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Abstract
Integrodifference equations are a discrete-time spatially explicit model that describes the dispersal of ecological populations 
through space. This framework is useful to study spread dynamics of organisms and how ecological interactions can affect 
their spread. When studying interactions such as consumption, dispersal rates might vary with life cycle stage, such as in 
cases with dispersive juveniles and sessile adults. In the non-dispersive stage, resources may engage in group defense to 
protect themselves from consumption. These local nondispersive interactions may limit the number of dispersing recruits 
that are produced and therefore affect how fast populations can spread. We present a spatial consumer-resource system using 
an integrodifference framework with limited movement of their adult stages and group defense mechanisms in the resource 
population. We model group defense using a Type IV Holling functional response, which limits the survival of adult resource 
population and enhances juvenile consumer production. We find that high mortality levels for sessile adults can destabilize 
resource at carrying capacity. Furthermore, we find that at high resource densities, group defense leads to a slower local 
growth of resource in newly invaded regions due to intraspecific competition outweighing the effect of consumption on 
resource growth.

Keywords Consumer-resource · Integrodifference equations · Group defense · Nondispersing · Life stages

Introduction

Integrodifference equations (IDEs) are a modelling frame-
work that describes a population density in continuous 
space and discrete time by exploring the growth and dis-
persal processes separately (Kot and Schaffer 1986). They 
have been successfully used to study the spread dynamics of 
annual plants (Andersen 1991), populations in a river system 
(Lutscher et al. 2010), and populations with moving habitats 
(Zhou and Kot 2011). This approach has also been expanded 
to consider population interactions such as consumption 
(Neubert et al. 1995), parasitism (Cobbold et al. 2005), and 
competition (Li 2018).

In a variety of organisms such as perennial plants, echi-
noderms (Black and Moran 1991; Tyler and Young 1998), 

and colonial insects (Hakala et al. 2019), dispersal happens 
at some stages in their life history, with other stages being 
more sessile. The IDE framework can be expanded to con-
sider these dynamics by explicitly adding a non-dispersing 
stage of a population. Such IDE models find that local 
interactions of these organisms may limit the number of 
dispersing recruits that are produced, which may lead to a 
slower spread rate. For example, Cobbold et al. (2005) and 
Marculis and Lui (2016) found that parasitism of more ses-
sile stages destabilize the spatial distribution of the entire 
population and reduce the spread rate. In a model of compe-
tition of different green crab genotypes (Kanary et al. 2014), 
an increased sessile adult survival of the entire population 
leads to an increased spread rate of the top competitor and a 
decrease in the spread rate of the lower competitor. However, 
this dynamic has not been previously included in consumer-
resource systems, which includes both herbivore–plant and 
predator–prey interactions.

When considering consumer-resource dynamics in organ-
isms with limited movement, group defense mechanisms 
may allow resource to become more resistant to consump-
tion. These group defense mechanisms reduce consumption 
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intensity as resource density increases (Dubois et al. 2003). 
This behavior occurs in various taxa where adults have limited 
movement. For example, bees produce social waves that repel 
predators (Kastberger et al. 2008), and kelp provide habitat for 
predators of their grazers, which induces cryptic behavior in 
grazers with subsistence off of kelp detritus rather than active 
grazing (Karatayev et al. 2021). A previous model without 
stage-dependent dispersal considered the spatial dynamics 
of a resource using group defense (Venturino and Petrovskii 
(2013)), where they found oscillatory spatial distributions at 
high initial resource densities caused by group defense. The 
potential for group defense to qualitatively affect dynamical 
outcomes of interacting species raises the question of how 
group defense in a sessile stage might affect overall spread 
given dispersive juveniles.

In this paper, we present and analyze an IDE model of the 
spatiotemporal dynamics of a consumer-resource system where 
adults have limited movement and resource present group 
defense. In “Model”, we introduce the model, which is based 
on the ideas presented by Kanary et al. (2014), and provide a 
nondimensional version which we will analyze. In “Results”, 
we analyze two features of the spatiotemporal dynamics: the 
dispersal-induced instabilities of the resource-only system and 
the spread rate of resource. Finally, in “Discussion”, we discuss 
how these results lead to a further understanding of how local 
interactions affect the spread of organisms.

