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Abstract
One of the main factors that determines habitat suitability for sessile and territorial organisms is the presence or absence of 
another competing individual in that habitat. This type of competition arises in populations occupying patches in a metacom-
munity. Previous studies have looked at this process using a continuous-time modeling framework, where colonizations and 
extinctions occur simultaneously. However, different colonization processes may be performed by different species, which 
may affect the metacommunity dynamics. We address this issue by developing a discrete-time framework that describes these 
kinds of metacommunity interactions, and we consider different colonization dynamics. To understand potential dynamics, we 
consider specific functional forms that characterize the colonization and extinction processes of metapopulations competing 
for space as their limiting factor. We then provide a mathematical analysis of the models generated by this framework, and 
we compare these results to what is seen in nature and in previous models.
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Introduction

Metacommunities are a theoretical concept expressed as 
a set of local communities linked by dispersal of multiple 
species (Leibold et  al. 2004). Using metacommunities’ 
integration of local and regional processes, we can explore 
community processes that occur at a more regional scale, 
such as species distribution in the landscape or patch occu-
pancy. This concept has seen an increase in interest in recent 
years (Grainger and Gilbert 2016; Leibold and Chase 2017; 
Guichard 2017), including possible applications in conserva-
tion biology (Chase et al. 2020).

An important example of this framework is competitive 
metacommunities, which are used to explain coexistence 
mechanisms among competing populations (Amarasekare 
et al. 2004). These competitive metacommunities allow us 
to explain species richness in several communities, as they 
explain how local dynamics can affect regional presence of 

species (Harrison and Cornell 2008). Some examples where 
this concept has been used to explain species richness are 
plant communities (Kuglerova et al. 2015) or crustacean 
communities (Cottenie and Meester 2003).

These competitive interactions are caused by overlaps in 
the niches of the populations. Habitat suitability is a key 
component of a population’s niche, which determines its 
ability to survive in a given environment (Kearney 2006). 
This suitability is defined by environmental conditions and 
the population’s life and evolutionary history. One of the 
fundamental components of habitat suitability is the pres-
ence or absence of another individual in a given region of 
space. This is more critical in sessile organisms such as 
plants, where the presence of an individual in a specific point 
of space solely limits the possibility of other organisms to 
exist in that same point (Aarssen et al. 2006).

If one focuses only on the presence or absence of a 
population in space, the environment can be understood 
as an arrangement of patches distributed in space, where 
a patch is not suitable if it’s occupied, and suitable oth-
erwise. This patch occupancy idea was originally studied 
for metapopulations by Levins (1969). These metapopula-
tions consist of populations of a single species distributed 
through a landscape of patches, which are then connected 
by dispersal. Later, Hastings (1980) and Tilman (1994) 
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expanded these ideas to competitive metacommunities, 
where multiple metapopulations occupy patches in space 
and can be excluded from those patches, leading to local 
extinctions. These local extinctions can be caused by dis-
persal failure (Mouquet and Loreau 2003), high competi-
tion strength (Amarasekare et al. 2004), or disturbance 
(Sousa 1984). The latter is particularly useful when study-
ing how disturbance affects hyperdiverse ecosystems such 
as tropical forests, where single population dynamics are 
not useful to understand coexistence of many species (ter 
Steege et al. 2019).

One of the key processes a metapopulation goes through 
is the colonization of unoccupied patches, which has an 
impact on the fate of the metacommunity structure (Lobel 
et al. 2009; Howeth and Leibold 2010; Wisnoski et al. 2019). 
These colonization processes might be impacted by the pres-
ence of competitors and can lead to different dynamics of 
patch occupancy and overall diversity at a landscape level. 
Although empirical evidence of the importance of the dif-
ferent dynamics has appeared, the theoretical ideas behind 
those results have been less explored.

These processes can be easily described in a discrete-time 
modeling framework. In discrete-time models, the state of 
the system is measured at discrete, regular time intervals, 
compared to continuous-time models, where the state of the 
system is continuously measured. This difference allows us 
to model underlying processes of the dynamics as separate 
substeps and focus our analysis on the step of the coloniza-
tion dynamics. Discrete-time models have been applied to 
metacommunities before, putting more emphasis on the local 
competition dynamics (Wilson 1992), coexistence mecha-
nisms (Shoemaker and Melbourne 2016), or realism with a 
simulation based analysis (Thompson et al. 2020). In this 
work we put more emphasis on the colonization dynamics 
and how different colonization processes affect the meta-
community structure. This approach has been recently con-
sidered to study metapopulations (Marculis and Hastings 
2021), and here we expand this idea to metacommunities.

In this paper we construct and analyze a simple discrete-
time metacommunity model using difference equations that 
captures the colonization and local extinctions separately 
and use it to analyze how different colonization, competi-
tion, and disturbance effects impact the persistence of sev-
eral metapopulations in an environment. In the next section, 
we describe the framework that considers colonization and 
extinction processes separately in time, and we use func-
tional forms that describe the patch occupancy in metacom-
munities where space availability is the limiting factor. In 
Section 3 we present a mathematical analysis of the model 
with the given functional forms. Finally, in Section 4 we 
discuss this analysis, focusing on how it relates to the contin-
uous-time models, and what other dynamics can be explored 
using this framework.

