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a new tool for modeling ecological networks across
spatial scales
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Abstract Stochastic ecological network occupancy
(SENO) models predict the probability that species will
occur in a sample of an ecological network. In this review,
we introduce SENO models as a means to fill a gap in the
theoretical toolkit of ecologists. As input, SENO models
use a topological interaction network and rates of coloni-
zation and extinction (including consumer effects) for each
species. A SENO model then simulates the ecological
network over time, resulting in a series of sub-networks that
can be used to identify commonly encountered community
modules. The proportion of time a species is present in a
patch gives its expected probability of occurrence, whose
sum across species gives expected species richness. To
illustrate their utility, we provide simple examples of how
SENO models can be used to investigate how topological
complexity, species interactions, species traits, and spatial
scale affect communities in space and time. They can
categorize species as biodiversity facilitators, contributors,

or inhibitors, making this approach promising for
ecosystem-based management of invasive, threatened, or
exploited species.
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Introduction

Artist Paul Klee felt “Nature is garrulous to the point of
confusion”. This confusion inspires biologists as well as
artists, and ecologists have devoted an increasing amount of
research to complex networks of interacting species and the
implications of network topology and dynamics for
ecological function and stability (Dunne 2006; Montoya et
al. 2006; Bascompte 2009). Ecological networks character-
ize numerous direct and indirect effects that are difficult if
not impossible to predict solely from studies of predator–
prey dynamics or competition among guild members
(O'Gorman and Emmerson 2009). The challenge of
analyzing networks is that the dimension of the problem
increases rapidly with species richness. In this paper, we
describe a new approach, stochastic ecological network
occupancy (SENO) models, for modeling ecological net-
works. The approach integrates species extinctions and
colonizations into network modeling. Tracking occupancy
in networks over time provides the expected probability
that each species will occur in a sample (Fig. 1).

There are many ways to assess the stability or persis-
tence of ecological networks. An early approach, still in
wide use today, is the analysis of various properties of a
community matrix (Levins 1968). For instance, loop
analysis takes estimates of direct interactions among
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species and uses matrix algebra to estimate how a
community will respond to perturbations. A second
approach, as implemented more recently for many-species
systems, is simulation of food-web dynamics (Yodzis and
Innes 1992). These models, which allow for effects of
consumers on resources and vice versa, yield detailed
information on biomass or population density over time for
each species in the network (Chen and Cohen 2001; Brose
et al. 2006; Berlow et al. 2009). Such models are high
dimensional as they require a variety of parameters for vital
rates, density dependence, functional responses, and contact
rates. A third promising approach uses metacommunity
analysis (Leibold et al. 2004, Holyoak et al. 2005,
Amarasekare 2008). Instead of abundances, metacommun-
ity models track either the proportion of patches occupied
by each species in a network (Melian and Bascompte
2002), each of the 2n possible sub-networks that make up a
network (Holt 1997), or each link in a network (Pillai et al.
2010), considering, for instance, whether these proportions
are stable. So far, most metacommunity models have
focused on simple networks within a patch (but see Fortuna
and Bascompte 2006). A fourth approach, robustness
analysis, also considers species presence-absence, but
focuses on changes in network structure due to loss of
species and the secondary extinctions that result from
resource loss (Solé and Montoya 2001; Dunne et al.
2002). This topological approach to simulating disassembly
of ecological communities requires few assumptions about
how species interact, and thus allows analyses of complex
species dependencies not amenable to dynamical modeling
(Dunne and Williams 2009). SENO models borrow
elements from all of these approaches to provide an
additional, complementary tool for ecologists studying
ecological networks.

SENO models: overview

Patch occupancy and species probabilities

The probability of a species being present in a sample (or
occupying a patch) equals its prevalence among similar
samples. For instance, niche distribution models such as
GARP and MAXENT use associations between species
records and habitat variables to generate maps that predict
the chance that a species will occur at a particular location
(Phillips et al. 2006). Layering niche maps of multiple
species estimates the expected species richness at a
particular location (Young et al. 2009).

Species probabilities are a key output of patch occupancy
models (Hanski and Gilpin 1991). Patch occupancy models
assume that characteristics of the species, the landscape,
and the spatial scale affect colonization rates. Each species
also suffers a background extinction rate (e.g., due to the
environment, demography, or anthropogenic effects),
which, like colonization, could depend on species traits
and spatial scale. The distinguishing feature of a SENO
model from a metapopulation model is that extinction rates
also depend on a complex network of interactions with
other species.

Resource requirements

Consumers need resources to persist. In a patch occupancy
model, a consumer requires concurrent occupancy of at
least one resource. Generalist consumers are less likely to
suffer from the loss of a resource if they are able to switch
to, or increase reliance on, other resources (Solé and
Montoya 2001; Dunne et al. 2002). Thus, highly connected
networks filled with generalists are more robust to
secondary extinction (Solé and Montoya 2001; Dunne et
al. 2002). For the same reason, generalists should be able to
colonize a wider range of patches.