Model

In this section, we extend an integrodifference model to 
consider motile, dispersing juveniles and the local interac-
tions between sessile adult stages. A similar extension was 
previously considered in Kanary et al. (2014), and a formal 
construction of this model is analogous to that in Arroyo-
Esquivel et al. (2022). Consider a region in 1-dimensional 
space denoted by Ω ⊆ ℝ . At each time step m and point in 
space x ∈ Ω , our model follows population densities of con-
sumer Pm(x) and resource Nm(x) populations at reproductive 
age (hereafter adults).

For each population i = P,N , at each time step m, a fraction 
�i of the adult population survives to the next time step in the 
absence of consumption. Consumers consume adult resource 
following a unimodal, Type IV Holling functional response 
(Andrews 1968). This functional form, denoted by G(P, N), 
has an attack intensity of the consumer �N and a group defense 
intensity parameter �N . With these parameters, the Type IV 
Holling functional response takes the form:

A simple calculation shows that this functional form reaches 
its maximum consumption intensity at a resource density 

(1)G(P,N) =
�NPN

1 + �NN
.

of 1∕
√
�N  . At higher resource densities, the consumption 

intensity decreases.
Juveniles of both populations disperse following a ker-

nel ki , for i = P,N , where ki(x, y) represents the probability 
density function of a dispersing individual starting in point 
y ∈ Ω to arrive at point x. Following dispersal, a fraction of 
those juveniles survive and become adults at the next time 
step. Consumers produce juveniles that survive to become 
adults proportional to their consumption intensity with a 
factor �P . Resources produce juveniles by a constant per-
capita factor R, where R > 1 − 𝛿N (i.e., more juveniles are 
produced than adults die) for population persistence. The 
fraction of newly setting resource juveniles that survive to 
become adults depends on local consumer and resource den-
sities. Consumers consume settling resources before they 
can provide with group defense mechanisms with a constant 
intensity �S . Local resources further limit resource settle-
ment through intraspecific competition with intensity � . 
This makes the resource density have a carrying capacity 
proportional to 1∕�.

These assumptions lead to the system of equations:

A summary of the parameter’s meanings and dimensions 
is found in Table 1. To simplify our analysis, we first non-
dimensionalize the model. We use the same nondimension-
alization as in Arroyo-Esquivel et al. (2022). For each m, let 
pm = �SPm, nm = �Nm . Then, if �p = �P∕�, and �n = �N∕�S, 
and � = �N∕�

2 , our nondimensional version of the model is

(2)

Pm+1(x) = �PPm(x) + �P ∫Ω

kP(x, y)
Pm(y)Nm(y)

1 + �NNm(y)
2
dy,

Nm+1(x) = �NNm(x) exp

(
−

�NPm(x)

1 + �NN
2
m
(x)

)

+ R
exp

(
−�SPm(x)

)

1 + �Nm(x) ∫Ω

kN(x, y)Nm(y)dy.

Table 1  Description of each of the parameters of the model

Parameter Description Units

�P Survival probability of adult consumers Dimensionless
�P Conversion intensity from resources to 

juvenile consumers
Resource−1

�N Group defense intensity Consumer−2

�N Survival probability of adult resource Dimensionless
�N Attack intensity from consumer to 

resource
Consumer−1

R Per-capita juveniles produced by 
resources

Dimensionless

�S Consumption intensity of settling 
resources

Consumer−1

� Resource intraspecific competition 
intensity

Consumer−1
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Note that we have also changed the indices of �i and ki in 
order to preserve clarity.

In the case the dispersal dynamics in Eq. 3 are disre-
garded (by choosing ki(x, y) = �(x − y) the Dirac delta), our 
system reduces to that studied in Arroyo-Esquivel et al. 
(2022):

The fixed points of Model 4 and their stability are rel-
evant for the analyses we will perform in “Results”. Here, 
we present those results, also summarized in Table 2. Model 
4 has four fixed points: an unstable extinction fixed point 
(0, 0), a resource-only fixed point (0, n∗) where n∗ is

and, when � ≠ 0 , two coexistence fixed points (p∧, n∧) and 
(p∨, n∨) . The lower coexistence fixed point (p∨, n∨) is always 
unstable, whereas the higher coexistence point (p∧, n∧) 
exchanges stability with the resource-only point (0, n∗) via a 
transcritical bifurcation at the bifurcation value for �p:

The resource-only fixed point is stable when consumer 
conversion intensity is under a given threshold �∗

p
 (i.e. 