Model and methods

To describe competition for space, we expand on the meta-
population framework presented by Marculis and Hastings 
(2021). Suppose we have a system with n species, where 
the i-th species at time t occupies a proportion p(i)t  of the 
available patches in a given region. Then, at the next time 
step, the proportion of occupied patches will change follow-
ing two processes in sequence: Colonization of unoccupied 
patches and local extinctions. Suppose species i colonizes 
unoccupied patches following a function gi(�t) , where �t 
is a vector where the j-th entry corresponds to p(j)t  . After 
that, species i faces local extinctions following a function 
fi(g1(�t),… , gn(�t)) . Then, if � and � are vectors where the 
i-th entry corresponds to gi and fi respectively, then the pro-
portions of the species at time t + 1 follow the difference 
equation:

In order to use this framework in a competition context, we 
will arrange our metacommunity in the same way as Hast-
ings (1980) and Tilman (1994). Suppose species are ordered 
by competitive capacity, i.e., species i is outcompeted by 
species j for j < i . In addition, assume that the growth and 
extinction processes of patches by species i are determined 
by the proportion of patches occupied by species j ≤ i . 
Then, Equation 1 simplifies to the system of equations:

Next, we focus our attention on reasonable functions that 
describe the colonization process. To do this, we follow the 
ideas of Hastings (1980) and Marculis and Hastings (2021) 
of using discrete-time competition models to describe the 
proportion of patches colonized.

Leslie–Gower model

The Leslie–Gower model, further analyzed in Cushing et al. 
(2004), is an extension to the single-population Beverton–Holt 
to include the effect of competing species over the carrying 
capacity of the population of interest. Similar to the model pre-
sented by Hastings (1980), which extends logistic growth to 
competitive metacommunities in continuous time, we propose 
the Leslie–Gower model as an extension of the Beverton–Holt to 
competitive metacommunities in discrete time. In this study, we 
frame this model as follows: Suppose species i has a colonization 
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rate di > 1 , then the proportion of patches colonized by species 
i at time t is given by

Ricker competition model

In some cases, colonization processes may not follow a 
monotonic growth, but rather present periods of overcom-
pensation due to interference between colonizers (Goubault 
et al. 2005) or due to boom and bust dynamics (Simberloff 
and Gibbons 2004). This formulation expresses the idea that 
when too many individuals simultaneously attempt to colo-
nize an empty patch, none may survive. So if the number of 
occupied sites is too high, it is possible that the probability 
of colonization of empty sites decreases. In this case, mod-
eling the process as a Ricker model makes biological sense. 
Similar to the Leslie–Gower model, the Ricker model can 
be expanded to include interspecific competition (Cushing 
et al. 2004). In addition, we normalize the Ricker model to 
make sure that our values remain in [0, 1], as they represent 
proportions. Suppose that species i has a colonization rate 
di > 0 . Then, the proportion of patches colonized by species 
i at time t is given by

Leslie–Gower with allee effect

Alternatively to the aspects described by the Ricker descrip-
tion, too few colonizers may make colonization rates per 
occupied patches lower, which would resemble an Allee 
effect in population dynamics. We can describe this process 
by expanding the Leslie–Gower model to include an Allee 
effect term (Chow and Jang 2014). Suppose species i has 
a colonization rate di > 1 and a probability 1∕mi of finding 
a new patch to colonize. Then, the proportion of patches 
colonized by species i at time t is given by

The extinction function

Next, we describe the extinction process as follows: Local 
extinctions of populations will occur due to disturbance or 
competitive exclusion (Hastings 1980). Suppose the environ-
ment presents a homogeneous disturbance that causes a 
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proportion e of patches to become extinct. In addition, sup-
pose the presence of better competitions causes extinctions 
with a strength c. Then, if xi = gi

(
p
(1)
t ,… , p

(i)
t

)
 , the extinc-

tion process is described by the function

Model analysis

Using the framework presented in System 2, we fix the 
extinction function to follow Equation 6 and analyze the 
asymptotic dynamics of the framework when the coloniza-
tion function follows Equations 3, 4, and 5. The analyses of 
said dynamics can be achieved by using a standard linear 
analysis of the fixed points. We consider then how the dif-
ferent parameters di, e,mi, c affect the stability of the fixed 
points through bifurcation analysis, and if nonlinear attrac-
tors can arise from the given colonization functions. In the 
following section, we present the results of this analysis and 
their proofs are found in Appendix A.

Results

Leslie–Gower colonization

The Leslie–Gower colonization process provides a 
Lotka–Volterra-type competition. This allows us to compare 
it directly to the model presented in Hastings (1980). We 
first check its convergence to a single configuration.

