be argued that costs for plasticity scale with 
individual body mass and therefore arise as a part of the 
somatic maintenance costs. The energy dynamics without 
starvation could then be described as:

(19)

d ̃LRO

d𝜏
=
𝜕LRO(R̃)

𝜕R̃

dR̃

d𝜏
+

𝜕LRO(R̃)

𝜕𝜙

d𝜙

d𝜏
= 0

d ̃LRO

d𝜏
=
𝜕LRO(R̃)

𝜕R̃

dR̃

d𝜏
+

𝜕LRO(R̃)

𝜕𝜁

d𝜁

d𝜏
= 0

(20)

dR̃

d𝜙
=

dR̃

d𝜏

d𝜙

d𝜏

= −
1

𝜕LRO(R̃)

𝜕R̃

𝜕LRO(R̃)

𝜕𝜙

dR̃

d𝜁
=

dR̃

d𝜏

d𝜁

d𝜏

= −
1

𝜕LRO(R̃)

𝜕R̃

𝜕LRO(R̃)

𝜕𝜁



28 Theoretical Ecology (2024) 17:13–33

1 3

This incorporation of additional costs for plasticity results 
in a less intuitive implementation of the costs in the indi-
vidual growth functions, as the maintenance costs both affect 
the asymptotic size as well as the time constant for growth.

This results in the following equation for the length at 
age in equilibrium:

From this expression we can also derive the new expres-
sion for the age at maturation under equilibrium conditions:

(21)d�3

dt
= �m

(
��(�f (R) + (1 − �)� )�2 − b(1 + ct)�

3
)

(22)
d�

da
= (1 + ct)rB

(
(�f (R) + (1 − �)� )

�∞

(1 + ct)
− �

)

(23)

�̃(a) = �be
−(1+ct)rBa + (𝜙f (R) + (1 − 𝜙)𝜁 )

(
1 − e−(1+ct)rBa

) �∞

1 + ct

(24)

ãJ =
1

(1 + ct)rB
ln

((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − (1 + ct)�b(

𝜙f (R̃) + (1 − 𝜙)𝜁
)
�∞ − (1 + ct)�J

)

Because maintenance costs are only paid after the division of 
energy between somatic processes and reproduction, the equa-
tion for the energy surplus of reproduction remains the same:

This again can be combined with the expression for the 
lifetime reproductive output:

From this model we can derive a new expression for the 
selection gradient of the degree of growth curve plasticity 
( � ) and the non-plastic growth scalar ( � ) (Eqs. 27 and 28).

If we compare these selection gradients to the selection 
gradients for the situation in which additional costs for main-
taining plasticity only affect the growth scalar (Eq. 17), it is 
clear that the selection gradient for the non-plastic growth 
scalar is the same except for the new incorporation of the 
plasticity costs ( ct ). Similarly, the first term in the selection 
gradient for the level of growth curve plasticity is the same 

(25)Fr(R̃) =

(
𝜙
(1 − 𝜅)f (R̃)

𝜅
+ (1 − 𝜙)

(
f (R̃)

𝜅
− 𝜁

))
�∞

(26)LRO(R̃) = rFFr(R̃)∫
amax

ãJ

�̃(a)2e−𝜇bada

Fig. 4  Isoclines for the evolution of the growth curve plasticity ( � ) 
and the non-plastic growth scalar ( � ) with costs increasing with 
growth curve plasticity ( c

g
= 1, c

p
= 0.4 ), incorporated as an increase 

in somatic maintenance costs. Blue and red lines represent evolution-
ary isoclines for the growth curve plasticity ( � ) and the non-plastic 
growth scalar ( � ) respectively. Solid lines represent evolutionary iso-

clines that are convergent and evolutionary stable for the parameter 
under consideration. Dashed lines represent evolutionary isoclines 
that are evolutionary neutral for the parameter under consideration. 
Incorporating costs as an increase in somatic maintenance results in 
the same evolutionary patterns as costs incorporated as decreased 
conversion efficiency (Fig. 2)
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except for the new location of the plasticity costs (16). The 
second term from the selection gradient for growth curve 
plasticity has an opposite sign compared to the selection 
gradient in the main article, because the effect of the plas-
ticity costs on the growth scalar changed sign. This new 
formulation adds a third term, which incorporates the effects 
of costs for growth curve plasticity on the asymptotic size.