𝛾p < 𝛾∗
p
 ) and unstable otherwise. In addition, the positive 

coexistence fixed point becomes biologically infeasible 
as it becomes stable as p∧ becomes negative. We can thus 

(3)

pm+1(x) = �ppm(x) + �p ∫Ω

kp(x, y)
pm(y)nm(y)

1 + �nm(y)
2
dy,

nm+1(x) = �nnm(x) exp

(
−

�npm(x)

1 + �n2
m
(x)

)

+ R
exp

(
−pm(x)

)

1 + nm(x) ∫Ω

kn(x, y)nm(y)dy.

(4)

pm+1 = �ppm + �p
pmnm

1 + �n2
m

,

nm+1 = �nnm exp

(
−

�npm

1 + �n2
m

)
+ R

exp
(
−pm

)

1 + nm
nm.

(5)n∗ =
R

1 − �n
− 1,

(6)�∗
p
∶= (1 − �p)

1 + �n∗2

n∗
.

say that the positive coexistence fixed point is unstable 
whenever it is biologically feasible.

In the case the resource-only equilibrium is stable 
(when 𝛾p < 𝛾∗

p
 ), this stability is global, i.e., all trajectories 

converge to the equilibrium. In the case there are no stable 
fixed points (when 𝛾p > 𝛾∗

p
 ), the system converges globally 

to a quasiperiodic consumer-resource cycle.

Results

Dispersal‑induced instabilities

In this section, we explore how dispersal affects the sta-
bility of the consumer-resource dynamics by analyzing 
Model 3. Dispersal can induce instabilities in stable pop-
ulation densities, a mechanism first observed by Turing 
(1990) and further analyzed by Levin (1974). In the case 
of IDEs, this mechanism can be analyzed following the 
linearization process of Neubert et al. (1995). Through-
out this section, we assume that the dispersal kernels only 
depend on the distance between the two points x, y ∈ Ω , 
i.e., ki(x, y) = ki(x − y) . We can write Model 3 in the same 
form as the model presented in Kanary et al. (2014):

In addition, we will assume that dispersing juveniles do 
not die or escape the habitat during the dispersal process, i.e.,

for both i = p, n . Using this assumption, we linearize the sys-
tem near a stable equilibrium as follows. Let (p, n) be a stable 
equilibrium of System 4, then if pm = p + �m, nm = n + �m , 
where (�m, �m) is a small perturbation around (p, n) , we lin-
earize the first equation of System 7 as

(7)

pm+1(x) =Pp(pm(x), nm(x)) + Sp(pm(x), nm(x))

∫Ω

kp(x − y)Rp(pm(y), nm(y))dy,

nm+1(x) =Pn(pm(x), nm(x)) + Sn(pm(x), nm(x))

∫Ω

kn(x − y)Rn(pm(y), nm(y))dy.

∫Ω

ki(x − y)dx = 1

p + �m+1 = Pp(p, n) +

(
�Pp

�pm
�m +

�Pp

�nm
�m

)

+

(
Sp(p, n) +

(
�Sp

�pm
�m +

�Sp

�nm
�m

))

∫Ω

kp(x − y)

(
Rp(p, n) +

(
�Rp

�pm
�m +

�Rp

�nm
�m

))
dy.

Table 2  Summary of the stability results of the fixed points of Model 
4

Fixed point Stability

(0, 0) Always unstable
(
0,

R

1−�n
− 1

)
Stable for 𝛾p < 𝛾∗

p
 (Eq. 6) and unstable for 𝛾p > 𝛾∗

p

(p∧, n∧) Unstable for 𝛾p < 𝛾∗
p
 (Eq. 6) and stable (but bio-

logically infeasible) for 𝛾p > 𝛾∗
p

(p∨, n∨) Always unstable
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Multiplying the terms around the integral and disre-
garding higher-order terms yields

and a similar equation for �m+1 . Then, given J(F) as the Jaco-
bian matrix of a given function F evaluated at (p, n) , our 
linearized system, in matrix form, is

where K(x, y) = diag(kp(x − y), kn(x − y)) and the integral 
represents rowwise integration. To study how dispersal leads 
to instabilities in the system, let 𝛾p < 𝛾∗

p
 , where �∗

p
 is defined 

by Eq. 6. This makes the resource-only fixed point (0, n∗) 
to be stable. Thus, let (p, n) = (0, n∗) . Then, the linearized 
system (Eq. 8) is