Box 1. The challenge of modeling resource dependence

Mean-field approaches exist for handling resource depen-
dencies in an occupancy model. The equilibrium model of
island species richness (MacArthur and Wilson 1967)
provides an example for occupancy, pi, of species i in a
patch with a constant rate of colonization, c, from an
outside region, and a probability of extinction within the
patch, e, as δpi/δt=c(h−pi)−pi e, and pi*=h c /(c+e). Here,
h might represent the probability that resources necessary
for persistence are present. If resources are substitutable and
independently distributed, h=1−Π(1−pj), where pj is one
of potentially several substitutable resources. For example,
imagine a carnivore that feeds on two herbivores, each of
which, at equilibrium, has a 0.25 probability of occurring in
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Fig. 1 Illustration of a SENO model from t to t+20. Extinctions
(solidus) are stochastic with expected rates. In comparison, secondary
extinctions (ex mark) occur instantaneously. For a chain of three
species, a background extinction of species B results in a secondary
extinction of species A. Species B can recolonize and persists until
species C suffers a background extinction. The network then collapses
until species C colonizes. With C present, B can recolonize, which
makes it possible for A to colonize. However, if A then drives B
extinct, only C remains. The time-weighted occupancy of each species
divided by the total time of the simulation gives the probability of
observing a species in a sample (listed to the right of the diagram)
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a patch. Assuming the occupancies of the herbivores are
independent of each other, the probability, h, of at least one
herbivore being present in a patch=0.44.

However, in ecological networks, species occupancies
are often not independent. In the above example, imagine
that both herbivores specialize on a plant that has a 0.75
probability of occurring in a patch (i.e., for the herbivores,
h=0.75). Given pi*=0.25 for each herbivore, and 0
possibility of occupying the patches without their host
plant, each herbivore must have a 0.33 occupancy in
patches with the plant. Their co-dependency on a shared
resource leads to a positive correlation between the
herbivores among patches. Due to this correlation, the
probability of at least one herbivore occupying a patch is
0.5(1−[1−0.33]2)=0.275, less than the 0.44 expected by
independent assortment. This is a simple example of using
Bayesian network analysis (Jensen 1996) to solve conditional
probabilities in a food web. Though Bayesian networks are
ideal for modeling resource dependencies in a food web,
they can only solve directed acyclic graphs, a property
violated by consumer effects on resources (see below).
Stochastic occupancy models can simulate how resource
dependencies influence species occupancy. With enough
replication, the average of a stochastic model converges on
the expected probabilities of a Bayesian network, but does
not require the constraining assumption that consumers
cannot affect resources. Stochastic occupancy models are
relatively easy to program and have a history in the
ecological literature (Lande et al. 2003). END OF BOX

Although they have not been described as such, most
robustness analyses are specialized stochastic occupancy
models (specialized in that they lack colonization events and
they remove a single species at each time step). A SENO
model extends robustness analysis so species can colonize
patches and extirpate other species. In addition, SENOmodels
track transitions in continuous time instead of removing
species as a series of inevitable events. One measure of
network robustness to secondary extinction is the proportion
of species that need to be removed to reduce species richness
by some percentage, such as 50% (Dunne et al. 2002;
Srinivasan et al. 2007). To measure robustness in a SENO
model, one could first estimate the conditions (e.g., spatial
scale, see below) at which expected species richness in a
network of S species falls to 50% and then determine the
expected species richness at this spatial scale in the absence
of species interactions (see the “Methods” section), perhaps
decomposing bottom-up and top-down effects.

Consumer pressure

A consumer can drive a preferred resource species to
extinction if the resource lacks refuge from the consumer
(Gonzalez-Olivares and Ramos-Jiliberto 2003). Such “top-

down” extinctions have been demonstrated experimentally
(Schmitz 2003), and can occur on islands after invasion
(Hadfield et al. 1993). For this reason, enemy-free space is
an important element of the realized niche (Hopkins and
Dixon 1997). Furthermore, impacts on shared resources are
the basis for interspecific competition, which also con-
strains the realized niche (Guisan and Thuiller 2005).
Strong effects of consumers are ubiquitous in ecological
systems: crows can eliminate wood pigeons (Tomialojc
1978); nest predation by skunks strongly depresses water-
fowl abundance (Greenwood 1986); and sea lamprey nearly
extirpated lake trout from the Great Lakes (Mills et al.
2003). These consumer-mediated direct effects can indi-
rectly alter ecological network structure and dynamics:
dingoes can greatly reduce red kangaroo populations,
altering plant communities (Caughley et al. 1980); sea stars
exclude mussels from the lower intertidal, permitting
colonization of fewer dominant space holders (Paine
1966); and myxoma virus reduces rabbit abundance and
changes plant communities (Fenner and Ratcliffe 1965). To
incorporate such consumer-resource dynamics, ecologists
have often used two-species consumer-resource models
(Lotka 1925), or three- to four-species community modules
(Holt 1997; McCann and Hastings 1997). However, these
same species, when analyzed in a complex network (Chen
and Cohen 2001; Brose et al. 2006; Berlow et al. 2009)
might have opposite associations due to competition and
other indirect effects (Yodzis 1998). Adding consumer
effects allows SENO models to address trophic cascades,
apparent competition, and competition for shared resources.