Theorem 1 For any given parameters e, c, di for i = 1,… , n , 
the System 2 with colonization function given by Equation 3 
and extinction function given by Equation 6 has a globally 
asymptotically stable equilibrium in the hypercube [0, 1]n . 
The metapopulations with positive equilibria p̂(i) also satisfy 
that

Theorem 1 shows that, using a Leslie–Gower type of 
colonization process, we recover the original results as 
Hastings (1980). The last inequality of Theorem 1 implies 
that there must be a trade-off between competitive advan-
tage and colonization ability, regardless of the amount of 
disturbance in the environment. In general, in this type of 
dynamics one would expect that the worse competitors are 
better colonizers.
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We can see how this behavior looks like starting from an 
almost empty landscape in Fig. 1. Notice that the dynamics 
towards the equilibrium are not monotonic, and the better 
competitors that are not the best (in Fig. 1, i = 2 ) will even 
invade a larger proportion of the patches than the top com-
petitor before being outcompeted by it and start decreasing 
to their equilibrium value. 

Compare this time series with a similar one produced 
with the continuous model of Hastings (1980). This model 
is rescaled to follow the following equation:

and the produced time series is presented in Fig. 2. By com-
paring this time series with that presented in Fig. 1, we can 
see that they have a similar qualitative behavior, especially 
in the fact that each of the metapopulations converge to their 
equilibrium value.

Our model also recovers the results by Tilman (1994), 
where in the presence of disturbance (i.e., e > 0 ), there is 

(7)
dpi
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)
− cpi

i−1∑
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pj − epi

Fig. 1  Time series for a 
system with 3 species using 
a colonization process given 
by Equation 3 and extinction 
process given by Equation 6. 
In this simulation we use 
e = 0.2, c = 0.01, di = 1.5i . 
Notice how for all species, 
the time series converges to a 
positive equilibrium value, fol-
lowing Theorem 1

Fig. 2  Time series for a system 
with 3 species using the model 
presented in Equation 7. 
In this simulation we use 
e = 0.2, c = 0.01, di = 1.5i . If 
we compare it to the time series 
presented in Fig. 1, we get that 
they get qualitatively similar 
results, and they both converge 
asymptotically to their equilib-
rium values
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always a proportion of patches at equilibrium that will not 
contain any population. This result can be written as follows.

Proposition 1 In the System 2 with colonization function 
given by Equation 3 and extinction function given by Equa-
tion 6, regional coexistence of more than one metapopula-
tion is only possible in the presence of disturbance.

We can also see how total proportion of patches occupied 
grows as we introduce more metapopulations into our system 
in Fig. 3. Notice that although numerically our choice of param-
eters allow for many species to persist (84 in total), most of the 
available patches are already occupied by the first top competi-
tors. In a real scenario where the number of available patches is 
finite, the lesser competitors might not be able to persist at all, 
significantly reducing the effective number of coexisting species.

Ricker colonization

In the case of the colonization function given by Equation 4, 
the persistence equilibrium for a given population might not 
be stable, which could lead us to a cyclic or chaotic behavior 
similar to that of the classical Ricker model (Ricker 1954). To 
further study this behavior and keep our results analytically 
tractable, we limit the following analysis to the simplest case 
of two competing species (i.e., n = 2 ). This gives us the fol-
lowing result.

Theorem 2 For the System 2 with colonization function 
given by Equation 4 and extinction function given by Equa-
tion 6 with two species, an increase in disturbance causes 
an increase in the stability for the top competitor (species 

i = 1 ). For the bottom competitor (species i = 2 ), given the 
dispersal intensity of the top competitor d1 , then if either

or otherwise

then an increase in disturbance causes an increase in the 
stability of the bottom competitor, and it decreases the sta-
bility otherwise.

We can see this effect when comparing the bifurcation dia-
grams for species 1 with different intensities of disturbance in 
Fig. 4. Notice that as disturbance increases, the period dou-
bling bifurcation occurs at a later point and allows the propor-
tion of occupied patches to stay stable for higher colonization 
rates. Notice as well that before the bifurcation point, we see a 
decrease in the total number of patches occupied at equilibrium. 
This would suggest a mechanism of interference between the 
different populations trying to colonize the same patches.

If we vary d1 and e, we get bifurcation diagrams for i = 2 
as shown in Fig. 5. Notice that when the equilibrium propor-
tion for species 1 is stable, species 2 seems to behave stable as 
well for small colonization rates. However, there exists certain 
threshold (presumably the period doubling bifurcation) under 
which species 2 collapses, leading to the regional extinction as 
the only possibility. In the case species 1 shows chaotic behav-
ior, this behavior passes on to species 2, which presents high 

d1 >
exp

(
−1

2

)

1 − e

c >
−d1(1 − e)