We then take the Fourier transform of Eq. 9. By doing 
this, our system simplifies to

where f̂  corresponds to the Fourier transform of a given 
function f, i.e.,

To properly apply the Fourier transform to the functions 
�(x) and �(x) , we assume that �(x) = �(x) = 0 for x ∉ Ω . 
The matrices A,K,J in Eq. 10 satisfy

xim+1 =

((
�Pp

�pm
+ Rp(p, n)

�Sp

�pm

)
�m +

(
�Pp

�nm
+ Rp(p, n)

�Sp

�nm

)
�m

)

+ ∫Ω

k(x, y)Sp(p, n)

(
�Rp

�pm
�m +

�Rp

�nm
�m

)
dy

(8)

(
�m+1(x)

�m+1(x)

)
= J

(
Pp + Rp(p, n)Sp
Pn + Rn(p, n)Sn

)(
�m(x)

�m(x)

)

+ ∫Ω

K(x, y)J

(
Sp(p, n)Rp

Sn(p, n)Rn

)(
�m(y)

�m(y)

)
dy

(9)

�m+1(x) =�p�m(x) + ∫Ω

kp(x − y)
�pn

∗

1 + �n∗2
�m(y)dy,

�m+1(x) = −

(
�n�n

1 + �n∗2
+

R

1 + n∗

)
n∗�m(x) +

(
�n −

Rn∗

(1 + n∗)2

)
�m(x)

+ ∫Ω

kn(x − y)
R�m(y)

1 + n∗
dy.

(10)
(
𝜉m+1(𝜔)

�̂�m+1(𝜔)

)
= (A+KJ)

(
𝜉m(𝜔)

�̂�m(𝜔)

)

(11)f̂ (𝜔) = ∫
∞

−∞

exp(i𝜔x)f (x)dx.

(12)

A =

(
𝛿p 0

−
(

𝛿n𝛾n

1+𝜎n∗2
+

R

1+n∗

)
n∗ 𝛿n −

Rn∗

(1+n∗)2

)

K =

(
k̂p(𝜔) 0

0 k̂n(𝜔)

)

J =

(
𝛾pn

∗

1+𝜎n∗2
0

0
R

1+n∗

)
.

Decay of 𝜉m(𝜔) and �̂�m(𝜔) for all � guarantees the decay 
of �m(x) and �m(x) , which would imply stability of the carry-
ing capacity equilibrium. The matrix A+KJ has a triangular 
form, and thus, the eigenvalues are

If both populations disperse following a Laplace kernel 
with mean dispersal distance 1∕ai for i = p, n,

then the Fourier transform of these kernels is

Note that 0 ≤ k̂i(𝜔) ≤ 1 for all � , which implies that if 
𝛾p < 𝛾∗

p
 , then 0 < 𝜆1 < 1 and 𝜆2 < 1 for all � . For �2 , for any 

R, 𝛿n > 0 , the inequality 𝜆2 < −1 does not have a real solu-
tion. This implies that dispersal of a Laplace kernel will not 
induce instabilities in a resource-only state.

If we choose instead a double-gamma distribution,

for i = p, n , then their Fourier transform is

Similar to in the case of Eqs. 15 and 17 satisfies k̂i(𝜔) ≤ 1 , 
which implies 𝜆1 < 1 and 𝜆2 < 1 for all � . Equation 17 has 
a global minimum of − 1

8
 . If k̂p(𝜔) =

−1

8
 , then we find that 

𝜆1 < −1 is satisfied when

which implies that 𝜆1 > −1 for 𝛾p < 𝛾∗
p
 . If k̂n(𝜔) =

−1

8
 , then 

the expression 𝜆2 < −1 has a solution whenever

provided that 9
8
−

1+𝛿n

1−𝛿n
> 0 or 𝛿n <

1

17
 , and thus, instabilities 

will only be caused by dispersal for high local resource mor-
talities. We can compare that, at low local mortalities of 
resource, the eigenvalue �2 is almost unchanged as the fre-
quency � changes (Fig. 1a), whereas at high local mortali-
ties, the eigenvalue has a wider range of change and crosses 

(13)
𝜆1 =𝛿p + k̂p(𝜔)

𝛾pn
∗

1 + 𝜎n∗2
,

𝜆2 =𝛿n −
Rn∗

(1 + n∗)2
+ k̂n(𝜔)

R

1 + n∗
.

(14)ki(x − y) =
ai

2
exp

(
−ai|x − y|

)
,

(15)k̂i(𝜔) =
a2
i

a2
i
+ 𝜔2

.