How might consumer effects vary? Predators have
higher impacts per prey when they feed on fewer prey
species (Edwards et al. 2010). This could occur if specialist
consumers are more efficient at tracking and consuming
their resources (e.g., Yamada and Boulding 1998), leading
to a tradeoff between generality and impacts on resources
that is akin to the “jack of all trades, master of none”
concept (MacArthur 1972). Some parasitic organisms
(particularly parasitoids and parasitic castrators) can strong-
ly affect their hosts (Lafferty and Kuris 2009), and there are
conditions under which parasites can cause host extinction
(de Castro and Bolker 2005). However, most parasites are
self-limiting within a consumer, making it less likely that
they would cause extinction. For instance, crowding within
a host can strongly limit intestinal worms (Read 1951), and
endothermic hosts usually clear pathogens and gain
permanent immunity, limiting the effect of pathogens at
the population level (Norman et al. 1994).

Box 2. Modeling consumer effects

A food web can be represented by a matrix, L, where the
column and row headings are the species list and an entry
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of 1 in cell Lij indicates that the species in column j feeds
on the species in row i, whereas a 0 in cell Lij indicates no
interaction. In a SENO model, we construct an additional
matrix, K, that considers the effect of feeding links as a rate
such that Kij represents the rate that a consumer, j, will
extirpate a resource.

Incorporating the extent of competitive exclusion among
basal species requires a pair of matrices. Mij is an estimate
of resource overlap (from 0 to 1) between species i and
species j (MacArthur and Levins 1967). Because compet-
itors can differ in their resource use, Mij is not necessarily
the same as Mji. For instance, a species with broad resource
requirements can entirely overlap with a specialist but not
vice versa. In addition, Dij is the proportion of the overlap
in resources between species j and species i that is obtained
by species j (and Dji+Dij=1). A measure of the rate that
species j will competitively exclude species i is, therefore,
DijMij. For Dij=0.5 (our assumption later), species are equal
in their competitive abilities. Although we focus on basal
taxa, competition could occur among consumers of resour-
ces that are not explicitly identified in a network (e.g.,
detritus, space on a substrate, nesting sites).

Scale, parameters, and expected species richness
in a sub-network

All ecological networks have an implicit spatial scale within
which the member species interact (McCann et al. 2005). For
instance, empirical trophic networks have been constructed
for large areas such as the North East Atlantic Shelf (Link
2002) or small habitats such as bromeliads (Starzomski et
al. 2010). Not surprisingly, aspects of network structure
such as species and link richness and other raw property
values can change when viewed at different spatial and
temporal scales. For instance, Warren (1989) found differ-
ing sub-networks as a result of sampling effects, habitat
heterogeneity, and seasonality. He constructed a 36-species
food web for Skipwith pond, but, by sampling at finer
spatial scales (five sweep nets, monthly on both sides of the
pond) found sub-networks of 12–32 species that varied
over time. These sub-networks could be further divided into
sub-networks associated with a depauperate open water
habitat and a rich pond margin habitat. Species interactions
like those in samples from Skipwith pond can scale up from
simple community modules (Holt 1997) to complete food
webs that persist over larger scales (Pillai et al. 2010;
Stouffer and Bascompte 2010). For this reason, all else
being equal, larger systems generate richer ecological
networks. Larger lakes (Post et al. 2000) and islands
(Takimoto et al. 2008) can also have longer food chains.

Rosenzweig (1995) gives two reasons why species
richness increases with spatial scale. First, a sampling
effect occurs within a patch because the higher a species’

density, and the greater the area under investigation, the
higher the probability the species will occur in the sample.
Second, the larger the sample, the greater the opportunity
for habitat heterogeneity or limited dispersal within the
sample (Shen et al. 2009). The increase in complexity in
networks at larger spatial scales is not simply the result of
combining species–area curves among taxa. In particular,
upper trophic levels rely on the presence of their resources
and this dependency increases the slope of the species–area
relationship for species at higher trophic levels (Holt et al.
1999). Large predators are doubly sensitive to spatial scale
due to their body size and dependency on resources that are
more likely present in larger patches (Srivastava et al.
2008).