2 ln(d1(1 − e)) + 1
,

Fig. 3  Values of si up to the 
maximum i with positive 
equilibrium value using a 
colonization process given 
by Equation 3 and extinction 
process given by Equation 6. 
In this simulation we use 
e = 0.2, c = 0.01, di = 1.5i
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Fig. 4  Bifurcations diagrams 
for p̂(1) using a Ricker coloni-
zation process, with e = 0.2 
(left), and e = 0.5 (right). This 
figure shows how disturbance 
produces a stabilizing force 
into species 1, as the period 
doubling bifurcation occurs at 
a higher colonization rate d1 
compared to the case with no 
disturbance

Fig. 5  Bifurcations diagrams for p̂(2) using a Ricker colonization pro-
cess, with c = 0.01 , a) e = 0.2 and d1 = 1 , b) e = 0.2 and d1 = 3 , c) 
e = 0.5 and d1 = 1 , and d) e = 0.5 and d1 = 3 . Notice that the cha-
otic behavior only occurs with high disturbance (in Figure c), which 

shows that disturbance tends to stabilize p̂(2) . Notice that there is a 
limit on how well of a colonizer can species 2 be, as for d2 bigger 
than some value around 7.5 will collapse into the regional extinction 
equilibrium only
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variation in its proportions, before collapsing for high enough 
colonization rates. As expected, at low competition parameters, 
disturbance is a destabilizing factor for species 2, as can be 
seen in Fig. 5c. Notice as well that if species 1 is a better colo-
nizer (when d1 = 3 ), the chaotic attractor changes less abruptly, 
which follows the proof of Theorem 2, which shows that the 
colonization rate of species 1 is a stabilizing force for species 2.

Also notice that we restrict our choice of c to a value far 
away from the threshold we found in Theorem 2 as bigger val-
ues seem to not provide a positive equilibrium value, suggest-
ing that in reality the only biologically feasible condition for 
whether disturbance has a destabilizing effect for species 2 is if

In the case of Figs. 5a and 5c, d1 does not satisfy this ine-
quality, and thus, an increase in disturbance will cause more 
unstable dynamics. On the other hand, in Figs. 5b and 5d, d1 
does satisfy this inequality, and an increase in disturbance 
leads to more stable dynamics.

We show how the dynamics between the two metapopu-
lations unfold in the time series in Figs. 6 and 7. Figure 6 
shows that when the bottom competitor is too strong of a 
colonizer, it will present overshoots of the patches occupied 

d1 >
exp

(
−1

2

)

1 − e
.

Fig. 6  Time series for pt 
using a Ricker colonization 
process, with c = 0.01 , and 
e = 0.2, d1 = 1, d2 = 20 (top), 
and e = 0.5, d1 = 1, d2 = 20 
(bottom). Notice that species 
2 presents an overshooting 
process, where they invade a 
higher proportion of patches 
at the beginning, followed 
with a sudden collapse of the 
metapopulation. These time 
series also show that an increase 
in disturbance prolongs the col-
lapse of the metapopulation
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at the beginning of the time series, followed by a sudden col-
lapse and regional extinction. This is an indicator of boom 
and bust dynamics. In addition, notice that since d1 is small, 
disturbance leads to more unstable dynamics for the bottom 
competitor.

Figure 7 shows the effect that the oscillatory behavior of 
species 1 has over species 2. In the case where species 1 does 
not present oscillatory behavior, the proportion of patches 
occupied by species 2 at equilibrium is low. On the other 
hand, when species 1 has an oscillatory behavior, it allows 
species 2 to access more patches. An interesting observation 
is that this phenomenon occurs in synchrony, i.e., the bottom 
competitor will occupy more patches when the top competi-
tor does. This could be explained by the effect of interfer-
ence the top competitor has at high colonization intensities.

Allee effect

A more general version of the model provided by Equation 5 
for two competing populations was studied in Chow and 
Jang (2014). Based on the framework provided by System 
2, we can get the following result for any number of species.

Theorem  3 For any given parameters e, c, di,mi for 
i = 1,… , n , there exists a value �i (that depends on 
p
(1)

0
,… , p

(i)

0
 ) such that, for the System 2 with colonization 

function given by Equation 5 and extinction function given 
by Equation 6 we get that 

1. limt→∞ p
(i)
t = 0 if p(i)

0
< 𝜌i.

2. limt→∞ p
(i)
t =

̂
p
(i)
+

 if p(i)
0
≥ �i.

where ̂p(i)+  is the biggest positive fixed point whenever it 
exists. In addition, a necessary condition for ̂p(i)+  to exist is 
that

We can see in Fig. 8 how these dynamics play out. Notice 
that with similar parameters, the total amount of metapopu-
lations that the environment can sustain are less than when 
using Equation 3. In this case, we still have the same compe-
tition/colonization trade-off as in the Leslie–Gower model. 

(1 − e)di > (1 + si−1 + mi)

(
1 + c

i−1∑
j=1

x̂j

)
.

However, being a better colonizer also consists of being bet-
ter at finding suitable patches, unlike in the previous cases, 
where being a better colonizer consisted only of being faster 
at colonizing unoccupied patches. This can be seen in the 
case of species 3, which although a worse competitor than 
species 2, can persist due to a better ability of finding a patch 
to occupy (by having a probability of finding a patch one 
order of magnitude higher). This figure also shows that this 
capability is also dependent on the initial conditions, as in 
the bottom figure a lower initial occupancy of species 3 will 
eventually cause a regional extinction.