(16)ki(x − y) =
a2
i

2
|x − y| exp

(
−ai|x − y|

)

(17)k̂i(𝜔) =
a2
i
(a2

i
− 𝜔2)

(a2
i
+ 𝜔2)2

.

𝛾p >
8(1 + 𝛿p)(1 + 𝜎n∗2)

n∗
> 𝛾∗

p

R > (1 − 𝛿n)

(
9

8
−

1 + 𝛿n

1 − 𝛿n

)−1
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the threshold of � = −1 (Fig. 1b). This suggests that disper-
sal of resource does not affect its stability when most of the 
reproductive adults can survive more than one time step.

The spatial pattern formation presented by these dynam-
ics is in Fig. 2. Even in the presence of instabilities caused 
by the dispersal of resources, consumers are not able to 
invade. This shows that although resource density is varying, 
a low consumer conversion rate ( 𝛾p < 𝛾∗

p
 ) makes it impos-

sible for consumers to invade and have any influence over 
the resource population, making this system essentially a 
resource-only system.

Spread rate of resource

In a general integrodifference framework, the spread rate 
of a population is calculated by analyzing when the extinc-
tion equilibrium of the system (0, 0) becomes unstable 
(Zhou and Kot (2013)). This also works in the case of 
a single-population dynamics system with sessile stages 
(Cobbold and Stana (2020)). In the case of System 3, 
the extinction equilibrium of resource (0, 0) is always 
unstable, which implies that the resource is always able 
to invade when rare. Instead of explicitly calculating the 

Fig. 1  Values of �2 in Eq. 13 as 
the Fourier transform frequency 
� varies, when kn follows the 
double-gamma distribution 
kernel (Eq. 16). In these figures, 
we use R = 20 , and an = 1 
with two values for resource 
adult survival: a �n = 0.9 and 
b �n = 0.01 . Note that, for high 
resource mortalities (subfigure 
b), some frequencies of the 
Fourier transform � produce 
an eigenvalue 𝜆2 < −1 , which 
induces instabilities caused by 
dispersal
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spread rate, we numerically estimate the time it takes for 
the population to reach a specific population density at a 
given point in space.

To do this, let Ω = [−L∕2, L∕2] for habitat length L. In 
addition, let the initial conditions be a constant consumer 
density p0 (i.e., p0(x) = p0 ) and the resource at carrying 
capacity at a single point at 20% of the length of the habitat 
(i.e., n0(x) = n∗�(x − a) , where �(x) is the Kronecker delta, 
and a is the point that represents 20% of the length of Ω ). 
We then calculate the time it takes for the resource to reach a 
population density of 80% its carrying capacity at 80% of the 
habitat length, i.e., we find the time M that satisfies

where b is the point that represents the 80% of the length 
of the habitat. An example of this procedure is in Fig. 3. In 
this case, M = 28 . We then explore how changing different 
parameters of the model makes these transient times vary.

The results of these numerical experiments are in Fig. 4. 
Intuitively, as more consumers are present in the environ-
ment (higher initial consumer density p0 and consumer sur-
vival �p ), the time to spread increases, and as more resource 
juveniles are produced (higher R (h)) and disperse further 
(higher an (i)), the time to spread decreases. Notice however 

(18)M = min
m

{nm(b) = 0.8n∗}

Fig. 2  Distributions of consum-
ers pt(x) and resources nt(x) 
after 1000 time steps with 
an initial distribution being 
a random perturbation of the 
uniform distributions p0(x) = 0 
and n0(x) = n∗ . In these 
simulations, we use a double-
gamma kernel (Eq. 16) with 
an = 1 and ap = 5 . The other 
parameters of the model are 
�p = 0.8, �N = 0.1, � = 1,R =

20, �p = 0.7 , and �∗
p
 with two 

values for consumer adult 
survival: a �n = 0.9 and b 
�n = 0.01 . In the case of low 
consumer mortality (a), the 
system is unable to escape the 
fixed point and converges to 
the uniform distribution of the 
fixed point (0, n∗) . In the case 
of high consumer mortality (b), 
the dispersal-induced insta-
bilities cause the resource to 
fluctuate through space. Even 
in this case, the low conver-
sion efficiency of �p consumers 
makes the consumer population 
unable to invade
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that too high of a resource dispersal an leads to an increase 
in the time it takes for the population to reach a high den-
sity. This is caused due to a loss of dispersing individuals 
at the edges of the domain. More surprisingly, increasing 
adult resource survival (higher �n ) and increasing the attack 
intensity ( �n ) lead to an increase in this time, and consumer 
conversion intensity ( �p ) and group defense intensity ( � ) 
have a minimal impact.