Species transition rates should be a function of spatial
scale, and this may interact with body size. Extinction rate
might decrease monotonically with patch area, whereas
colonization rate might increase linearly (Hanski 2008).
Empirical observations of metapopulations indicate that the
probability of extirpation is higher in smaller patches (e.g.,
Lafferty et al. 1999). The way species vary with spatial
scale likely changes with body size because larger species
are less densely aggregated and require greater minimum
areas to persist (Damuth 1981). The extent that competitive
exclusion occurs could also change with scale. Resource
overlap should decrease with spatial scale if larger areas
have more habitat types, increasing the partitioning of
otherwise limiting resources (Rosenzweig 1995). Further-
more, smaller organisms interact with a finer-grained
environment and should find a particular area more
heterogeneous than would large organisms (Kotliar and
Wiens 1990). Direct consumer effects could also change
with spatial scale, body size, and aspects of the consumer-
resource interaction. Enemy-free space includes portions of
the habitat that are not available to consumers, and
increasing spatial scale elevates the chance that a sample
will include some enemy-free space (Comins et al. 1992).
For these reasons, if a consumer and resource co-occur, the
probability of the consumer driving the resource extinct
should decrease at larger spatial scales (Holyoak and
Lawler 1996; Warren 1996). Larger consumers have greater
energetic demands and, all things being equal, have greater
per-capita capacity for consumption (Brown 1995). There-
fore, the effect of a consumer might increase with its
relative body size (Reuman and Cohen 2005). Finally,
larger resources might require larger and thus less-common
refuges, increasing their susceptibility to consumers at
smaller spatial scales. Appendix 1 provides an example of
how the probability of finding a particular species in a
network could increase with spatial scale and how this
scaling might differ with body size.

In short, because spatial scale matters for ecological
networks, transition rates in SENO models should be
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scalable. Appendix 1 indicates how we derived scaling
functions using metapopulation theory and other logical
relationships. In the results, we explore in detail how
making rates a function of spatial scale greatly affects
model outputs.

SENO models: example

Model structure

In technical jargon, a SENO model is a depth-first search
embedded in a first-order continuous-time Markov process
applied to species occupancy in an ecological network. A
species vector tracks occupancy with a 1 indicating a
species is present or a 0 indicating a species is absent. Over
time, species can transition between being present or
absent. Background extinction rates represent species-
specific environmental, demographic, or anthropogenic
effects that lead to species loss. Colonization is the rate of
entry into the patch or sample area. For simplicity, we
assumed colonists arrive at a constant, species-specific rate
from a larger, unspecified location. Up to this point, we
have a multi-species stochastic patch occupancy model for
a single island near a mainland (Appendix 1).

To accommodate species interactions requires an empir-
ical or theoretical food web. For illustration purposes, we
used the niche model (Williams and Martinez 2000) to
generate a simple ecological network with three basal
species and seven consumer species, coded in order of their
position along the niche axis. This network had 17 directed
trophic links (Fig. 2), represented as an adjacency matrix
with a row and column for each species, 1 representing the

column species feeding on the row species and 0
representing the absence of a link. For every link between
a consumer and a resource in the adjacency matrix, there
was rate of consumer-driven extinction for the resource
(Box 2). Because basal nodes do not have explicit resources
(e.g., no link to water or nutrients) in most topological
networks, there is no way for them to deplete these resources
and compete. Our indirect solution was to allow interaction
among basal species (Box 2). Rates of competitive exclusion
among basal species were as in Appendix 1.

Species transition rates (colonization, background ex-
tinction, consumer exclusion, competitive exclusion of
basal species) can be functions of spatial scale, the body
size of the focal species, and characteristics of other species
directly linked to the focal species, such as their body size,
relationship with the focal species (consumer, resource or,
for basal species, competitor), and strength of interaction
with the focal species (weak or strong consumer pressure
and basal competition). Appendix 1 describes the rate
functions we used. Rates, transitions, and species comprise
a rate table that sets the rules for the simulation. During a
simulation, many potential transitions are irrelevant and it
increases efficiency to ignore them. Specifically, we
updated the table between transitions to exclude coloniza-
tion for species currently present and exclude extinction
related to any species currently absent. One could also
update the table between transitions to simulate disturban-
ces, climate change, restoration, controlled extirpations, etc.
For instance, if climate affected the probability of extinction
and climate changed over time, background rates of
extinction could then change with time and be matched to
the time of each transition (so long as transition rates were
more frequent than changes in climate).

An iteration of a SENO model comprises a transition
followed by secondary extinctions. Randomly sampling
from the exponential distribution of the transition rates
generates expected waiting times for the possible transitions
from which the transition with the shortest wait time is
selected. After implementing the selected transition, we
updated the network and then retained only those consumers
with resources.

There are several ways stochastic occupancy models can
incorporate secondary extinctions. Computer programs can
iteratively solve secondary extinctions, but this can be
inefficient for large networks. A more sophisticated
approach from graph theory is to use a depth-first search
of the rooted network (Allesina et al. 2005). Rooting a
network involves assigning a basal species as a root node as
a resource (Allesina et al. 2009). For instance, sunshine is a
reasonable root of many ecological networks. A depth-first
search starts at the root and continues up each chain until it
dead-ends at a node (Tarjan 1974). Breaks in a chain due to
an extinction can leave higher trophic levels without a chain
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Fig. 2 Graphical representation of an example ecological network
used in the analyses. Image produced with Network3D software
written by R.J. Williams and available from the Pacific Ecoinformatics
and Computational Ecology Lab, www.foodwebs.org. The network
was randomly created by the niche model (Williams and Martinez
2000) and has three basal, seven consumer species, and 17 links.
Species are spheres whose volume represents probability of occur-
rence from the intermediate spatial scale (A=25). Links are tapering
lines with the wide end coming from the consumer and tapering
toward the resource. The list of links (consumer, resources) is: [(3, 1),
(6, 1), (9, 1), (10, 2), (10, 3), (10, 6), (10, 4), (10, 8), (10, 5), (10, 7),
(4, 1), (8, 2), (8, 3), (8, 1), (7, 2), (7, 3), (7, 4)], vertical height and
shading represent weighted trophic level. Number codes are in order
of body size, 1 being smallest
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to the root. Likewise, colonists that cannot link to a chain
connected to the root will not be able to persist. Therefore,
only species accessed by a depth-first search will persist
after a transition. This process must be recursive if species
have multiple life history stages because the loss of one
stage necessarily leads to the loss of all other stages.