Discussion

In this paper we develop a simple yet general model for patch 
occupancy of metacommunities, which is then used to study 
competition for space in several scenarios. In the simplest case, 
we use Leslie–Gower dynamics as the colonization function, 
which has been shown to be a discrete-time analogous model to 
the classic Lotka-Volterra competition model (Liu and Elaydi 
2001). We find that using this function as our colonization func-
tion generates the same results as those presented in Hastings 
(1980) and Tilman (1994). Hence, for one description of com-
petition and colonization (Equation 3), our model is a discrete-
time analogue of the model used in these previous papers.

However, the generality of the framework allows us to 
consider alternative colonization functions that capture dif-
ferent types of dynamics. The probability of colonization 
of empty patches may not depend linearly on the number 
of occupied patches if successful colonization is greatly 
influenced by the number of individuals arriving. If there is 
interference, then too many occupied locations will reduce 
the colonization probability, leading to overcompensation 
which we described using the Ricker model. Too few occu-
pied patches may also reduce the likelihood of coloniza-
tion, which we described using a model incorporating an 
Allee effect. These processes can be naturally included in a 
discrete-time model.

When we use the Ricker function as our colonization func-
tion, the model dynamics are drastically different when the 
colonization rates of the metapopulations are high. In our 
runs, we see a boom and bust of the lower competitor fol-
lowed by a regional collapse of the metapopulation, or a cyclic 
behavior in its patch occupancy. The boom and bust behavior 
in the lower competitor when colonization rates are higher can 
be explained either due to resource depletion at high densities, 
or due to a high number of invasions that generate patches 
with smaller densities and thus a lower competitive capabil-
ity (Simberloff and Gibbons 2004; Sagata and Lester 2009).

These biological explanations make sense in the context 
of the model. Since the top competitor is not affected by the 
dynamics of the bottom competitor, these patches initially 

Fig. 7  Time series for pt using a Ricker colonization process, with 
c = 0.01 , and e = 0.2, d1 = 5, d2 = 2 (top), and e = 0.5, d1 = 5, d2 = 2 
(bottom). When the top competitor metapopulation is oscillating, 
this allow the bottom competitor to colonize a bigger proportion of 
patches in synchrony with the top competitor. These time series show 
that an increase in disturbance allows for more stable dynamics to 
occur, thanks to the higher value of d1

◂
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occupied by the bottom competitor will soon be occupied 
by a better competitor, which will cause a collapse of the 
metapopulation. As seen in Fig. 5, if the colonization rate is 
too high, this “bust” process will cause a regional collapse of 
the metapopulation, without any possibility for persistence. 
In other scenarios, persistence of the bottom competitor is 
enhanced thanks to oscillatory behavior of the top competitor 
metapopulation. This type of persistence induced by nonlin-
ear attractors has been previously studied at the community 
level (Huisman and Weissing 1999) and metacommunity 
level (Koelle and Vandermeer 2005) using continuous time 
models. Here we have been able to find it at the metacom-
munity level using a discrete-time model and possibly caused 
by interference of the top competitor with itself. In the con-
text of competition for space, this cyclic behavior shows up 
in competition caused by allelopathy (Nakamaru and Iwasa 
2000; Lenski and Riley 2002). This behavior also resembles 
the effects of competition between two populations over a 
single resource, which is possible when the top competitor 
has oscillatory behavior (Armstrong and McGehee 1980; 
Adler 1990). This suggests that, when considering space as 
a resource, the metapopulations behave in a similar manner 
to competing populations for a single resource.

In the case of the colonization process with an Allee 
effect, we see the same colonization–competition trade-off as 
in the Leslie–Gower colonization process. However, being 
a good colonizer in this context not only consists of having 
high reproductive or dispersal rates (having a higher di ), but 
also being good at finding a suitable patch to colonize (hav-
ing a smaller mi ) which mitigates the negative effects that 
occur at low patch occupancy. This scenario is important 
in highly fragmented habitats, where search efficiency is as 
important as dispersal capabilities (Niebuhr et al. 2015). In 
this similar context, the dependency on the initial condi-
tions of the system can lead to alternate stable states, where 
the amount of species in the environment depends on this 
probability of finding a good patch, which is linked to the 
fragmentation of the habitat (Buenau et al. 2007).

Using these functional forms may seem an artificial way 
to make metacommunity dynamics resemble single popula-
tion dynamics in discrete time. However, evidence of such 
behaviors occurring in natural systems exists. In the case of 
Leslie–Gower, we find that the dynamics are equivalent to 
those observed in continuous time models (Hastings 1980; 
Tilman 1994), which represent an important element of lit-
erature in ecological theory. In the case of the Ricker colo-
nization, evidence of interference in colonization processes 
has been observed in several species of insects, especially 
when intraspecific competition between larval stages is sig-
nificant (Dye 1982; Balmer et al. 2009). In the case of the 
Leslie–Gower with Allee effect, habitat degradation can lead 
to regional extinction of metapopulations, which we find 
can be further intensified when metapopulations are compet-
ing for space Bascompte and Sole (1996). In addition, more 
degraded habitats have been observed to have less diver-
sity at the metacommunity level than better suited habitats 
(Halme et al. 2013).