To explain these results, note that a higher adult 
resource survival �n leads to a higher value of n∗ in 
Eq. 5. This higher value of n∗ takes longer to be reached, 
thus making the conditions of Eq. 18 take longer to be 

satisfied. Although group defense intensity itself did not 
have an impact over the time it takes for the population to 
reach carrying capacity on the other side of the domain, 
group defense explains why the consumption might not 
have a big impact over the time to spread, which is the 
case when there is no group defense at offspring pro-
duction intensities orders of magnitude smaller than 
when there is group defense (Fig. 5). This is because 
group defense makes consumption less important at high 
resource densities, which means the source population 
at the left of the habitat is not impacted by consumption 
and allows to source new juveniles that will eventually 

Fig. 3  Distributions of consum-
ers pt(x) and resources nt(x)  
at a initial setup and  
b after 30 time steps. In 
these simulations, we use a 
Laplace kernel (Eq. 14) with 
an = 1 and ap = 5 . The other 
parameters of the model are 
L = 10, �p = 0.8, �N = 0.1, � =

1,R = 20, �p = 0.7�∗
p
 , and 

�n = 0.9
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Fig. 4  Number of time steps 
M required for the population 
to reach 80% of its carry-
ing capacity at 80% of the 
habitat Ω (Eq. 18) when 
varying a single parameter 
in Model 3. Unless it’s the 
parameter being changed, in 
these simulations, we use a 
Laplace kernel (Eq. 14) with 
an = 1 and ap = 5 . The other 
parameters of the model are 
L = 10, �p = 0.8, �N = 0.1, � =

1,R = 20, �p = 0.1 , and �n = 0.9
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overcome consumption at a similar density. A similar 
argument explains the low impact of consumer conver-
sion intensity �p over the spread time.

To make the value M independent of the parameters of 
the model, we repeat the analysis with an arbitrary threshold 
that does not depend on any parameters. By choosing such 
threshold to be equal to 1, in Fig. 6, we observe that resource 
survival ( �n ) does not have a big impact on spread speed, 
while most of the other parameters have a similar behavior 
to the one observed in Fig. 4. The most likely unintuitive 
difference is that consumer survival ( �p ) does not affect in 
any way the ability of the resource to spread to the other side 
of the domain. However, this makes sense as consumption 
at low densities is weak, and thus, the main factor affecting 
spread is how much of the resource is able to survive once 
settled. This also explains the small decrease in the time M 
as resource survivability becomes high enough.

Discussion

In this paper, we explored how local interactions of sessile 
organisms in a consumer-resource system affect the spread 
rate of resource. Two main results arise from this explora-
tion: sessile resource adults stabilize the spatial distribution 
of resource, and group defense leads to a slower spread rate.

We find that, when the consumers cannot invade the 
resource, and when most adults survive to the next repro-
duction period (high �n ), these sessile adults stabilize the 
distribution of resource and prevent the resource carrying 
capacity to be destabilized by dispersal. This destabiliza-
tion required a fat-tailed kernel, which leads to accelerated 

invasions (Kot et al. 1996). These stability results also pro-
vide more evidence to the argument that increased disper-
sal leads to a negative correlation between spatial stabil-
ity and synchrony in population densities between patches 
(Abbott 2011).

In the case of resource spread when rare, we found 
no effect of increasing the group defense intensity ( � ) in 
the spread rate of the resource. However, group defense 
allows. There is evidence that would suggest group 
defense should have a negative impact on the spread rate. 
For example, the decrease in consumption could lead to 
higher intraspecific competition, which affects juvenile 
survival (Morin 1986; Wilson 1989) and spread (Oricchio 
and Dias 2020). However, none of these studies looked at 
this question in the context of organisms presenting group 
defense. Another way that group defense might decrease 
spread rate, not modelled here but biologically feasi-
ble, is if resources’ energy investment in group defense 
reduces energy availability for reproduction (Sasmal and 
Takeuchi 2020). Our model suggests these impacts are 
compensated by the reduced effect of increased consump-
tion, which does have an effect when group defense is not 
included in the model ( � = 0 ), which explains why � has 
no effect on the spread of the population.