If the transition was a colonization, the depth-first search
prevented colonists from establishing if they lacked
resources. If the transition was an extinction, the depth-
first search eliminated species in chains wholly dependent
on the lost species. We saved the resulting species vector
and point in time as a record of the iteration before
calculating a fresh set of waiting times to repeat the
iteration.

We tracked the presence and absence of each species for
10,050 transitions. We chose to delete the first 50
transitions from the analyses to reduce the influence of
starting the simulation with a complete network. Species
probabilities were the proportion of time a species was
present in a simulation (relative frequency weighted by time
interval present). The supplementary material provides an
annotated Mathematica™ demonstration that can be run
without a Mathematica™ license.

Questions investigated

What questions can SENO models address? Comparisons
could be made among networks, such as investigating the
association between network complexity (richness and
connectance) and measures of stability (such as robustness),
but that is outside the scope of this paper. To illustrate how
a SENO model can investigate species occupancies within a
network, we considered: (1) the distribution of sub-network
types, (2) the influence of spatial scale and body size, (3)
robustness to species interactions, and (4) species interactions
across spatial scales (either as input, as revealed by species
removals, or as would be observed from correlations). We
note that this effort is intended to show the utility of SENO
models more than to test novel hypotheses.

To graphically illustrate the sub-networks that result
from a SENO model, we saved an example of the species
vector for 200 transitions at the intermediate spatial scale
(A=25). For the small, intermediate and large spatial scales,
we also counted the number of unique sub-network types
that occurred in 10,000 transitions, noting which types were
disproportionately common in a simulation.

We then investigated two basic patterns from ecology
that we assumed would arise from the models: a body size–
abundance curve and a species–area curve. We plotted the
probability of each species against its body size (100n,
where n was the niche value of the species in the niche
model) at three spatial scales (area=2.5, 25, 250) to test the
expectation that larger species would be less frequently

observed, particularly at small spatial scales. To evaluate
the assumption that richness would increase with spatial
scale, we conducted simulations across a range of scales,
and plotted the probability of each species as a function of
spatial scale (logged over four orders of magnitude, A=1 to
1,000), generating a stacked species–area curve.

To estimate the robustness of the ten species network to
species interactions, we determined the spatial scale at
which species richness was 50% of the original network
(A50) so we could estimate network robustness. For a
comparative estimate of the background expected species
richness in the absence of species interactions at A50, we
used Sb ¼ Σ 1� Eb= Eb þ Cð Þ½ �, where C and Eb are rates
of colonization and background extinction at A50. Robust-
ness, R, to species interactions in general (not just
secondary extinction due to resource loss) was, therefore,
R=(S–Sb)/S, and a network is completely robust to species
interactions if R=0.5.

We investigated interactions and associations among
species in the network at different spatial scales (Area=2.5,
25, 250). This was done in three ways. First, the direct effect
of one species on the occupancy of another was predicted
from interactions between species as specified from the
network structure and model inputs. Here, the effect of a
resource on a consumer was 1/g where g was the generality
of the consumer. The rate a consumer extirpated a resource
or one basal species extirpated another was standardized to a
value between 0 and 1, using the cumulative distribution
function of the exponential distribution of the corresponding
rate (for T=1) in the rate table. Second, to determine the
effect of one species on another in the context of the network
(e.g., the combined action of direct and indirect effects), we
enacted individual species removal experiments. Each trial
excluded a single species after which a simulation was run
and expected species richness of a sub-network calculated.
Here, the value of a cell also corresponded to the
standardized effect of the species in the column on the
species in the row. Specifically, the probability of occurrence
of each species in a row, Pr, was calculated for the complete
network. That species’ probability was then recalculated after
removing the species in the column from the network, (Pr-c).
The effect of the column species on the row species was
standardized between 1 and −1, as (Pr−Pr-c)/Pr, for Pr>Pr-c,
otherwise (Pr−Pr-c)/Pr-c, providing a measure, for each cell,
similar in principle and scale to a correlation coefficient.
Third, to determine associations among species as might be
observed in samples from nature, we generated a phi
correlation matrix among species across the sub-networks
resulting from the simulations.

We compared the direct and indirect effects of a species
on the expected species richness of a sub-network (for A=
25). We estimated expected species richness from simu-
lations where we removed a target species, c, (∑P–c). The
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direct contribution of species, c, to the expected species
richness of a sub-network was simply its probability of
occurrence, Pc. The effect of species c on the other species
in a sub-network was ∑P−∑P–c. We then plotted each
species’ direct vs. indirect contribution to expected species
richness of a sub-network, noting which species facilitated
expected species richness of other species, which species
impacted less than one other species when present
(therefore contributing to net species richness), and which
species led to a net loss of expected species richness
because they impacted more than one other species when
present.