Previous works have shown that dispersal between 
patches in a population leads to more stable dynamics when 
this population follows a Ricker growth function (Doebeli 
1995). In the metacommunity context, we observe that when 
our metapopulations follow a Ricker-like colonization func-
tion, increasing dispersal can have varying effects, depend-
ing on the amount of disturbance that leads to local extinc-
tions. In our analysis the interaction effects of dispersal and 
disturbance over the top competitor follow similar dynamics 
to those found in Marculis and Hastings (2021), where high 
dispersal intensities lead to instabilities in the system. How-
ever, when a metapopulation is outclassed in competition 
for space, these interactions lead to more complex dynam-
ics, and dispersal may either stabilize the metapopulation or 
destabilize it, following certain thresholds which depend on 
the dispersal of the better competitors, and the disturbance 
and competition intensities.

With regard to the effect of competition, we see that in 
the three models analyzed, competition directly hinders the 
amount of space available for each species at equilibrium. 
One important aspect of how we modeled competition is that 
competition only occurs after populations have settled in their 
respective patches; an important feature of territorial animals 
(Stams and Krishnan 2001). However, this behavior can be 
also seen in plant communities, where competition for space 
occurs at the root level (Gersani et al. 2001). We suspect 
that the dynamics will differ if competitive exclusion occurs 
before the colonization, especially in colonization models 
with alternative stable states such as the Leslie–Gower with 
Allee effect.

Notice that in this work we have considered the events of 
colonization and extinction to occur in a different order than 
the events in Marculis and Hastings (2021). Since we only 
have two events occurring (colonization and extinction), 

Fig. 8  Time series for a system with 3 species using a colonization 
process given by Equation  5 and extinction process given by Equa-
tion  6. In this simulation we use e = 0.2, c = 0.1, di = 10i,mi =

1

10i
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for species 3 causes it to go extinct. In both simulations species 
2 was not able to persist in the landscape, which could mean that 
their threshold go to their positive equilibrium needed to be even 
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the order at which these events happen does not affect the 
qualitative dynamics of the models. This is because one can 
think that which event happens first will be determined by 
when will the dynamics be observed. If one observes the 
metacommunity before the colonization process occurs, 
one would get the model seen in this work, whereas if one 
observes the metacommunity after the colonization process, 
a model that resembles more that of Marculis and Hastings 
(2021) would show up. In both cases, the observed dynam-
ics would be the same, just measured at different moments 
in time.

This analysis shows that by using a discrete-time frame-
work for a patch occupancy model, we are able to recover 
a variety of dynamics that are not possible in a continuous-
time framework using the simple models based on the Lev-
ins metapopulation model. The generality of this framework 
allows us to study other types of metacommunity interac-
tions, such as spatial heterogeneity over a landscape in 
systems with alternative stable states (Shurin et al. 2004) 
or metacommunities with multiple trophic levels (Guzman 
et al. 2019). The simplicity of this model allows a deeper 
analysis of these dynamics, which will then be useful to 
unveil further properties of these metacommunities.

Proofs to results of section 3

Proof of theorem 1

First we will prove the following Lemma.

Lemma 1 For each i, if the species j = 1,… , i − 1 are pre-
sent at equilibrium 

(
p̂(1),… , p̂(i−1)

)
 , then the i-th equation 

in System 2 with colonization function given by Equation 3 
and extinction function given by Equation 6 has the fixed 
point p̂(i) = 0 , which is stable if no other fixed point exists in 
[0, 1], and unstable otherwise.

If we consider the colonization function to satisfy 
Equation 3, for each i, up to two nonnegative fixed points 
p̂(i) show up, p̂(i) = 0 and, if p̂(j) are known for j < i , let 
sj =

∑j

k=1
p̂(k) , then:

provided that (1 − e)di >
�
1 + c

∑i−1

j=1
x̂j

��
1 + (di − 1)si−1

�
 , 

where 
x̂j = gi

(
�p(1),… , �p(j)

) . To check for stability, System 

2 has a triangular Jacobian matrix, which implies that the 
eigenvalues of the system are given by:

(8)�p(i) =

�
(1 − e)di

1 + c
∑i−1

j=1
x̂j

− 1

�
1

di − 1
− si−1

If p̂(i) = 0 , then our eigenvalue simplifies to

which is less than 1 provided (1 − e)di <
�
1 + c

∑i−1

j=1
x̂j

�
(
1 + (d

i
− 1)s

i−1

)
 . This implies that the regional extinction 

equilibrium will be unstable as long as the persistence equi-
librium exists. In the case of the persistence equilibrium, 
notice that the expression further simplifies to

In this case, since si > si−1 , this eigenvalue �i is smaller than 
1. Following the proof of this Lemma, we can prove the 
theorem. We will prove this Theorem by induction over the 
number of species n. Notice that if n = 1 , then the model 
simplifies to a Beverton–Holt-type system of the form

Since this model is analogous to the Beverton–Holt model, 
if (1 − e)d1 > 1 , the system has a single globally asymptoti-
cally stable equilibrium

Otherwise, the system only has one equilibrium in [0, 1] 
which corresponds to regional extinction, p̂ = 0 . In both 
cases, the system has a globally asymptotically stable 
equilibrium.