Another feature of our model is the implicit inclusion of 
stage structure in the spatial dynamics. The importance of 
stage structure in dispersal dynamics was first observed by 
Hastings (1992) using spatially explicit models with continu-
ous space and continuous time and with discrete space and dis-
crete time. In the case of continuous space and discrete time, 
previous analyses that expand the IDE framework to consider 
stages with limited movement also implicitly included stage 

Fig. 5  Number of time steps 
M required for the population 
to reach 80% of its carrying 
capacity at 80% of the habitat 
Ω (Eq. 18) when varying the 
consumer offspring production 
in Model 3 in the case where 
there is no group defense. In 
these simulations, we use a 
Laplace kernel (Eq. 14) with 
an = 1 and ap = 5 . The other 
parameters of the model are 
L = 10, �p = 0.8, �N = 0.1, � =

0,R = 20 , and �n = 0.9
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Fig. 6  Number of time steps 
M required for the population 
to reach a density of 1 at 80% 
of the habitat Ω (Eq. 18) when 
varying a single parameter 
in Model 3. Unless it’s the 
parameter being changed, in 
these simulations, we use a 
Laplace kernel (Eq. 14) with 
an = 1 and ap = 5 . The other 
parameters of the model are 
L = 10, �p = 0.8, �N = 0.1, � =

1,R = 20, �p = 0.1 , and �n = 0.9
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structure (Kanary et al. 2014; Veit and Lewis 1996). We find 
a similar general result to those previous analyses, where 
local interactions in the stages with limited movement affect 
the spread rate of the population. In our model, intraspecific 
competition slows down spread, in contrast to competitive 
systems, where a high survival of adults promotes the spread 
of the top competitor (Kanary et al. 2014), and analogous to 
single population dynamics where high mortality of stages 
with limited movement can lead to an Allee effect which 
slows spread rates (Veit and Lewis 1996).

As with any model, we made a number of simplifying 
assumptions in our model. First, we only consider the case 
where consumers resource upon adult resource or settling 
juveniles. Growth of species with limited movement as 
adults such as urchins (Allen 2008) and tunicates (Olson 
and McPherson 1987) has been linked to the consumption 
of their dispersing larvae. We suspect dispersing larvae con-
sumption will reduce the impact of local interactions and 
give more emphasis on the dispersal dynamics. Second, we 
assume that the dispersing individuals are the juveniles. This 
assumption does not capture populations where larvae have 
limited movement ability compared to their adult stages such 
as a consumer-resource interaction between dragonflies and 
frogs (Caldwell et al. 1980). We speculate the model that 
captures those dynamics would have a similar structure to 
this one, which would imply that juvenile interactions would 
be the main constraint on of spread dynamics.

Another limitation is that our environment is spatially 
homogeneous. In reality, spatial heterogeneity may lead to dif-
ferent dynamics than the ones observed in our model. In our 
model, the only factor that produces habitat heterogeneity for 
resource is the distribution of consumer population. However, 
other potential factors of heterogeneity not accounted by our 
analysis are substratum topography (Erlandsson et al. 2005; 
Köhler et al. 1999) and resource availability (Grabowska and 
Kukliński 2016). These factors can be included in our model 
with spatially variable survival or reproductive functions. This 
could render our problem intractable, which would require 
numerical analysis to be well explored.

Finally, we assumed both consumer and resource have 
limited movement as adults. However, by setting the pro-
portion of sessile adults that survive ( �i for i = p, n ) equal 
to 0, our model allows only one of the two species to have 
limited movement as adults. As seen in the dispersal-induced 
instabilities (“Spread rate of resource”), this is a sufficient 
condition for instabilities of resource at carrying capacity.

In conclusion, in a consumer-resource system, local 
interactions between sessile adults are key to determining 
the ability of resource to spread by limiting their produc-
tion of offspring through consumption. Similar results 
were obtained when modelling invasive algae, where the 
consumption of the substrate in the soil slowed the spread 
rate of the algae (Britton-Simmons and Abbott 2008). These 

observations contrast with those seen in competitive models, 
where competition acts on a more regional scale by allowing 
the coexistence of competitors in space (Allen et al. 1996) or 
stopping the invasion front of the higher competitor (Kanary 
et al. 2014). These models exemplify the use of the IDE 
framework in a wider range of interactions between species 
such as perennial plants and animals with limited movement.
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