Fig. 5  Isoclines for the evolution of the growth curve plasticity ( � ) 
and the non-plastic growth scalar ( � ) with costs decreasing with 
growth curve plasticity ( c

g
= 0, c

p
= 0.4 ), incorporated as an increase 

in somatic maintenance costs. Blue and red lines represent evolution-
ary isoclines for the growth curve plasticity ( � ) and the non-plastic 
growth scalar ( � ) respectively. Solid lines represent evolutionary iso-

clines that are convergent and evolutionary stable for the parameter 
under consideration. Dashed lines represent evolutionary isoclines 
that are evolutionary neutral for the parameter under consideration. 
Incorporating costs as an increase in somatic maintenance results in 
the same evolutionary patterns as costs incorporated as decreased 
conversion efficiency (Fig. 3)

We can create the analogues of Figs. 2 and 3 with this 
alternative model formulation (see Figs. 4 and 5). Com-
parison shows that costs incorporated as increased somatic 
maintenance costs show the same evolutionary patterns as 
costs incorporated as decreased conversion efficiency.
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Fig. 6  Pairwise Invasibility Plots (PIPs) for the non-plastic growth 
scalar ( � ) at different parameter combinations on the isoclines 
for growth curve plasticity in Figs.  1 to 3. These PIPs only con-
sider evolution for the non-plastic growth scalar and assume a con-
stant value for the growth curve plasticity ( � ). Grey lines indicate 
instances at which the invasion fitness of the mutation is equal to 
zero ( S

m
(R̃) = 0 ), while the invasion fitness is positive ( S

m
(R̃) > 0 ) in 

black areas and negative ( S
m
(R̃) < 0 ) in white areas. In all PIPs a sin-

gular strategy arises at the intersection of the grey lines. The positive 
invasion fitness just to the left and right of the singular strategies indi-
cates that the singular strategy can invade a resident population. The 
negative invasion fitness just above and below the singular strategy 
indicates that the singular strategy is invasion stable and is therefore 
an evolutionary endpoint
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Appendix B: Additional figures

cp=0, cp=0.4, cp=−0.4,
�=

0.
3,

 m
ai

n 
m

an
ifo

ld −
+

−
+

main, �=0.3, cp=0, �=0.8

0.00

0.25

0.50

0.75

1.00
M

ut
an

t g
ro

w
th

 p
la

st
ic

ity −
+

−
+

main, �=0.3, cp=0.4, �=0.8

−
+

−
+

main, �=0.3, cp=−0.4, �=0.8

�=
0.

3,
 tr

iv
ia

l m
an

ifo
ld

trivial, �=0.3, cp=0, �=f(R)

0.00

0.25

0.50

0.75

1.00

M
ut

an
t g

ro
w

th
 p

la
st

ic
ity −

+

−

+
trivial, �=0.3, cp=0.4, �=0.415

−

+
−

+

trivial, �=0.3, cp=−0.4, �=0.42

�=
0.

9,
 m

ai
n 

m
an

ifo
ld −

+
−

+

main, �=0.9, cp=0, �=0.15

0.00

0.25

0.50

0.75

1.00

M
ut

an
t g

ro
w

th
 p

la
st

ic
ity

−

+−+

main, �=0.9, cp=0.4, �=0.15

−
+

−
+

main, �=0.9, cp=−0.4, �=0.15

�=
0.

9,
 tr

iv
ia

l m
an

ifo
ld

trivial, �=0.9, cp=0, �=f(R)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Resident growth plasticity

M
ut

an
t g

ro
w

th
 p

la
st

ic
ity −

+

−

+

trivial, �=0.9, cp=0.4, �=0.235

0.00 0.25 0.50 0.75 1.00
Resident growth plasticity

−
+

−

+
main, �=0.9, cp=−0.4, �=0.21

0.00 0.25 0.50 0.75 1.00
Resident growth plasticity

Fig. 7  Pairwise Invasibility Plots (PIPs) for the growth curve plas-
ticity ( � ) at different parameter combinations on the isoclines for 
growth curve plasticity in Figs. 1 to 3. These PIPs only consider evo-
lution for the growth curve plasticity and assume a constant value 
for the non-plastic growth scalar ( � ). Grey lines and areas indicate 
instances at which the invasion fitness of the mutation is equal to 
zero ( S

m
(R̃) = 0 ), while the invasion fitness is positive ( S

m
(R̃) > 0 ) 

in black areas and negative ( S
m
(R̃) < 0 ) in white areas. In the two 

entirely grey PIPs, all strategies have the same fitness and the trait 
value in the population might change due to drift. In all other PIPs a 
singular strategy arises at the intersection of the grey lines. The posi-
tive invasion fitness just to the left and right of the singular strategies 
indicates that the singular strategy can invade a resident population. 
The negative invasion fitness just above and below the singular strat-
egy indicates that the singular strategy is invasion stable and is there-
fore an evolutionary endpoint
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