Suppose now that the theorem holds for some number 
of species n and consider a system with n + 1 species. This 
implies that the system with the first n species has a globally 
asymptotically stable equilibrium in the hypercube [0, 1]n.

Based on this observation, now notice that for big t, 
the metapopulation p(n+1)t  will behave similarly to a single 
population model. Suppose without loss of generality that 
p
(i)
t = p̂(i) for i ≤ n , where p̂(i) is the stable equilibrium for 

species i, which corresponds to either the regional extinc-
tion or the value given by Equation 8, depending on the 
values of e, c, di for i = 1,… , n + 1 . It is enough to show that 
p
(n+1)
t → p̂(n+1) as t → ∞ . This is the case because, given our 

assumptions, the equation for species n + 1 simplifies to the 
Beverton–Holt-type equation given by

(9)

𝜆i =
𝜕p(i)

t+1

𝜕p(i)t

����p(i)t =�p(i)
=

(1 − e)di�
1 + c

∑i−1

j=1
x̂j

��
1 + (di − 1)si

�
1 + (di − 1)si−1

1 + (di − 1)si
.

(1 − e)di�
1 + c

∑i−1

j=1
x̂j

��
1 + (di − 1)si−1

�

(1 − e)di

1 + c
∑i−1

j=1
x̂j

c
∑i−1

j=1
x̂j

(1 − e)di

1 + (di − 1)si−1

1 + (di − 1)si
=

1 + (di − 1)si−1

1 + (di − 1)si
.

0 < pt+1 =
(1 − e)d1pt

1 + (d1 − 1)pt
≤ 1.

p̂ =
(1 − e)d1 − 1

d1 − 1
.
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If (1 − e)dn+1 >
�
1 + c

∑n

j=1
x̂j

��
1 + (dn+1 − 1)sn

�
 , then the 

system converges to the single stable equilibrium 
0 < �p(n+1) ≤ 1 given by Equation 8. Otherwise, it converges 
to the regional extinction p̂(n+1) = 0.

In both cases, the equilibrium p̂ =

(
p̂(1),… , p̂(n+1)

)

∈ [0, 1]n+1 is globally asymptotically stable. By induction, 
this completes the proof.
Proof of proposition 1

This can be easily noticed from Equation 8, which gives us 
an expression for si:

In this expression, when e > 0 we get that the numerator 
becomes smaller than the denominator for any values of 
di, c , which implies that si < 1 for all i. Even further, in the 
absence of disturbance, the only possible scenario is that 
the top competitor will take all of the patches (i.e., p̂(1) = 1 ). 
This proves the proposition.

Proof of theorem 2

If our colonization process follows Equation 4, we have up 
to two nonnegative fixed points p̂(i) , the regional extinction 
p̂(i) = 0 and the persistence equilibrium given by

provided (1 − e)di >
�
1 + c

∑i−1

j=1
xj

�
exp

�
disi−1 − 1

�
 . The 

eigenvalues of the system are given by:

For the regional extinction equilibrium p̂(i) = 0 , this eigen-
value becomes

which is less than 1 provided (1 − e)di <
�
1 + c

∑i−1

j=1
xj

�

exp
(
d
i
s
i−1 − 1

)
 . Similar to the Leslie–Gower colonization, 

this implies that the regional extinction will be unstable as 
long as the persistence equilibrium exists. In the case of the 

p
(n+1)

t+1
=

(1 − e)�
1 + c

∑n

j=1
x̂j

� dn+1p
(n+1)
t

1 + (di − 1)(sn + p
(n+1)
t )

.

(10)si =

�
(1 − e)di

1 + c
∑i−1

j=1
x̂j

− 1

�
1

di − 1
.

(11)�p(i) =
1

di

�
1 + ln

�
(1 − e)di

1 + c
∑i−1

j=1
x̂j

��
− si−1

(12)

𝜆i =
𝜕p(i)

t+1

𝜕p(i)t

����p(i)t =�p(i)
=

(1 − e)di exp(1 − disi)

1 + c
∑i−1

j=1
x̂j

�
1 − di

�p(i)
�
.