Results

Although we used a single network to illustrate SENO
models, the general conclusions are robust to a variety of
networks. Increasing background extinction, basal compe-
tition, and consumer effects decreased expected species
richness in a sub-network. At small spatial scales, basal
competition and the background rate of extinction were
high (particularly for large species), and consumer impacts
on resources were high, (particularly for large consumers).

Simulations produced many sub-network types. As an
example of the non-equilibrial dynamics produced by a
simulation, we present a segment of the time series for
spatial scale A=25. Even for this small window of
transitions, richness in a patch ranged from zero to nine
species (Fig. 3). For the ten-species network, there are up to
210 possible topologies (or sub-networks). The distribution
of sub-network types varied with spatial scale, with the
intermediate scale having the greatest diversity of sub-
network types (Table 1).

Spatial scale and body size affected the results. A strong
negative association between body size and species

prevalence occurred, and the slope of this relationship was
steepest at the intermediate scale (Fig. 4). The expected
species richness in a sub-network increased with spatial
scale as one would expect from a species–area curve with
larger species being disproportionately missing at smaller
spatial scales (Fig. 5). Expected species richness was 5
(50% of total) at a spatial scale of A=14.1. For A=14.1,
expected species richness after ignoring species interactions
(Σ 1� Eb= Eb þ Cð Þ½ � was 6.5. Therefore, in our example
network, robustness to species interactions was 0.45 (out of
0.5).

Inputs to the model suggested certain types of associa-
tions, but indirect effects altered how species affected each
other. Row 1 of Fig. 6 illustrates how the inputs to the
model would have predicted species interactions. There
were expected positive effects of basal species on consum-
ers, competition among basal species, negative effects of
consumers on resources (which decreased with spatial
scale) and positive effects of resources on consumers. The
species removal experiments indicated that indirect effects
led to different patterns from the inputs (Fig. 6 row 2). For
instance, at the smallest spatial scale, some expected strong
consumer effects were weak because the consumers
infrequently occurred in a sub-network. In addition,
expected neutral interactions among species were some-
times negative due to indirect effects such as competition
among consumers. At larger spatial scales, consumer effects
on resources were less important, and resource control
dominated interactions. Correlations among species in the
outputs of the simulations did not match the inputs or the
results of the species removals. Most correlations among
species were relatively weak (Fig. 6 row 3). Only a few
species pairs were negatively correlated and the few strong
correlations were positive, suggesting resource control was

Fig. 3 The sequence of state transitions numbered 1,001 to 1,200 out
of a 10,000-transition simulation of the ten-species network in Fig. 2.
The area between horizontal lines represents a species (i.e., species
are stacked with species 1 at the bottom and species 10 on the top).
Dark fill indicates species occupancy in the food web. Transition
sequence (not time) is along the horizontal axis. The right vertical axis
label is the prevalence of each species in the sample (probability of
occurrence), which is the relative frequency of each species among the
transitions weighted by the duration of the interval between transitions
(as in Fig. 1)

Table 1 Characterization of sub-network types at three spatial scales
from 10,000 iterations

A=2.5 A=25 A=250

Sub-network types 68 289 69

Singletons 20 60 19

Species in most common type No species 1–8 All species

Number of common types 3 14 3

Rel. freq. of common types %74 50% 75%

Sub-network types represents the number of unique sub-network types
seen (out of 1024 possible types). Singletons is the number of sub-
network types observed only once per spatial scale. Their abundance
suggests that some rare subtypes were missed in 10,000 iterations.
Species in the most common type is the species, by species code,
comprising the most common sub-network type. Number of common
types represents the number of sub-network types that were dispro-
portionately common. Relative frequency of common types is the
percentage of times the common types occurred in 10,000 iterations
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greater than consumer control. Correlations increased in
strength at larger spatial scales because a reduction in
consumer impacts left only positive associations between
resources and consumers.

To investigate how each species affected the network as
a whole, we plotted direct versus indirect contributions to
expected species richness for the ten species (A=25). This
approach indicated how species could facilitate, contribute
to, or reduce expected species richness (Fig. 7). The two
widely consumed basal species (1 and 2) had an indirect
positive contribution to the probability of other species
occurring in a sub-network. We refer to such species as
“biodiversity facilitators”. Species 1 might even qualify as a
foundational species due to its strong positive effect on
expected species richness in a sub-network. Biodiversity
facilitators tended to be small-bodied species fed on by
many consumers. Most species had slightly negative effects
on the other species in a sub-network, but, because the
expected richness of the sub-network was still greater in their
presence, we refer to them as “biodiversity contributors.”

Species 10 reduced biodiversity. We therefore considered this
large top predator a “biodiversity inhibitor”.

Discussion

Stochastic ecological network occupancy models share
elements of several past approaches. Like loop analysis,
SENO models require an interaction matrix. They are
similar to population dynamics models in their ability to
account for consumer effects and basal competition.
However, like patch models and robustness analyses,
SENO models track occupancy, not density. A SENO
model is also like a robustness analysis in its ability to
handle complex networks and its reliance on stochastic
modeling. Like a Bayesian network analysis, a SENO
model solves the challenge of conditional probabilities, but
through replication and averaging instead of algorithms.
Like metapopulation models, SENO models allow transi-
tion rates to vary with spatial scale.
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SENO models output a series of sub-networks and their
durations, helping to visualize temporal dynamics and
identify persistent sub-networks. Averaging sub-networks
(weighted by their durations) estimates the probability of
species occurrences. Manipulating inputs helps to estimate
robustness of the network, describe species–area relation-
ships, and identify the roles of individual species in a
network. However, SENO models do not include other
information of interest to ecologists such as system-wide
stability criteria, densities, biomass, and consumption rates.
Thus, SENO models are on a continuum between the high-
input requirements and rich yield of dynamic models and
lower input requirements and limited yield of traditional
robustness analysis. We see SENO models as complement-
ing, not supplanting, existing approaches for analyzing
ecological networks.

We used a simple food web to illustrate SENO models,
but additional biological detail is easy to add. A SENO
model on a personal computer can analyze relatively
complex networks with hundreds of species (e.g., 10,000
iterations of a 100-species network presently take 1–
15 min.). Minor modifications to our example could allow
several additional types of complexity. Non-substitutable
resources (i.e., to persist, a species must have resources A
and B, not A or B) could represent life stages with different

resource requirements. Dependency loops between species
that do not deplete each other could indicate mutualisms
(e.g., pollination). Resources that consumers cannot extir-
pate could represent subsidies that lead to donor control of
consumers (Polis et al. 1997). Non-substitutable resources
that are not subject to extirpation by consumers could
specify non-trophic dependencies, like species that provide
habitat (e.g., hosts to commensals, trees that provide nest
sites for birds). Also, specifying habitat types as nodes
could allow more explicit consideration of habitat depen-
dencies. Finally, instead of colonists coming from a
regional pool (our island-mainland model), patches could
be linked to allow for metacommunity dynamics. SENO
models could occur within a network of patches, for
instance, by embedding them within a stochastic patch
occupancy model. Several other system or question-specific
alterations are possible.

Although many studies have considered how food-web
structure changes (or does not change) with increasing
species richness (Dunne 2006), few have explicitly ex-
plored if and how the structure of ecological networks
changes with spatial scale (but see Martinez and Lawton
1995; McCann et al. 2005; Pillai et al. 2010). Given the
assumption that background, resource, and consumer
effects decrease with scale, the direct effect of a species
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on the expected species richness in a sub-network
approaches unity with increasing spatial scale, whereas
the indirect effect declines to zero for most species. This
suggests that SENO models can indicate how predictions
for some ecological hypotheses will vary with the scale of
observation. For instance, this spatial scaling phenomenon
could help resolve a conflict in the literature surrounding
the effects of invasive species. Although most conservation
biologists argue that control of invasive species protects
biodiversity, invasive species can contribute to species
richness because their addition to regional faunas offsets
their indirect impacts on native species (Sax et al. 2002).
SENO models might indicate that impacts of invasive
species on expected species richness are likely to be scale-
dependent, with strong negative effects (biodiversity inhi-
bition) possible on local scales but positive effects
(biodiversity contribution), such as measured by Sax et al.
(2002), at regional scales (as happens for species 10 in our
example).

SENO models might help generate spatial maps of
networks based on species distributions. For instance,
applying habitat suitability maps for all species in a region
along with their potential links creates the possibility of
generating spatially explicit SENO models where the back-
ground probability of extinction for each species corresponds
to the suitability of the habitat at that point. SENO models

could also be used to explore temporal patterns, which could
be useful for studying restoration and resilience.

The sub-network types in our simulations suggested the
network was a mosaic comprised mainly of a few common
sub-networks (Kondoh 2008) and several rare sub-networks.
For instance, a food web of Costa Rican bromeliad habitats
has 70 invertebrate species but sub-networks in individual
bromeliad plants typically have five to 20 species (Starzomski
et al. 2010). Much work has been done on the dynamics of
small networks such as tri-trophic food chains and slightly
more complex modules that incorporate omnivory, exploit-
ative competition, and apparent competition, but less is
known about how these modules combine to form larger
networks (Stouffer and Bascompte 2010). One idea is that
food webs might be formed primarily from inherently stable
modules, but less stable modules can also persist when they
are integrated into webs in ways that are stabilizing (Kondoh
2008). Another view is that mobile predators couple sub-
networks as they move across a landscape (McCann et al.
2005). SENO models can help address these hypotheses by
indicating which community modules represented in a
network are most likely to persist as sub-networks. In our
example, sub-networks were not random subsets of the parent
network: they clustered, and a few topologies were both
frequent and durable (see Allesina and Pascual 2008).
Clusters of similar sub-networks might represent alternate

10
9 8 7

6 54 3

2

1

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

Direct effect on expected species richness

facilitators

contributors

inhibitors

Fig. 7 Individual species effects on expected species richness in a
sub-network. The effect of each species on expected species richness
is parsed into the probability that a species occurs (horizontal axis)
and the indirect effect of the species on the other members of the sub-
network (vertical axis). Numbers indicate species codes from Fig. 2.
Two lines divide the space into three qualitative outcomes. Biodiver-
sity facilitators have a net positive indirect effect on other species.