(1 − e)di exp(1 − disi−1)

1 + c
∑i−1

j=1
x̂j

persistence equilibrium, the expression simplifies even fur-
ther, as the expression (1−e)di exp(1−disi)

1+c
∑i−1

j=1
x̂j

= 1 . This implies that 

the eigenvalue is given by

For i = 1 , the equilibrium has the form:

The eigenvalue associated with this equilibrium is given by

This equilibrium will be linearly stable provided that 
d1 <

exp(1)

1−e
 . As a function of e, this expression is increasing 

in [0, 1]. This shows that for species 1, disturbance acts as 
a stabilizing force, by increasing the upper gap under which 
the population growth does not produce cyclic behavior.

Now we focus our attention to the behavior of species 2. 
For i = 2 , we first find x̂1 , which is given by the expression:

which gives us an expression for p̂(2) using Equation 11:

This has the eigenvalue

Then, this equilibrium will be stable provided that d2 
satisfies

Notice that for species 2, the effect of disturbance over its 
stability depends on the effect of competition of species 1. 
The right-hand side of the inequality will be decreasing in 
e if the inequality

is satisfied. If d1 > exp
(
−

1

2

)
1

1−e
 , then for any value of c > 0 , 

this expression cannot be satisfied. Otherwise, if

1 − di
�p(i) = ln

�
1 + c

∑i−1

j=1
x̂j

(1 − e)di

�
+ disi−1.

p̂(1) =
1 + ln((1 − e)d1)

d1
.

�1 = 1 − d1p̂
(1) = − ln((1 − e)d1).

x̂1 =
�p(1)d1 exp

(
1 − d1

�p(1)
)
=

1 + ln((1 − e)d1)

(1 − e)d1

p̂(2) =
1

d2

(
1 + ln((1 − e)2d1d2) − ln

(
(1 − e)d1

+c
(
1 + ln((1 − e)d1)

)))
−

1 + ln(1 − e)d1

d1
.

�2 = ln
(
(1 − e)d1 + c

(
1 + ln((1 − e)d1)

))

− ln((1 − e)2d1d2) + d2p̂
(1).

ln(d2) − d2
�p(1) > ln

(
1

1 − e
+

c
(
1 + ln((1 − e)d1

)
)

(1 − e)2d1

)
− 1.

c
(
2 log(d1(1 − e)) + 1

)
+ d1(1 − e) < 0
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then the inequality is satisfied.
If this inequality is satisfied, then as disturbance 

increases, p̂(2) can be stable at higher values of d2 . Thus, 
at high dispersal intensities of the top competitor, increas-
ing disturbance will tend to a less stable equilibrium for the 
bottom competitor, whereas at low dispersal intensities, for 
high enough competition values, decreasing disturbance will 
tend to a more stable equilibrium for the bottom competitor.

Proof of theorem 3

In order to simplify our analysis, we rescale our variables 
in Equation 5 to have the following functional form for the 
colonization function:

In this case, the Allee effect colonization function is pro-
vided by Equation 13; solving for fixed points p̂(i) ≠ 0 we get 
that those fixed points are the real roots to the parabola in p

where

Notice that the terms A, C are both positive. This implies 
that the real roots of this parabola, if any, share the same 
sign. In particular, there exist two positive fixed points for 
species i if B > 0 and B2 > 4AC . We can explicitly write 
these fixed points as

We can also find an explicit expression for the i-th eigen-
value as

c >
−d1(1 − e)

2 ln(d1(1 − e)) + 1

(13)

g
�
p
(1)
t ,… , p

(i)
t

�
= gi

�
p
(1)
t ,… , p

(i)
t

�
=

dip
(i)
t

1 +
∑i

j=1
p
(j)
t

p
(i)
t

mi + p
(i)
t

(14)Ap2 − Bp + C = 0

A = 1 + c

i−1∑
j=1

x̂j

B = (1 − e)di −

(
1 + c

i−1∑
j=1

x̂j

)(
1 + si−1 + mi

)

C =
(
1 + si−1

)
mi.

(15)

�
p
(i)
± =

(1 − e)di

1 + c
∑i−1

j=1
x̂j

− (1 + si−1 + mi)

±

�����
�

(1 − e)di

1 + c
∑i−1

j=1
x̂j

�2

+ (1 + si−1 − mi)
2 − 2(1 + si−1 + mi).

For any i, in the case of the regional extinction p̂(i) = 0 we 
have that 𝜆i = 0 < 1 . Now, let r be the root term in Equa-
tion 15. Then, if we let p̂(i) = p̂(i)+ , then we can write �i as 
follows:

The first term can be verified to be smaller than 1/2, whereas 
the second term is clearly smaller than 2. Therefore, 𝜆i < 1 . 
A similar procedure, using the fact that the sign of r changes 
throughout the calculation, shows that if p̂(i) = p̂(i)−

 , then 
𝜆i > 1 . This shows that the Allee effect behavior is preserved.

The case for n = 1 was previously studied in Chow and 
Jang (2014). Using those results and following a similar 
argument to Theorem 1, we prove the theorem.
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+

mi

mi +
�p(i)

�
.

𝜆i =
1 + si + mi − r

1 + si

�p(i)+
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+
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