Biodiversity contributors have a net negative indirect effect on other
species, but their own presence (their direct effect) outweighs this
negative effect. Biodiversity inhibitors are species that have stronger
net indirect effects than direct effects. Lower expected species richness
occurs with the presence of biodiversity inhibitors and greater
expected species richness occurs with the presence of biodiversity
facilitators and contributors
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states, and it seems possible that the colonization or
extinction of key species might result in rapid wholesale
shifts in the community toward a different cluster of sub-
network types.

SENO models are a convenient way to make effect maps,
like Fig. 6, for illustrating the roles of species in ecological
networks. Inputs to the model did not directly predict how
species interacted, suggesting that complex indirect effects
can overwhelm direct effects in food webs. This, of course,
is a main argument for studying species interactions in the
context of ecological networks. Correlations among species
(such as the observations ecologists commonly make) did
not match interactions among species for two reasons. First,
some associations might be non-causal. For instance,
variation in a predator could lead to positive correlations
among prey. Second, opposing effects cancel each other,
obscuring how a resource can benefit a consumer but also be
depressed by that consumer.

SENO models allow the categorization of species by their
combined effects on the network. The classification of
biodiversity facilitators, contributors, and inhibitors might be
useful for determining which native species should be targeted
for preservation (e.g., facilitators), and which introduced
species should be targeted for control (e.g., inhibitors). We
suspect that this might lead in some cases to counterintuitive
results. For instance, do large predators tend to be facilitators,
contributors, or inhibitors of biodiversity? How about para-
sites? Does this change with spatial scale?

SENO models can estimate network metrics such as
trophic level and the related concept of food-chain length, a
topic of abiding interest for ecologists (Post 2002a, b;
Williams and Martinez 2004) and with important implica-
tions for bioaccumulation (Kelly et al. 2007). The trophic
level of a species is a measure of how many times chemical
energy is converted into biomass via trophic interactions. By
convention, primary producers are assigned a trophic level of
1. However, the trophic levels of other taxa are often less
clear, as there can be many chains of different lengths that
connect consumers to primary producers (i.e., omnivory)
with additional complications arising from loops such as
cannibalism, mutual predation, and longer cycles. Also,
parasitic or mutualistic carbon transfers between plants, for
example via mycorrhizae (Simard et al. 1997), can obscure
the trophic level of primary producers, and the trophic level
of individuals within a population or species can vary
greatly. Species’ trophic levels have been estimated in a
variety of ways, primarily using network structure with or
without energy flow information (Post 2002a; Williams and
Martinez 2004), or using stable isotopes of carbon and
nitrogen (Post 2002b). Each of the approaches requires a
different type of data and assumptions, and thus they result
in various estimates of trophic level. SENO models can
provide an alternative method for estimating trophic levels

by weighting the contribution of each resource in the diet of
a consumer by the probability that the resource occurs in a
sub-network. Variation in trophic level among sub-networks
could also indicate the extent to which the trophic level of a
species might vary across a landscape or over time. It would
be informative to cross-validate stable isotope, network
structure, and energy flow information with SENO model
estimates of trophic level.

SENO models could easily explore general questions
using theoretical networks but can they be applied to
empirical networks? SENO models, like most network
models, require a large number of biological assumptions
that will be difficult to estimate from field data without
resulting to short cuts such as allometric scaling as we have
in this paper. That said, general patterns available from field
data, like species–area curves or changes in occupancy with
spatial scale and body size, could be compared to outputs of
SENO models. SENO models could also help make
theoretical predictions about removal and exclusion experi-
ments. Their outputs could be compared with real data from
microcosm experiments and networks with known species
occupancies. However, evaluation of SENO models with
empirical data will be challenging.

We have illustrated how to construct SENO models and
suggested several analyses at the level of the network and of
the individual species. Our simple examples suggest that
SENO models can produce results consistent with basic
ecological concepts such as species–area curves and body
size–abundance associations. Future work could consider the
relationship between robustness and complexity in SENO
models or could examine the contribution of species inter-
actions to species–area curves. From an applied perspective,
SENO models could help identify characteristics of invasive
species that reduce biodiversity or of foundational species that
would foster the restoration of biodiversity. They could also
identify key resource needs, competitors, and predators for
endangered species or species that humans extract, and could
estimate the community-wide effects of events such as over-
fishing or species introductions. Our hope is that SENO
models will provide a useful way to integrate ecological
network research with spatial niche modeling for the support
of ecosystem-based management. They potentially even have
application in other disciplines that study networks such as
economics, computer science, systems biology, and sociology.
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